
Adaptively secure MPC
in sublinear communication

BU & Northeastern
Ran Cohen abhi shelat Daniel Wichs

Northeastern Northeastern

Static corruptions Adv
Adv picks corrupted parties

before protocol begins.

Static corruptions Adv
Adv picks corrupted parties

before protocol begins.

Adaptive corruptions Adv
Adv picks corrupted
parties at any time.

Adaptive corruptions Adv
Adv picks corrupted
parties at any time.

Adaptive corruptions Adv
Adv picks corrupted
parties at any time.

Adaptive corruptions Adv
Adv picks corrupted
parties at any time.

Adaptive corruptions Adv
Adv can corrupt ALL
parties AFTER end.

Adaptive corruptions Adv
Adv can corrupt ALL
parties AFTER end.

Protocol finished

Adaptive corruptions Adv
Adv can corrupt ALL
parties AFTER end.

Protocol finished

Adaptive corruptions Adv can corrupt ALL
parties AFTER end.(without erasures)

Simulator S must produce transcript T
without knowing inputs or outputs.

After corruption, S learns inputs and
outputs.

S must explain transcript T by
producing random tapes for each
party!

Why adaptive security?

Why adaptive security?

At what cost
adaptive
security?

Partial history (static)

GMW’87
O(d) rounds 
OT

BMR’90
O(1) rounds 
OT

AJLTVW’12
2 rounds, comm 
LWE, NIZK,
Threshold-PKI

GGHR’14
2 rounds 
iO, NIZK, CRS

MW’16
2 rounds, comm 
LWE, NIZK, CRS

GS’18 / BL’18
2 rounds 
OT, CRS

QWW’18
2 rounds 
 comm & online work 
Adaptive-LWE, NIZK, CRS

Partial history (static)

GMW’87
O(d) rounds 
OT

BMR’90
O(1) rounds 
OT

AJLTVW’12
2 rounds, comm 
LWE, NIZK,
Threshold-PKI

GGHR’14
2 rounds 
iO, NIZK, CRS

MW’16
2 rounds, comm 
LWE, NIZK, CRS

GS’18 / BL’18
2 rounds 
OT, CRS

QWW’18
2 rounds 
 comm & online work 
Adaptive-LWE, NIZK, CRS

CLOS’02
O(d) rounds 
OT, CRS

GP’15
2 rounds, o(C) comm 
iO,DenEnc,O(C) Ref

DKR’15 / CGP’15
O(1) rounds 
iO, OT, RefStr

CPV’17
O(1) rounds 
OT, CRS

BLPV’18
2 rounds, |C| 
OT, CRS

Partial history (static)

GMW’87
O(d) rounds 
OT

BMR’90
O(1) rounds 
OT

AJLTVW’12
2 rounds, comm 
LWE, NIZK,
Threshold-PKI

GGHR’14
2 rounds 
iO, NIZK, CRS

MW’16
2 rounds, comm 
LWE, NIZK, CRS

GS’18 / BL’18
2 rounds 
OT, CRS

QWW’18
2 rounds 
 comm & online work 
Adaptive-LWE, NIZK, CRS

RB’89
O(d)
rounds

BMR’90
O(1) rounds 
OWF

AJLTVW’12
4 rounds, comm 
LWE, NIZK,
Threshold-PKI

GLS’15
2 rounds, comm 
LWE, NIZK,
Threshold-PKI

ACGJ’18
3 rounds 
PKE, Zaps

CLOS’02
O(d) rounds 
OT, CRS

GP’15
2 rounds, o(C) comm 
iO,DenEnc,O(C) Ref

DKR’15 / CGP’15
O(1) rounds 
iO, OT, RefStr

CPV’17
O(1) rounds 
OT, CRS

BLPV’18
2 rounds, |C| 
OT, CRS

Partial history (static)

GMW’87
O(d) rounds 
OT

BMR’90
O(1) rounds 
OT

AJLTVW’12
2 rounds, comm 
LWE, NIZK,
Threshold-PKI

GGHR’14
2 rounds 
iO, NIZK, CRS

MW’16
2 rounds, comm 
LWE, NIZK, CRS

GS’18 / BL’18
2 rounds 
OT, CRS

QWW’18
2 rounds 
 comm & online work 
Adaptive-LWE, NIZK, CRS

RB’89
O(d)
rounds

BMR’90
O(1) rounds 
OWF

AJLTVW’12
4 rounds, comm 
LWE, NIZK,
Threshold-PKI

GLS’15
2 rounds, comm 
LWE, NIZK,
Threshold-PKI

ACGJ’18
3 rounds 
PKE, Zaps

CLOS’02
O(d) rounds 
OT, CRS

GP’15
2 rounds, o(C) comm 
iO,DenEnc,O(C) Ref

DKR’15 / CGP’15
O(1) rounds 
iO, OT, RefStr

CPV’17
O(1) rounds 
OT, CRS

BLPV’18
2 rounds, |C| 
OT, CRS

DI’05
O(1) rounds 
OWF

IPS’08
O(1) rounds 
OT, CRS

DPR’16
3 rounds, o(C) comm 
LWE, NIZK, Threshold-
PKICDDHR’99

O(d) rounds

Framework for 2-round sub-|C| MPC

Framework for 2-round sub-|C| MPC

ci ← "#$. $%&pk(xi; r)
pk, ski

Framework for 2-round sub-|C| MPC

ci ← "#$. $%&pk(xi; r)
pk, ski

(receive c1,…,cn from everyone)

