
Object-Oriented Design Lecture 2
CS 3500 Fall 2009 (Pucella) Tuesday, Sep 15, 2009

ADTs and Algebraic Specifications

One of the first questions we are faced with when trying to design a piece of software is “What
is the data that the program must manipulate? What are the objects? For example, when
designing a game or a simulation, likely data includes simulated artifacts such as spaceships,
planets, and stars, enemy robots, maps representing the world to be simulated, and so one.
These are all fairly concrete data. Other forms of data are more abstract—for instance,
strategies for controlling computer-controlled robots.

For the purpose of our discussion today, let’s focus on one kind of data that arises in a
simulation-style computer game, namely maps representing the game world. To keep the
discussion simple, I will consider very simple kind of map, namely two-dimensional square
grid maps.

So how do we go about thinking about maps? When designing software, it’s best to keep an
open mind as to the exact form the software will take. We can simply assume that a map is
an object without committing to anything else. In particular, we will not want to commit
to a particular way of representing a map. Let’s embody this into a principle: You’ll like it,
it’s all about not doing work.

The Principle of Least Commitment: Don’t commit yourself any more or
sooner than necessary.

As we will soon see, it does not really matter what objects are. What matters about objects
is how they behave. So let’s ask the question: how should maps behave?

That’s a vague question. Let’s refine it somewhat, and look for something specific. Behaviors
are induced when objects are acted upon. So how do we want to act on maps? In other
words, what operations do want to support on maps?

Here are some sensible operations on maps: creating new maps, adding an artifact to a map
(e.g., adding a spaceship at a particular location in the map), removing an artifact from a
map, moving an artifact in the map, loading and saving a map to disk, querying the content
of a location on the map. You should be easily able to think of others.

Operations on maps naturally divide into three kinds of operations. The first kind of oper-
ations are those that create a map, which we will call creators or sometimes constructors.
The second kind of operations are those that extract information from maps, which we will
call accessors or selectors. When an accessor returns true or false we often call the accessor

1



a predicate. The final kind of operations are those that do not extract information or create
new maps, but rather effect a change in the real world, such as saving a map to disk and
physically changing the content of the disk, which we will call effectors. Effectors are those
operations that actually do something that you as a human being sitting at the computer
notice. Printing out information on the screen for you to read is an effector operation. They
cannot be undone.

For now, we will keep the design exceedingly small and simple. In particular, we’ll leave out
some behaviors and operations that we will need later. But that’s okay. Part of the point of
object-oriented design and programming is that it makes it easy to add behaviors to objects
in the future.

I will also most likely make mistakes, something voluntarily, sometimes not. Between that
and needing to add operations later on, we will certainly need to revise our design in the
future. Revising a design is must less expensive that revising a program, because a program
accumulates all sort of cruft that a design does not have, including implementation choices.
Moreover, a good design is much easier to turn into correct code than a bad design. Worse,
a buggy design makes it impossible to write correct code. Thus, it pays to get the design
right.

The concept of data with an associated set of operations is important enough that we’ll give
it a name: an abstract data type (ADT for short):

Abstract Data Type: An abstract data type is a set of data and a set of
operations that can be performed on the data, along with a description of what
those operations do.

Let’s consider an ADT for maps. Let’s consider the operations. What operations should we
want to support on maps? First of all, we need to create maps—we want creators. There
are several choices possible, and here are mine. I want an operation empty that creates an
empty map, that is, a map without any artifacts in it. This is useful, in the same way that
zero is useful in arithmetic. For the sake of simplicity, let’s assume that maps have a fixed
size. (It’s easy to make size a parameter.) I want an operation singleArtifact that creates
a map containing a single artifact in it, at some specified location. I also want to create
more complex maps, recursively. To do so, I want an operation merge that creates a map by
merging together two maps, so that the artifacts in both maps are included in the resulting
map. (Other choices of creator operations are possible and equivalent to these three; as an
exercise, try to come up with a few.)

Being able to create maps is a good first step. But we may also want to extract information
from maps—we want accessors. Here are some operations that do so. First off, an operation
isEmpty is useful to check if a map is empty. To extract the artifacts in a non-empty map, I
want operations firstArtifact that returns the first artifact in map, and restArtifacts

that returns a map containing all but the first artifact of a given map.

2



Signature of the Map ADT

A signature consists of the names of the operations together with their type.

For the Map ADT, a reasonable signature would be as follows:

empty : -> Map

singleArtifact : Artifact nat nat -> Map

merge : Map Map -> Map

isEmpty : Map -> boolean

firstArtifact : Map -> Artifact

restArtifacts : Map -> Map

This signature assumes that we have a type for artifacts which I will just assume is an ADT
itself called Artifact, as well as types for Boolean values and for natural numbers.

Notice that the creators all return a Map object, as expected, while all the accessors take a
Map object as an argument.

A signature describes one aspect of the interface, namely, what shape the operations have,
that is, what they expect as arguments and what they return as a result. The signature
gives no clue as to how those operations are meant to behave, however. We need to remedy
that situation. This is the second part of the definition of ADT.

Specification of the Map ADT

A specification (or spec, for short) is a kind of guarantee (or contract) between clients and
implementors.

