Object-Oriented Design Lecture 3
CS 3500 Fall 2009 (Pucella) Friday, Sep 18, 2009

ADT Implementation in Java

As I said in my introductory lecture, we will be programming in Java in this course. In part,
this is because Java is a reasonable language, and also because you already have seen some
Java in CSU 213 (CS 2510). In fact, I will assume you know the basics of the language: how
to define a basic class, derive some objects from the class, what are methods, what are fields
(which we’ll also call variables to confuse things sometimes), and what are the basic types
such as integers, booleans, and some fundamental operations on values of those types.

Now, working in a specific language such as Java will lead to terminological problems. In
particular, many of the terms we use when discussing design in a language-independent way
(as we have been doing until now) also have a meaning in Java, a meaning which is often
quite similar to the generic language-independent meaning, but often much more specific.
For instance, the term constructor has a specific meaning in Java which is along the lines of
the meaning we gave it last lecture, but actually means something much more specific, viz.
a method automatically invoked when using new to create a new object. Another example is
interface, which means something specific in Java that we will cover in a couple of lectures.
There are many others. Generally, the context will make it clear whether I am talking about
the generic term, or a specific term that has a technical meaning in Java. It is your job to
try to keep the two apart. Please ask when you are unsure.

Some remarks on the language: Java is a class-based object-oriented language. “Object-
oriented” means that (almost) every value in the language is an object. “Class-based”
means that objects are created from classes. A class is essentially a template, a description
of how objects of the class are created.

It helps to think of a program has having two parts. One part, the part that correspond to
the source code, is static. (Static means non-moving, which we take to mean non-executing).
It represents what information about the program we have before anything executes. In Java,
the only thing we know before a program executes are what classes are defined. Thus, the
classes are static. Classes exist, in some sense, even before programs start executing. The
other part is the dynamic part, which corresponds to program execution. During execution,
instances of the classes, that is, objects, get created, updated, destroyed. Thus, objects are
dynamic.

You should probably be aware that not every object-oriented language is class-based. Self,
for example, has no concept of class, but still has objects. Java is also statically typed —
types are associated with variables, and before a program is run those types are checked,
to make sure that values of the right kind are stored in variables, or passed to methods.

Not every object-oriented language is statically typed. Smalltalk, for example, checks types
dynamically, like Scheme does. We’ll talk more about types in a few lectures.

Object-Oriented Signatures and Specifications

To help us devise implementation for ADTs in object-oriented langauges, let us consider a
slightly different way of writing signatures and specifications.

The plan today is to give a quick and dirty implementation of the Map ADT, to illustrate
the basic uses of Java, and also to introduce the conventions we will use. Recall the signature
we had, augmented with a few new operations that I forgot about last time (firstXPos and
firstYPos, returning the x- and y-coordinates of the first artifact of a map), and modified
so that singleArtifact takes integers instead of natural numbers.

CREATORS empty i —=> Map
singleArtifact : Artifact int int -> Map
merge : Map Map -> Map
ACCESSORS isEmpty : Map —> boolean
firstArtifact : Map —-> Artifact
firstXPos : Map —> int
firstYPos : Map -> int

restArtifacts : Map -> Map

Ezxercise: I did not give a specification for firstXPos and firstYPos. Write them.

An object-oriented signature, to a first approximation, consider that accessors (not creators),
which must take at least one argument of the type of the ADT! take that value on which
they act as an implicit argument, as opposed to an explicit argument that appears in the
argument list. Thus, the Map object-oriented signature looks as follows, using a Java-like
syntax:

CREATORS Map empty ();
Map singleArtifact (Artifact, int, int);
Map merge (Map, Map);

ACCESSORS boolean isEmpty ();
Artifact firstArtifact ();
int firstXPos ();
int firstYPos ();

Map restArtifacts ();

Lotherwise, I would claim that such an accessor has no business being part of the ADT.

Let’s change how those operations are invoked, because we need to understand where the
implicit argument to the accessors is coming from. Creators are invoked as before, e.g.,
singleArtifact(a,i,j). Accessors, on the other hand, are invoked on an expression yield-
ing a Map value, e.g., v.firstArtifact (), where v is a Map value, or merge (m1,dm) .firstArtifact().

