
Object-Oriented Design Lecture 5
CS 3500 Fall 2009 (Pucella) Friday, Sep 25, 2009

Software Testing

Testing versus Formal Verification

Formal verification, what you learned in CSU 290, is the process of verifying using logic
or other means that a program satisfies its specification. As you will remember from CSU
290, formal verification is usually difficult. The purpose of formal verification is proving a
program correct (i.e., satisfies its specification) for all possible inputs. The point of testing,
on the other hand, is to find bugs, and not to prove programs correct. Why?

To prove that a program is correct using tests, we need to exercise all the inputs to the
program. This can be a problem if there many inputs to test. For instance, a program that
takes two 64-bit integers as input, that is, 128 bits of input total, would require 1022 years
to run through tests for all inputs, even if we allow a millon tests to be performed every
second. That’s clearly infeasible. Things get worse, of course, because some programs can
take one of infinitely many inputs—for instance, programs manipulating lists.

So we cannot in general exercise all inputs, and therefore need to focus only on a few. This
leaves the possibility of bugs for the other inputs.

Consider the well-publicized story of the Intel FDIV bug. In 1994, Intel recalled its Pentium
processors to repair a bug in its floating point division instruction, FDIV. Intel has estimated
that this recall cost the company 475 million dollars.

Here is an example of the bug:

4195835.0/3145727.0 = 1.333 820 449 136 241 000 (Correct value)

4195835.0/3145727.0 = 1.333 739 068 902 037 589 (Flawed Pentium)

Intel estimated that the result of the FDIV instruction was incorrect a little more often than
once in every 9 billion floating point divisions. An IBM study found, however, that the
values that occur most often in spreadsheet and scientific computations are more likely to
trigger the bug.

After the Intel debacle, AMD, Intel’s chief competitor, was worried about their own chip.
They turned to the automatic theorem proving community, and Moore, a leading researcher
in the area, proved with his team that the algorithm used to implement the FDIV instruction
in AMD’s chip was correct using a mechanical theorem prover. They in fact managed to
prove the correctness of the entire floating-point kernel (not just the FDIV instruction). In

1

the process, they found and repaired two design errors that had not been caught by any of
the 80 million separate tests that had been run.

Unfortunately, as I said, proving programs correct is quite hard, so testing is often advocated
as a first approach to debugging. We may return to proving programs correct towards the
end of the course, but for the time being, let us focus on testing.

White Box (or Glass Box) Versus Black Box Testing

Testing techniques can be classified along several orthogonal dimensions.

White box testing relies on knowing the internals of the implementation. For instance, testing
by inserting print statements or something similar to get a sense of what gets executed is a
form of white box testing. This is useful when you are debugging a particular implementation
of an ADT, but it of course specific to that particular implementation.

In contrast, black box testing treats the implementation as hidden, and can only test the
code based on its interface and its specification. (It treats the ADT as a black box—you do
not get to peek inside.) The advantage of black box testing is that it can be used to test
any implementation of the ADT.

A black box testing infrastructure for an ADT must be able to test any implementation of
the ADT, and any correct implementation must pass the test.

Unit Versus Integration Testing

A class or a closely related set of classes (module) is often implemented by a single program-
mer. The class or module all by itself is not runnable, and generally will not do anything
useful on its own. It is used within the context of a larger piece of software. A key feature of
the ADT approach we advocate in this course is that it allows the class to be implemented
without regard to the context in which it will be used in.

(This is in fact the whole point of specification-based design in the wider context of engi-
neering. By designing a piece according to a specification, other pieces needing to interact
with the piece need only assume that the piece satisfies its specification. The actual details
of how the specification is met—the implementation—does not matter.)

Unit testing is the process of taking a class implementation and making sure it satisfies its
specification. This requires making up test data and a test program to test the implemen-
tation against the specification.

In contrast, integration testing tests the class in a context with other classes to make sure
that the higher-level interaction between the classes works correctly.