Framework for 2-round sub-|C| MPC

ci ← "#$. $%&pk(xi; r)
pk, ski

(receive c1,…,cn from everyone)

y ← $'()pk(f, c1, c2, …, cn)
di ← Decski

(y)

Framework for 2-round sub-|C| MPC

ci ← "#$. $%&pk(xi; r)
pk, ski

(receive c1,…,cn from everyone)

y ← $'()pk(f, c1, c2, …, cn)
di ← Decski

(y)
di

(receive d1,…,dn from everyone)

Framework for 2-round sub-|C| MPC

ci ← "#$. $%&pk(xi; r)
pk, ski

(receive c1,…,cn from everyone)

y ← $'()pk(f, c1, c2, …, cn)
di ← Decski

(y)
di

(receive d1,…,dn from everyone)

f(x1, …, xn) ← Combine(d1, …, dn)

Framework for 2-round sub-|C| MPC

c1

c2 c3

c4

c5

c6

c7
c8

Framework for 2-round sub-|C| MPC

c1

c2 c3

c4

c5

c6

c7
c8

d1

d2 d3

d4

d5

d6

d7d8

Adaptive Secure FHE

We say an `-homomorphic encryption scheme is `-fully homomorphic if it is homomorphic for
all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require that the output of
Evalpk(C, c1, . . . , c`) should reveal nothing about C, even to the holder of the secret key sk. This
notion is called circuit privacy. There are di↵erent ways of formalizing such a notion. The definition
we use is slightly weaker than some others that have been considered previously, since we allow (an
upper bound on) the size of C to be revealed. A similar notion was considered in [GHV10].

Definition 2.4 (Circuit privacy). An `-homomorphic encryption scheme HE for a class of circuits

{Ck}k2N is circuit private if there exists an e�cient simulator S such that for every (pk, sk) generated
by Gen, every C 2 Ck, and every m1, . . . ,m`, the following two distributions are computationally

indistinguishable (even given pk, sk, C,m1, . . . ,m`):

�
c1 Encpk(m1); . . . , c` Encpk(m`) :

�
Evalpk(C, c1, · · · , c`), c1, . . . , c`

�

and n
c1 Encpk(m1); . . . , c` Encpk(m`) : S (1k, pk, |C|, C(m1 · · ·m`), c1, · · · , c`)

o
.

We say an `-homomorphic encryption scheme is circuit-private homomorphic if it is homomor-
phic for all boolean circuits, CPA-secure, and circuit private according to Definition 2.4.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a notion of adaptive security for FHE that is weaker than the notion considered
by Canetti et al. [CFGN96]. Specifically, we consider only adaptive corruption of the receiver.
(Alternately, we assume secure erasure and thus the sender can erase the randomness it uses for
encryption immediately after encryption is complete.) Here, a simulator is required to produce (a
bounded number of) simulated ciphertexts c1, . . . , c` that it gives to an adversary; the adversary
then outputs messages m1, . . . ,m` 2 {0, 1}, and the simulator should give the adversary a (single)
key sk that “explains” (i.e., decrypts) each ciphertext ci as mi.

We stress here that we only require adaptive security where there is an a priori upper bound
` on the number of encryptions. (This su�ces for applications where encryption is used as part of
an interactive protocol.) Thus, Nielsen’s impossibility result [Nie02] does not apply to our setting.

Definition 2.5 (Adaptively secure FHE). An `-homomorphic encryption scheme HE = (Gen,
Enc,Dec,Eval) is adaptively secure if there exists a non-uniform, polynomial-time algorithm S =
(S1,S2) such that for all non-uniform, polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]� Pr[RealA(k) = 1]|  negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s) S1(1k);
(m1, . . . ,m`, ⌧) A1(1k);
sk S2(s,m1, . . . ,m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

RealA(k)
(m1, . . . ,m`, ⌧) A1(1k);
(pk , sk) Gen(1k);
c1 Encpk (m1); . . . ;

c` Encpk (m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

5

(sk, pk) <—- Gen(1k)
Enc, Dec, Eval as usual

Adaptive Secure FHE Impossible

We say an `-homomorphic encryption scheme is `-fully homomorphic if it is homomorphic for
all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require that the output of
Evalpk(C, c1, . . . , c`) should reveal nothing about C, even to the holder of the secret key sk. This
notion is called circuit privacy. There are di↵erent ways of formalizing such a notion. The definition
we use is slightly weaker than some others that have been considered previously, since we allow (an
upper bound on) the size of C to be revealed. A similar notion was considered in [GHV10].