We can now similarly convert the specification using the above invocation forms:

empty () .isEmpty () = true
singleArtifact(a,i,j).isEmpty() = false
merge (m1,m2) . isEmpty ()
= true if ml.isEmpty()=true and m2.isEmpty()=true
false otherwise

singleArtifact(a,i,j).firstArtifact() = a

merge (m1,m2) .firstArtifact()
= m2.firstArtifact() if ml.isEmpty()=true
= ml.firstArtifact() otherwise

singleArtifact(a,i,j).firstXPos() = i

merge (m1,m2) . firstXPos()
= m2.firstXPos() if ml.isEmpty()=true
= ml.firstXPos() otherwise

singleArtifact(a,i,j).firstYPos() = j

merge (m1,m2) . firstYPos()
= m2.firstYPos() if ml.isEmpty()=true
= mil.firstYPos() otherwise

singleArtifact(a,i,j) .restArtifacts() = empty()

merge (m1,m2) .restArtifacts()
= m2.restArtifacts() if ml.isEmpty()=true
= merge(ml.restArtifacts(),m2) otherwise

This presentation of signatures and specifications is easier to implement in an object-oriented
language, as we now confirm.

Implementation of Map ADT

Let’s implement the above signature, then. The one decision we have to make, at this
point, is how to represent maps. We did not have to worry about this when writing the
specification, because there, the only thing we cared about is how maps behave, that is,
how their operations interact. But now that we have to write code to actually create and

manipulate maps, we need to choose a representation. Later, we will see that there is a
very natural representation that falls out of various principles of object-orientation. But for
now, we will focus on a naive and somewhat ugly representation, partly for the purpose of
contrasting it with something better later on. The representation we choose is to take a map
to be a linked list of artifacts (and their position).

With this in mind, we define a class Map in a file Map. java. Recall that in Java, we can
only put one public class (that is, a world-accessible class) per file, and the name of the file
should be the same name as the class, with . java appended.

// Class implementing the Map ADT given in lecture
public class Map {

Let’s fill in the body of this class.

There are several rules that we will follow when writing classes in this course. Six, to be
precise, to be introduced throughout this example. Here is the first one:

(1) The only methods in the class that we should be able to invoke are those given in the
signature.

Now, the class can define other methods, we just have to make sure they are not accessible
from outside the class.

Java’s lets us restrict accessibility to methods (and to fields) using the private keyword. In
contrast, accessible methods are specified using the public keyword.

We decided to represent maps as lists of artifacts. We have a few ways of doing this. Here
is one. We define fields in a map holding the first artifact of the map, its position, and the
rest of the map, as well as a flag recording whether the map is empty.

private boolean isempty; // whether the map is empty
private Artifact currArtifact; // the first artifact of the map
private int currXPos; // x-position of the first artifact
private int currYPos; // y-position of the first artifact
private Map rest; // the rest of the map

The second rule explains some of the choices:

(2) All fields are private.

Fields are not part of the signature, so the spirit of rule (1) says that they should be private.
This is not a big restrictions, as we can always use methods (if the signature tells us to)
to read and update fields. Mostly, this is to make sure that the rest of the code does not
depend on there being a particular field in the object, so that we can, for instance, change the
representation of an ADT without worrying about breaking code elsewhere in our program.

From CSU 213 at least, you know that every Java class requires a constructor, the method
invoked when the new operator is used to create an instance of the class. The Java constructor
for the Map class is simple:

private Map (boolean e, Artifact a, int x, int y, Map r) {
isempty = e;
currArtifact = a;
currXPos = Xx;
currYPos = y;
rest = r;

The only thing the constructor does is initialize the fields. That’s what a constructor will
always do:

(3) The class constructor takes are arguments initial values for all the fields and sets them.

More interestingly, note that the constructor is private. This is in keeping with rule (1),
because the constructor is not listed in the signature of the ADT, and never will be:

(4) The class constructor is private.

But that’s not a big problem, because we have creators, which are used to create new
instances. The creators, being defined inside the class, will be able to invoke the constructor.

So let’s look at the creators. Creators, the way we will use them, are sometimes called
factory methods, and the technique of only using creators to create new objects instead of
Java constructors is called the factory design pattern.