In this course, because of our ADT design philosophy, we will concentrate on black box unit
testing.

2

Yet another sort of testing that is sometimes mentioned is regression testing. Roughly
speaking, regression testing is the process of keeping old tests around; because adding a new
feature to a piece of software should not change existing behaviors, we can run the old tests
to ensure that the code still behaves as expected.

Test Coverage

Given that we can only test a finite (and in fact small) number of cases, how do we choose
those tests?

A good test is a test that finds bugs. Finding good tests therefore requires a basic under-
standing of the common bugs that can occur. This depends on the actual programming
language used, and on the kind of program being tested. Many books have been written on
common bugs in various programming languages.

In general, test coverage should include:

• Trivial cases (e.g., empty list inputs for list-processing functions)

• Typical cases (both easy and hard)

• Boundary cases (cases that are either just acceptable, or just outside acceptable; e.g.,
inputs that access an array close to its bounds)1

• Weird cases

• Error cases (if the specification mentions how error cases are treated)

What should be tested during a test? Every equation in the specification should be tested.
Remember that some methods in Java have an implicit specification. In particular, equals()
methods are required to be reflexive, symmetric, and transitive; the hashCode() method is
required to have the property that a.equals(b) implies a.hashCode()==b.hashCode().
Those should be tested as well.

Black Box Unit Testing Infrastructure

Let us look at an example of a black box unit testing class for the Coordinates ADT in your
first homework. Recall the signature and specification:� �

public static Coord create (int,int);

public int xPos ();

public int yPos ();

1In some cases, boundary cases may depend on the specifics of an implementation of an ADT; this sort
of boundary case has a flavor of white-box testing.

3

public Coord move (int,int);

public Coord add (Coord);

public boolean within (Coord, Coord);

public boolean equals (Coord);

public boolean equals (Object);

public int hashCode ();

public String toString ();

Coord.create(x,y).xPos() = x

Coord.create(x,y).yPos() = y

Coord.create(x,y).move(dx,dy) = Coord.create(x+dx,y+dy)

Coord.create(x,y).add(c) = Coord.create(x+c.xPos(),y+c.yPos())

Coord.create(x,y).within(c1,c2)

= true if c1.xPos() <= x <= c2.xPos() and

c1.yPos() <= y <= c2.yPos()

= false otherwise

Coord.create(x,y).equals(c)

= true if x=c.xPos() and y=c.yPos()

= false otherwise

Coord.create(x,y).equals(obj) = false

Coord.create(x,y).hashCode() = (x+y)*(x+y+1)/2 + y

Coord.create(x,y).toString() = "(" + x + "," + y + ")"� �
Assume we have a class Coord implementing the above interface, to be tested.

The general structure of the tester is to first generate a set of instances of Coord, and test
each instance. The instances, at least for the typical cases, can be usefully generated at
random.

First off, the class definition, and the main method, which invokes the testRandom() method
that tests a set of random objects. Useful statistics are returned by the testRandom method.� �
import java.util.Random;

public class CoordTester {

/** Main method

* After compiling it can be run with:

* java CoordTester

* Or imported into Eclipse

*/

public static void main(String[] args){

4

int totalInstances;

int totalErrors;

totalInstances = 100;

totalErrors = testRandom(totalInstances);

totalErrors += testExceptions();

/* A few Stats... */

System.out.println("\nNumber of coordinates tested: " +

totalInstances);

System.out.println("Number of errors found: " + totalErrors);

}� �
The testRandom() method repeatedly generates an instance of Coord using each of the
creators and tests that instance. We assume a testSingleRandomcreator () method, one
per creator. We also test various cases of interest, here borderline cases.� �

public static int testRandom (int num) {

int count = num;

int errors = 0;

while (count > 0) {

errors = errors + testSingleRandomCreate();

count = count - 1;