Definition 2.4 (Circuit privacy). An `-homomorphic encryption scheme HE for a class of circuits

{Ck}k2N is circuit private if there exists an e�cient simulator S such that for every (pk, sk) generated
by Gen, every C 2 Ck, and every m1, . . . ,m`, the following two distributions are computationally

indistinguishable (even given pk, sk, C,m1, . . . ,m`):

�
c1 Encpk(m1); . . . , c` Encpk(m`) :

�
Evalpk(C, c1, · · · , c`), c1, . . . , c`

�

and n
c1 Encpk(m1); . . . , c` Encpk(m`) : S (1k, pk, |C|, C(m1 · · ·m`), c1, · · · , c`)

o
.

We say an `-homomorphic encryption scheme is circuit-private homomorphic if it is homomor-
phic for all boolean circuits, CPA-secure, and circuit private according to Definition 2.4.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a notion of adaptive security for FHE that is weaker than the notion considered
by Canetti et al. [CFGN96]. Specifically, we consider only adaptive corruption of the receiver.
(Alternately, we assume secure erasure and thus the sender can erase the randomness it uses for
encryption immediately after encryption is complete.) Here, a simulator is required to produce (a
bounded number of) simulated ciphertexts c1, . . . , c` that it gives to an adversary; the adversary
then outputs messages m1, . . . ,m` 2 {0, 1}, and the simulator should give the adversary a (single)
key sk that “explains” (i.e., decrypts) each ciphertext ci as mi.

We stress here that we only require adaptive security where there is an a priori upper bound
` on the number of encryptions. (This su�ces for applications where encryption is used as part of
an interactive protocol.) Thus, Nielsen’s impossibility result [Nie02] does not apply to our setting.

Definition 2.5 (Adaptively secure FHE). An `-homomorphic encryption scheme HE = (Gen,
Enc,Dec,Eval) is adaptively secure if there exists a non-uniform, polynomial-time algorithm S =
(S1,S2) such that for all non-uniform, polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]� Pr[RealA(k) = 1]|  negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s) S1(1k);
(m1, . . . ,m`, ⌧) A1(1k);
sk S2(s,m1, . . . ,m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

RealA(k)
(m1, . . . ,m`, ⌧) A1(1k);
(pk , sk) Gen(1k);
c1 Encpk (m1); . . . ;

c` Encpk (m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

5

c′� ← Eval+,(Cf, c1, …, cℓ)

Katz-Thiruvengadam-Zhou

Adaptive Secure FHE Impossible

We say an `-homomorphic encryption scheme is `-fully homomorphic if it is homomorphic for
all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require that the output of
Evalpk(C, c1, . . . , c`) should reveal nothing about C, even to the holder of the secret key sk. This
notion is called circuit privacy. There are di↵erent ways of formalizing such a notion. The definition
we use is slightly weaker than some others that have been considered previously, since we allow (an
upper bound on) the size of C to be revealed. A similar notion was considered in [GHV10].

Definition 2.4 (Circuit privacy). An `-homomorphic encryption scheme HE for a class of circuits

{Ck}k2N is circuit private if there exists an e�cient simulator S such that for every (pk, sk) generated
by Gen, every C 2 Ck, and every m1, . . . ,m`, the following two distributions are computationally

indistinguishable (even given pk, sk, C,m1, . . . ,m`):

�
c1 Encpk(m1); . . . , c` Encpk(m`) :

�
Evalpk(C, c1, · · · , c`), c1, . . . , c`

�

and n
c1 Encpk(m1); . . . , c` Encpk(m`) : S (1k, pk, |C|, C(m1 · · ·m`), c1, · · · , c`)

o
.

We say an `-homomorphic encryption scheme is circuit-private homomorphic if it is homomor-
phic for all boolean circuits, CPA-secure, and circuit private according to Definition 2.4.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a notion of adaptive security for FHE that is weaker than the notion considered
by Canetti et al. [CFGN96]. Specifically, we consider only adaptive corruption of the receiver.
(Alternately, we assume secure erasure and thus the sender can erase the randomness it uses for
encryption immediately after encryption is complete.) Here, a simulator is required to produce (a
bounded number of) simulated ciphertexts c1, . . . , c` that it gives to an adversary; the adversary
then outputs messages m1, . . . ,m` 2 {0, 1}, and the simulator should give the adversary a (single)
key sk that “explains” (i.e., decrypts) each ciphertext ci as mi.

We stress here that we only require adaptive security where there is an a priori upper bound
` on the number of encryptions. (This su�ces for applications where encryption is used as part of
an interactive protocol.) Thus, Nielsen’s impossibility result [Nie02] does not apply to our setting.