Clients

• depend on the behavior guaranteed by the spec, and

• promise not to depend on any behavior not guaranteed by the spec.

Implementors

• guarantee that a provided abstraction behaves as specified by the spec, and

• do not guarantee any behavior not covered by the spec.

It is hard to specify how objects behave. Usually, this is done in English, in an informal
way. But the resulting specification is often incomplete, incorrect, ambiguous, or confusing.
You’ll see examples of those very often.

3



Let me introduce a formal way of specifying behavior, as a set of algebraic equations that
the operations of the interface must obey. Because of that, we will call it an algebraic
specification. (There are other ways of specifying behavior, which we may get to before the
end of the course.)

The basic rule is to describe how each accessor works on any object constructed using the
creators.

Specifying isEmpty is straightforward:

isEmpty (empty ()) = true

isEmpty (singleArtifact (a,i,j)) = false

isEmpty (merge (m1,m2)) = isEmpty (m1) & isEmpty (m2)

where & is the and operation that is defined to be true if both arguments are true, and false
otherwise.

Specifying firstArtifact is just a bit more interesting:

firstArtifact (singleArtifact (a,i,j)) = a

firstArtifact (merge (m1,m2)) =

firstArtifact (m2) if isEmpty (m1)

firstArtifact (m1) otherwise

First off, there is no equation describing how firstArtifact behaves when applied to an
empty map. That’s on purpose: no behavior is specified, because it should be an error.
The implementor is free to do as she wishes. (In general, she will report an error through
an exception or a similar mechanism, but it may make sense in some situations to silently
ignore the application and proceed with the rest of the computation.)

Second, the equation for firstArtifact applied to a merged map is a conditional equation,
because it depends on properties of the first map, namely whether it is empty or not.

Specifying restArtifacts is similar to firstArtifact, with many of the same subtleties:

restArtifacts (singleArtifact (a,i,j)) = empty ()

restArtifacts (merge (m1,m2)) =

restArtifacts (m2) if isEmpty (m1)

merge (restArtifacts (m1),m2) otherwise

These equations seem only to specify the behavior of the accessors, but in fact, they describe
the interaction between the accessors and the creators, and thereby implicitly also specify
the behavior of the creators.

Let me emphasize again: the above specification describes how the operations behave, what
they do. And in particular, they say a lot more than they seem to say. Look at how

4



firstArtifact and restArtifacts are defined. They assume that there is an order to the
artifacts in a map (what that order is is irrelevant), and that when you merge two maps,
the order of the artifacts is preserved, in the sense that the artifacts in the first map all
come before the artifacts in the second map in the resulting merged map. Putting it another
way, the description of the operations assumes that the artifacts in a map are put in a list,
and merging two maps corresponds to appending their list of artifacts. That may or may
not be what you had in mind when I informally described how maps behaved, but that’s
irrelevant. The above is the specification, and the specification tells you the contract I expect
the implementors of the Map ADT to abide to.

Exercise: Define a different Map ADT such that the operation firstArtifact returns
the “upper leftmost” artifact in the map, and restArtifacts returns the map obtained by
removing the “upper leftmost” artifact. Take whatever sensible definition of “upper leftmost”
you can come up with. This is a very challenging exercise, and more intended to get you to
think about what goes into a specification than anything else. And yes, you probably have to
assume some things about the Artifact ADT as well.

Note that I have not said how maps are implemented. And I don’t care at this point. I
do not care how the operations do what they claim to do, I am just describing how I want
them to behave. Figuring out how to implement objects, how to go from a description of
their behavior to actual code that implements that behavior, is a decision that we will resist
making for as long as possible, per the Principle of Least Commitment.

Despite this lack of description of how objects are implemented, the specification is still
powerful enough to tell us the result of complex operations. For instance, suppose that I
want to check what is the result of extracting the second artifact out of a map with three
artifacts “starship”, “star”, and “planet”, in that order, at respective positions (0,0), (1,1),
and (2,2). (For simplicity, assume that an artifact is represented by a string.) Clearly, the
result of that extraction should be the artifact “star”. That is, we want to check that the
result of the following expression is the artifact “star”:

firstArtifact (restArtifacts (merge (singleArtifact ("starship",0,0),

merge (singleArtifact ("star",1,1),

singleArtifact ("planet",2,2)))))

Well, I can use the equations above to replace equals by equals and simplify the above
expression, just like you would do in algebra. This is were the name algebraic specification
comes from, by the way. Here is one possible derivation. See if you can spot the equations I
used at each step:

5



firstArtifact (restArtifacts (merge (singleArtifact ("starship",0,0),

merge (singleArtifact ("star",1,1),

singleArtifact ("planet",2,2)))))

= firstArtifact (merge (restArtifacts (singleArtifact ("starship",0,0)),

merge (singleArtifact ("star",1,1),

singleArtifact ("planet",2,2))))

= firstArtifact (merge (empty (),

merge (singleArtifact ("star",1,1),

singleArtifact ("planet",2,2))))

= firstArtifact (merge (singleArtifact ("star",1,1),

singleArtifact ("planet",2,2)))

= firstArtifact (singleArtifact ("star",1,1))

= "star"

This is, of course, the result that we expected. But the point is, the whole point is, we can
compute the result without having ever said a word about how maps are implemented !

6