}

// borderline case

Coord zero = Coord.create(0,0);

errors = errors + testCreate (zero,0,0);

return errors;

}� �
The method testSingleRandomCreate() creates a new instance of Coord using the create

creator, based on the inputs to the method, and invokes testCreate() to test each specifi-
cation equation. Note that we pass to testCreate() not only the newly created instance,
but also the data that was used to create the instance. Helper functions to generate random
integers are provided to simplify testing.� �

// Returns a random integer between 1 and max, inclusive

public static int randomInt (int max) {

5

return new Random().nextInt(max)+1;

}

public static int testSingleRandomCreate () {

int x = randomInt(1000);

int y = randomInt(1000);

Coord p = Coord.create(x,y);

return testCreate(p,x,y);

}

public static boolean equalCoords (Coord c1, Coord c2) {

return (c1.xPos()==c2.xPos() && c1.yPos()==c2.yPos());

}

public static int testCreate (Coord p, int x, int y) {

int errors = 0;

String front = "Coord.create("+x+","+y+").";

try{

// Coord.create(x,y).xPos() = x

if (!(assertT (p.xPos()==x, front+"xPos()"))) errors++;

// Coord.create(x,y).yPos() = y

if (!(assertT (p.yPos()==y, front+"yPos()"))) errors++;

// Coord.create(x,y).move(dx,dy) = Coord.create(x+dx,y+dy)

int dx, dy;

do {

dx = randomInt(1000)-500;

dy = randomInt(1000)-500;

} while (x+dx < 0 || y+dy < 0);

if (!(assertT(equalCoords(p.move(dx,dy),Coord.create(x+dx,y+dy)),

front+"move("+dx+","+dy+")")))

errors++;

// Coord.create(x,y).add(c) = Coord.create(x+c.xPos(),y+c.yPos())

dx = randomInt(1000);

dy = randomInt(1000);

Coord dp = Coord.create(dx,dy);

if (!(assertT(equalCoords(p.add(dp),Coord.create(x+dx,y+dy)),

front+"add(Coord.create"+dp.toString()+")")))

errors++;

6

// Coord.create(x,y).within(c1,c2)

// = true if c1.xPos() <= x <= c2.xPos() and

// c1.yPos() <= y <= c2.yPos()

// = false otherwise

int cx = randomInt(1000);

int cy = randomInt(1000);

Coord c1 = Coord.create(cx,cy);

Coord c2 = Coord.create(cx+2,cy+2);

boolean expected=false;

if (cx <= x && x <= cx+2 && cy <= y && y <= cy+2) expected=true;

if (!(assertT(p.within(c1,c2)==expected,

front+"within(Coord.create"+c1.toString()+

",Coord.create"+c2.toString()+")")))

errors++;

// Coord.create(x,y).hashCode() = (x+y)*(x+y+1)/2 + y

if (!(assertT(p.hashCode()==(x+y)*(x+y+1)/2 + y,

front+"hashCode()")))

errors++;

// should test equals and hashCode too [future homework!]

if (!(assertT(p.toString().equals("(" + x + "," + y + ")"),

front+"toString()")))

errors++;

return errors;

} catch(RuntimeException e) {

/* If there was an exception anywhere in there, then we

* have a problem */

assertT(false, "Exception: "+e.getMessage());

return errors+1;

}

}� �
Note that exceptions are caught and reported as failed tests.

Method assertT() reports when a test succeeded or failed.� �
/* Result is expected to be true for passing tests, and false for

* failing tests. If a test fails, we print out the provided

* message so the user can see what might have gone wrong.

7

/* returns true if the assertion succeeded, and false otherwise! */

private static boolean assertT (boolean result, String msg){

if(!result){

System.out.println("\n**ERROR**: "+ msg);

}

System.out.print(".");

return result;

}

}� �
Finaly method testExceptions() is used to test whether the exceptions prescribed by the
specification are thrown for suitable arguments. I will let you look at that code by yourself.

8