Definition 2.5 (Adaptively secure FHE). An `-homomorphic encryption scheme HE = (Gen,
Enc,Dec,Eval) is adaptively secure if there exists a non-uniform, polynomial-time algorithm S =
(S1,S2) such that for all non-uniform, polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]� Pr[RealA(k) = 1]|  negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s) S1(1k);
(m1, . . . ,m`, ⌧) A1(1k);
sk S2(s,m1, . . . ,m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

RealA(k)
(m1, . . . ,m`, ⌧) A1(1k);
(pk , sk) Gen(1k);
c1 Encpk (m1); . . . ;

c` Encpk (m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

5

c′� ← Eval+,(Cf, c1, …, cℓ)

Given input m = (m1, …, mℓ) compute f(m) as:

Katz-Thiruvengadam-Zhou

Adaptive Secure FHE Impossible

We say an `-homomorphic encryption scheme is `-fully homomorphic if it is homomorphic for
all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require that the output of
Evalpk(C, c1, . . . , c`) should reveal nothing about C, even to the holder of the secret key sk. This
notion is called circuit privacy. There are di↵erent ways of formalizing such a notion. The definition
we use is slightly weaker than some others that have been considered previously, since we allow (an
upper bound on) the size of C to be revealed. A similar notion was considered in [GHV10].

Definition 2.4 (Circuit privacy). An `-homomorphic encryption scheme HE for a class of circuits

{Ck}k2N is circuit private if there exists an e�cient simulator S such that for every (pk, sk) generated
by Gen, every C 2 Ck, and every m1, . . . ,m`, the following two distributions are computationally

indistinguishable (even given pk, sk, C,m1, . . . ,m`):

�
c1 Encpk(m1); . . . , c` Encpk(m`) :

�
Evalpk(C, c1, · · · , c`), c1, . . . , c`

�

and n
c1 Encpk(m1); . . . , c` Encpk(m`) : S (1k, pk, |C|, C(m1 · · ·m`), c1, · · · , c`)

o
.

We say an `-homomorphic encryption scheme is circuit-private homomorphic if it is homomor-
phic for all boolean circuits, CPA-secure, and circuit private according to Definition 2.4.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a notion of adaptive security for FHE that is weaker than the notion considered
by Canetti et al. [CFGN96]. Specifically, we consider only adaptive corruption of the receiver.
(Alternately, we assume secure erasure and thus the sender can erase the randomness it uses for
encryption immediately after encryption is complete.) Here, a simulator is required to produce (a
bounded number of) simulated ciphertexts c1, . . . , c` that it gives to an adversary; the adversary
then outputs messages m1, . . . ,m` 2 {0, 1}, and the simulator should give the adversary a (single)
key sk that “explains” (i.e., decrypts) each ciphertext ci as mi.

We stress here that we only require adaptive security where there is an a priori upper bound
` on the number of encryptions. (This su�ces for applications where encryption is used as part of
an interactive protocol.) Thus, Nielsen’s impossibility result [Nie02] does not apply to our setting.

Definition 2.5 (Adaptively secure FHE). An `-homomorphic encryption scheme HE = (Gen,
Enc,Dec,Eval) is adaptively secure if there exists a non-uniform, polynomial-time algorithm S =
(S1,S2) such that for all non-uniform, polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]� Pr[RealA(k) = 1]|  negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s) S1(1k);
(m1, . . . ,m`, ⌧) A1(1k);
sk S2(s,m1, . . . ,m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

RealA(k)
(m1, . . . ,m`, ⌧) A1(1k);
(pk , sk) Gen(1k);
c1 Encpk (m1); . . . ;

c` Encpk (m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

5

c′� ← Eval+,(Cf, c1, …, cℓ)

We say an `-homomorphic encryption scheme is `-fully homomorphic if it is homomorphic for
all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require that the output of
Evalpk(C, c1, . . . , c`) should reveal nothing about C, even to the holder of the secret key sk. This
notion is called circuit privacy. There are di↵erent ways of formalizing such a notion. The definition
we use is slightly weaker than some others that have been considered previously, since we allow (an
upper bound on) the size of C to be revealed. A similar notion was considered in [GHV10].

Definition 2.4 (Circuit privacy). An `-homomorphic encryption scheme HE for a class of circuits

{Ck}k2N is circuit private if there exists an e�cient simulator S such that for every (pk, sk) generated
by Gen, every C 2 Ck, and every m1, . . . ,m`, the following two distributions are computationally

indistinguishable (even given pk, sk, C,m1, . . . ,m`):

�
c1 Encpk(m1); . . . , c` Encpk(m`) :

�
Evalpk(C, c1, · · · , c`), c1, . . . , c`

�

and n
c1 Encpk(m1); . . . , c` Encpk(m`) : S (1k, pk, |C|, C(m1 · · ·m`), c1, · · · , c`)

o
.

We say an `-homomorphic encryption scheme is circuit-private homomorphic if it is homomor-
phic for all boolean circuits, CPA-secure, and circuit private according to Definition 2.4.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a notion of adaptive security for FHE that is weaker than the notion considered
by Canetti et al. [CFGN96]. Specifically, we consider only adaptive corruption of the receiver.
(Alternately, we assume secure erasure and thus the sender can erase the randomness it uses for
encryption immediately after encryption is complete.) Here, a simulator is required to produce (a
bounded number of) simulated ciphertexts c1, . . . , c` that it gives to an adversary; the adversary
then outputs messages m1, . . . ,m` 2 {0, 1}, and the simulator should give the adversary a (single)
key sk that “explains” (i.e., decrypts) each ciphertext ci as mi.