// Creator for an empty map
public static Map empty () {
return new Map (true, null, O, O, null);

3

// Creator for a map with a single artifact

public static Map singleArtifact (Artifact a, int i, int j) {
return new Map (false, a, i, j, Map.empty());

}

// Creator for a merged map
public static Map merge (Map ml, Map m2) {
if (ml.isEmpty())
return m2;
return new Map (false, ml.firstArtifact(),
ml.firstXPos(), ml.firstYPos(),
Map.merge (ml.restArtifacts(),m2));

This should all be fairly clear, except perhaps the static annotation on the creators. This
is because we have painted ourselves in a corner, in a sense. Consider this. We would like to
write a creator such as empty as a public method that calls the constructor. But how will
we able to call the empty method? Recall that in general, to invoke a method, we need an
instance of the class. And we just made sure that the constructor of the class was private,
that is, not invokable from outside that class. So there is no way to have an object that
would let us invoke any of the creators in the first place. Bummer.

The key is to somehow make sure that the creator methods are available even when no
instance of the class exist. That’s what the static annotation does. It says that the
method does not require an instance of the class to be invoked. There is no implicit object
passed to the method. It acts, essentially, just like a normal function in other language.
(Why calling it static? Recall the discussion at the beginning of this lecture, and try to
figure it out.)

How do you use static methods? Let’s examine more carefully how to call methods:

e A non-static method m in class T is called with arguments a and b (say) by writing:
obj.m(a,b)

where obj is some expression denoting an object of class T. In the body of method m,
the keyword this denotes the same object as obj.

e A static method m in class T is called with arguments a and b (say) by writing:
T.m(a,b)

and the keyword this cannot be used in the body of method m.?

Following this discussion, we add the following rule to our list:

2There are rules about static methods; in particular, a static method cannot refer to methods or fields
that are defined in objects, which makes sense because a static method exists even when there are no objects
around.

(5) Creators are static methods.

Finally, we can implement the accessors, which in this case simply query the appropriate
fields of a map:

// Accessor for checking if a map is empty
public boolean isEmpty () {
return (this.isempty);

by

// Accessor for the first artifact of a map
public Artifact firstArtifact () {
if (this.isEmpty())
throw new Error ("applying firstArtifact to an empty map");
return (this.currArtifact);

3

// Accessor for the x-coordinate of the first artifact of a map
public int firstXPos () {
if (this.isEmpty())
throw new Error ("applying firstXPos to an empty map");
return (this.currXPos);

3

// Accessor for the y-coordinate of the first artifact of a mpa
public int firstYPos () {
if (this.isEmpty())
throw new Error ("applying firstYPos to an empty map");
return (this.currYPos);

3

// Accessor for the rest of the map
public Map restArtifacts () {
if (this.isEmpty())
throw new Error ("applying restArtifacts to an empty map");
return (this.rest);

3

A couple of things to notice. First off, I explicitly use this. as a qualifier when invoking a
method of the current object, or accessing a field of the current object. Also, to report an
error, I throw an exception (in this case, the Error exception). We will see exceptions in
more detail later on in the course.

Fields are never updated. This is important enough that I will make it a rule that we will
only break towards the end of the course:

(6) Fields, once initialized by the class constructor, are never updated.

In combination with rule (2) that makes every field private, this makes every instance of the
class immutable—once created, it cannot be changed. Immutable instances have a host of
advantages: the code is easier to reason about, it is easier to replace the code or debug it,
etc. As we will see when we look at mutation, understanding what actually happens when a
field is updated can get very tricky when a program uses all the features of Java. Because of
this, and other reasons that we will return to in the course of the semester, we will restrict
our attention to immutable instances.

I have also followed a couple of conventions for naming, which you should follow as well. The
Java compiler will not enforce them, but your brain will learn to recognize them and use them
to spot some errors some times. Class names are capitalized, like Map, or an hypothetical
LargeMap. Method names and variable names are capitalized but for the first letter, like
singleArtifact, or first.

All code should be commented. Not putting any comments is a sin that I will not permit
you to indulge in. Every class should have a comment at the top indicating the purpose of
the class, and every method and variable should have a comment indicating the role of the
method or variable.