We stress here that we only require adaptive security where there is an a priori upper bound
` on the number of encryptions. (This su�ces for applications where encryption is used as part of
an interactive protocol.) Thus, Nielsen’s impossibility result [Nie02] does not apply to our setting.

Definition 2.5 (Adaptively secure FHE). An `-homomorphic encryption scheme HE = (Gen,
Enc,Dec,Eval) is adaptively secure if there exists a non-uniform, polynomial-time algorithm S =
(S1,S2) such that for all non-uniform, polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]� Pr[RealA(k) = 1]|  negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s) S1(1k);
(m1, . . . ,m`, ⌧) A1(1k);
sk S2(s,m1, . . . ,m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

RealA(k)
(m1, . . . ,m`, ⌧) A1(1k);
(pk , sk) Gen(1k);
c1 Encpk (m1); . . . ;

c` Encpk (m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

5

Given input m = (m1, …, mℓ) compute f(m) as:

Katz-Thiruvengadam-Zhou

Adaptive Secure FHE Impossible

We say an `-homomorphic encryption scheme is `-fully homomorphic if it is homomorphic for
all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require that the output of
Evalpk(C, c1, . . . , c`) should reveal nothing about C, even to the holder of the secret key sk. This
notion is called circuit privacy. There are di↵erent ways of formalizing such a notion. The definition
we use is slightly weaker than some others that have been considered previously, since we allow (an
upper bound on) the size of C to be revealed. A similar notion was considered in [GHV10].

Definition 2.4 (Circuit privacy). An `-homomorphic encryption scheme HE for a class of circuits

{Ck}k2N is circuit private if there exists an e�cient simulator S such that for every (pk, sk) generated
by Gen, every C 2 Ck, and every m1, . . . ,m`, the following two distributions are computationally

indistinguishable (even given pk, sk, C,m1, . . . ,m`):

�
c1 Encpk(m1); . . . , c` Encpk(m`) :

�
Evalpk(C, c1, · · · , c`), c1, . . . , c`

�

and n
c1 Encpk(m1); . . . , c` Encpk(m`) : S (1k, pk, |C|, C(m1 · · ·m`), c1, · · · , c`)

o
.

We say an `-homomorphic encryption scheme is circuit-private homomorphic if it is homomor-
phic for all boolean circuits, CPA-secure, and circuit private according to Definition 2.4.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a notion of adaptive security for FHE that is weaker than the notion considered
by Canetti et al. [CFGN96]. Specifically, we consider only adaptive corruption of the receiver.
(Alternately, we assume secure erasure and thus the sender can erase the randomness it uses for
encryption immediately after encryption is complete.) Here, a simulator is required to produce (a
bounded number of) simulated ciphertexts c1, . . . , c` that it gives to an adversary; the adversary
then outputs messages m1, . . . ,m` 2 {0, 1}, and the simulator should give the adversary a (single)
key sk that “explains” (i.e., decrypts) each ciphertext ci as mi.

We stress here that we only require adaptive security where there is an a priori upper bound
` on the number of encryptions. (This su�ces for applications where encryption is used as part of
an interactive protocol.) Thus, Nielsen’s impossibility result [Nie02] does not apply to our setting.

Definition 2.5 (Adaptively secure FHE). An `-homomorphic encryption scheme HE = (Gen,
Enc,Dec,Eval) is adaptively secure if there exists a non-uniform, polynomial-time algorithm S =
(S1,S2) such that for all non-uniform, polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]� Pr[RealA(k) = 1]|  negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s) S1(1k);
(m1, . . . ,m`, ⌧) A1(1k);
sk S2(s,m1, . . . ,m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

RealA(k)
(m1, . . . ,m`, ⌧) A1(1k);
(pk , sk) Gen(1k);
c1 Encpk (m1); . . . ;

c` Encpk (m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

5

c′� ← Eval+,(Cf, c1, …, cℓ)

We say an `-homomorphic encryption scheme is `-fully homomorphic if it is homomorphic for
all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require that the output of
Evalpk(C, c1, . . . , c`) should reveal nothing about C, even to the holder of the secret key sk. This
notion is called circuit privacy. There are di↵erent ways of formalizing such a notion. The definition
we use is slightly weaker than some others that have been considered previously, since we allow (an
upper bound on) the size of C to be revealed. A similar notion was considered in [GHV10].

Definition 2.4 (Circuit privacy). An `-homomorphic encryption scheme HE for a class of circuits

{Ck}k2N is circuit private if there exists an e�cient simulator S such that for every (pk, sk) generated
by Gen, every C 2 Ck, and every m1, . . . ,m`, the following two distributions are computationally

indistinguishable (even given pk, sk, C,m1, . . . ,m`):

�
c1 Encpk(m1); . . . , c` Encpk(m`) :

�
Evalpk(C, c1, · · · , c`), c1, . . . , c`

�

and n
c1 Encpk(m1); . . . , c` Encpk(m`) : S (1k, pk, |C|, C(m1 · · ·m`), c1, · · · , c`)

o
.

We say an `-homomorphic encryption scheme is circuit-private homomorphic if it is homomor-
phic for all boolean circuits, CPA-secure, and circuit private according to Definition 2.4.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a notion of adaptive security for FHE that is weaker than the notion considered
by Canetti et al. [CFGN96]. Specifically, we consider only adaptive corruption of the receiver.
(Alternately, we assume secure erasure and thus the sender can erase the randomness it uses for
encryption immediately after encryption is complete.) Here, a simulator is required to produce (a
bounded number of) simulated ciphertexts c1, . . . , c` that it gives to an adversary; the adversary
then outputs messages m1, . . . ,m` 2 {0, 1}, and the simulator should give the adversary a (single)
key sk that “explains” (i.e., decrypts) each ciphertext ci as mi.

We stress here that we only require adaptive security where there is an a priori upper bound
` on the number of encryptions. (This su�ces for applications where encryption is used as part of
an interactive protocol.) Thus, Nielsen’s impossibility result [Nie02] does not apply to our setting.

Definition 2.5 (Adaptively secure FHE). An `-homomorphic encryption scheme HE = (Gen,
Enc,Dec,Eval) is adaptively secure if there exists a non-uniform, polynomial-time algorithm S =
(S1,S2) such that for all non-uniform, polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]� Pr[RealA(k) = 1]|  negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s) S1(1k);
(m1, . . . ,m`, ⌧) A1(1k);
sk S2(s,m1, . . . ,m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

RealA(k)
(m1, . . . ,m`, ⌧) A1(1k);
(pk , sk) Gen(1k);
c1 Encpk (m1); . . . ;

c` Encpk (m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

5

f(m) ← Decsk(c′�)

Given input m = (m1, …, mℓ) compute f(m) as:

Katz-Thiruvengadam-Zhou

Adaptive Secure FHE Impossible

We say an `-homomorphic encryption scheme is `-fully homomorphic if it is homomorphic for
all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require that the output of
Evalpk(C, c1, . . . , c`) should reveal nothing about C, even to the holder of the secret key sk. This
notion is called circuit privacy. There are di↵erent ways of formalizing such a notion. The definition
we use is slightly weaker than some others that have been considered previously, since we allow (an
upper bound on) the size of C to be revealed. A similar notion was considered in [GHV10].

Definition 2.4 (Circuit privacy). An `-homomorphic encryption scheme HE for a class of circuits

{Ck}k2N is circuit private if there exists an e�cient simulator S such that for every (pk, sk) generated
by Gen, every C 2 Ck, and every m1, . . . ,m`, the following two distributions are computationally

indistinguishable (even given pk, sk, C,m1, . . . ,m`):

�
c1 Encpk(m1); . . . , c` Encpk(m`) :

�
Evalpk(C, c1, · · · , c`), c1, . . . , c`

�

and n
c1 Encpk(m1); . . . , c` Encpk(m`) : S (1k, pk, |C|, C(m1 · · ·m`), c1, · · · , c`)

o
.

We say an `-homomorphic encryption scheme is circuit-private homomorphic if it is homomor-
phic for all boolean circuits, CPA-secure, and circuit private according to Definition 2.4.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a notion of adaptive security for FHE that is weaker than the notion considered
by Canetti et al. [CFGN96]. Specifically, we consider only adaptive corruption of the receiver.
(Alternately, we assume secure erasure and thus the sender can erase the randomness it uses for
encryption immediately after encryption is complete.) Here, a simulator is required to produce (a
bounded number of) simulated ciphertexts c1, . . . , c` that it gives to an adversary; the adversary
then outputs messages m1, . . . ,m` 2 {0, 1}, and the simulator should give the adversary a (single)
key sk that “explains” (i.e., decrypts) each ciphertext ci as mi.

We stress here that we only require adaptive security where there is an a priori upper bound
` on the number of encryptions. (This su�ces for applications where encryption is used as part of
an interactive protocol.) Thus, Nielsen’s impossibility result [Nie02] does not apply to our setting.

Definition 2.5 (Adaptively secure FHE). An `-homomorphic encryption scheme HE = (Gen,
Enc,Dec,Eval) is adaptively secure if there exists a non-uniform, polynomial-time algorithm S =
(S1,S2) such that for all non-uniform, polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]� Pr[RealA(k) = 1]|  negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s) S1(1k);
(m1, . . . ,m`, ⌧) A1(1k);
sk S2(s,m1, . . . ,m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

RealA(k)
(m1, . . . ,m`, ⌧) A1(1k);
(pk , sk) Gen(1k);
c1 Encpk (m1); . . . ;

c` Encpk (m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

5

c′� ← Eval+,(Cf, c1, …, cℓ)

We say an `-homomorphic encryption scheme is `-fully homomorphic if it is homomorphic for
all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require that the output of
Evalpk(C, c1, . . . , c`) should reveal nothing about C, even to the holder of the secret key sk. This
notion is called circuit privacy. There are di↵erent ways of formalizing such a notion. The definition
we use is slightly weaker than some others that have been considered previously, since we allow (an
upper bound on) the size of C to be revealed. A similar notion was considered in [GHV10].

Definition 2.4 (Circuit privacy). An `-homomorphic encryption scheme HE for a class of circuits

{Ck}k2N is circuit private if there exists an e�cient simulator S such that for every (pk, sk) generated
by Gen, every C 2 Ck, and every m1, . . . ,m`, the following two distributions are computationally

indistinguishable (even given pk, sk, C,m1, . . . ,m`):

�
c1 Encpk(m1); . . . , c` Encpk(m`) :

�
Evalpk(C, c1, · · · , c`), c1, . . . , c`

�

and n
c1 Encpk(m1); . . . , c` Encpk(m`) : S (1k, pk, |C|, C(m1 · · ·m`), c1, · · · , c`)

o
.

We say an `-homomorphic encryption scheme is circuit-private homomorphic if it is homomor-
phic for all boolean circuits, CPA-secure, and circuit private according to Definition 2.4.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a notion of adaptive security for FHE that is weaker than the notion considered
by Canetti et al. [CFGN96]. Specifically, we consider only adaptive corruption of the receiver.
(Alternately, we assume secure erasure and thus the sender can erase the randomness it uses for
encryption immediately after encryption is complete.) Here, a simulator is required to produce (a
bounded number of) simulated ciphertexts c1, . . . , c` that it gives to an adversary; the adversary
then outputs messages m1, . . . ,m` 2 {0, 1}, and the simulator should give the adversary a (single)
key sk that “explains” (i.e., decrypts) each ciphertext ci as mi.

We stress here that we only require adaptive security where there is an a priori upper bound
` on the number of encryptions. (This su�ces for applications where encryption is used as part of
an interactive protocol.) Thus, Nielsen’s impossibility result [Nie02] does not apply to our setting.

Definition 2.5 (Adaptively secure FHE). An `-homomorphic encryption scheme HE = (Gen,
Enc,Dec,Eval) is adaptively secure if there exists a non-uniform, polynomial-time algorithm S =
(S1,S2) such that for all non-uniform, polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]� Pr[RealA(k) = 1]|  negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s) S1(1k);
(m1, . . . ,m`, ⌧) A1(1k);
sk S2(s,m1, . . . ,m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

RealA(k)
(m1, . . . ,m`, ⌧) A1(1k);
(pk , sk) Gen(1k);
c1 Encpk (m1); . . . ;

c` Encpk (m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

5

f(m) ← Decsk(c′�)

Given input m = (m1, …, mℓ) compute f(m) as:

Katz-Thiruvengadam-Zhou

Size of circuit
computing f is:

Impossibility of adaptive FHE

Erasures don’t help

Framework for 2-round sub-|C| MPC

ci ← "#$. $%&pk(xi)
pk, ski

(receive d1,…,dn from everyone)

f(x1, …, xn) ← Combine(d1, …, dn)

Erase random coins.

Erase ski.

Framework for 2-round sub-|C| MPC

ci ← "#$. $%&pk(xi)
pk, ski

(receive c1,…,cn from everyone)

(receive d1,…,dn from everyone)

f(x1, …, xn) ← Combine(d1, …, dn)

Erase random coins.

Erase ski.

Framework for 2-round sub-|C| MPC

ci ← "#$. $%&pk(xi)
pk, ski

(receive c1,…,cn from everyone)

y ← $'()pk(f, c1, c2, …, cn)
di ← Decski

(y)

(receive d1,…,dn from everyone)

f(x1, …, xn) ← Combine(d1, …, dn)

Erase random coins.

Erase ski.

Framework for 2-round sub-|C| MPC

ci ← "#$. $%&pk(xi)
pk, ski

(receive c1,…,cn from everyone)

y ← $'()pk(f, c1, c2, …, cn)
di ← Decski

(y)
di

(receive d1,…,dn from everyone)

f(x1, …, xn) ← Combine(d1, …, dn)

Erase random coins.

Erase ski.

Need new ideas for adaptive+succinct

Succinct
But not

Adaptive

Adaptive
but not
Succinct

Succinct
and

Adaptive

Laconic Function Evaluation (LFE)

corrupts the dummy party ÂPi. For every input message of the form (prove, sid, x, w) that ÂPi received,
set the random coins corresponding to the proof as (u1, . . . , u¸), where ui = HTDF.Invsk,wi(vi).

Claim 3.4. IDEALSext,FR
nizk

,Z
s© IDEALSsim,FR

nizk
,Z .

Proof. This follows from the security of the HTDF scheme by using a standard hybrid argument.
First, we show that the simulated proofs of Sext are statistically close to the simulated proofs
of Ssim. We define ¸ + 1 experiments, where in the i’th experiment the first i ≠ 1 values vj are
computed as vj Ω V and are explained as uj Ω HTDF.Invsk,wj (vj). The remaining ¸ ≠ i + 1 values
are computed as vj = fpk,wj (uj) for uj Ω U . The first experiment is exactly the way Sext simulates
the proof and the last experiment is exactly the way Ssim simulates the proof. By the properties
of the HTDF scheme neighboring experiments are statistically close, and therefore also the proof
simulated by Sext and Ssim.

Second, since the number of prove requests is bounded by a polynomial number, we can use a
second hybrid argument to replace the way the proofs are simulated and explained one by one, and
conclude that the simulation of Sext is statistically close to the simulation of Ssim.

Note that Ssim does not require any access to the internals of FR

nizk
. Therefore, we can now

define the simulator S that does not have any access to the internals of FR

nizk
, and operates exactly

like Ssim. As we have shown, S running with FR

nizk
is computationally indistinguishable from

the protocol finizk running with A in the (FRhtdf

nizk
, Fcrs)-hybrid model. The protocol finizk therefore

securely realizes FR

nizk
in the (FRhtdf

nizk
, Fcrs)-hybrid model.

By instantiating the FRhtdf

nizk
with the UC-NIZK protocol from [61], we obtain the following corollary.

Corollary 3.5. Under the decision linear assumption (or equivalently, the subgroup decision prob-
lem) in bilinear group, and the existence of HTDF schemes, the following holds. For every NP-
relation R, the functionality FR

nizk
can be UC-realized in the Fcrs-hybrid model tolerating an adaptive,

malicious adversary such that the size of the CRS is poly(Ÿ) and the size of the proofs is |w|·poly(Ÿ).

4 Sublinear Communication in the Fully Adaptive Setting
In this section, we consider the fully adaptive setting (where the adversary can corrupt all parties)
and construct two-round secure protocols with sublinear communication and online-computation
complexity (in the circuit size). Our starting point is the protocol of Quach et al. [85] that is based
on laconic function evaluation (LFE) (see Appendix A.2.1).

4.1 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

Laconic function evaluation. We formally define laconic function evaluation (LFE) in Ap-
pendix A.2.1. Informally, an LFE scheme consists of 4 algorithms. The CRS generation algorithm
generates a common random string given the security parameter and function parameters (e.g.,
function depth and input length) crs Ω LFE.crsGen(1Ÿ, params). The compression algorithm pro-
duces a small digest of a circuit digestC = LFE.Compress(crs, C; r). The encryption algorithm

18

Quach-Wee-Wichs’18

Laconic Function Evaluation (LFE)

corrupts the dummy party ÂPi. For every input message of the form (prove, sid, x, w) that ÂPi received,
set the random coins corresponding to the proof as (u1, . . . , u¸), where ui = HTDF.Invsk,wi(vi).

Claim 3.4. IDEALSext,FR
nizk

,Z
s© IDEALSsim,FR

nizk
,Z .

Proof. This follows from the security of the HTDF scheme by using a standard hybrid argument.
First, we show that the simulated proofs of Sext are statistically close to the simulated proofs
of Ssim. We define ¸ + 1 experiments, where in the i’th experiment the first i ≠ 1 values vj are
computed as vj Ω V and are explained as uj Ω HTDF.Invsk,wj (vj). The remaining ¸ ≠ i + 1 values
are computed as vj = fpk,wj (uj) for uj Ω U . The first experiment is exactly the way Sext simulates
the proof and the last experiment is exactly the way Ssim simulates the proof. By the properties
of the HTDF scheme neighboring experiments are statistically close, and therefore also the proof
simulated by Sext and Ssim.

Second, since the number of prove requests is bounded by a polynomial number, we can use a
second hybrid argument to replace the way the proofs are simulated and explained one by one, and
conclude that the simulation of Sext is statistically close to the simulation of Ssim.

Note that Ssim does not require any access to the internals of FR

nizk
. Therefore, we can now

define the simulator S that does not have any access to the internals of FR

nizk
, and operates exactly

like Ssim. As we have shown, S running with FR

nizk
is computationally indistinguishable from

the protocol finizk running with A in the (FRhtdf

nizk
, Fcrs)-hybrid model. The protocol finizk therefore

securely realizes FR

nizk
in the (FRhtdf

nizk
, Fcrs)-hybrid model.

By instantiating the FRhtdf

nizk
with the UC-NIZK protocol from [61], we obtain the following corollary.

Corollary 3.5. Under the decision linear assumption (or equivalently, the subgroup decision prob-
lem) in bilinear group, and the existence of HTDF schemes, the following holds. For every NP-
relation R, the functionality FR

nizk
can be UC-realized in the Fcrs-hybrid model tolerating an adaptive,

malicious adversary such that the size of the CRS is poly(Ÿ) and the size of the proofs is |w|·poly(Ÿ).

4 Sublinear Communication in the Fully Adaptive Setting
In this section, we consider the fully adaptive setting (where the adversary can corrupt all parties)
and construct two-round secure protocols with sublinear communication and online-computation
complexity (in the circuit size). Our starting point is the protocol of Quach et al. [85] that is based
on laconic function evaluation (LFE) (see Appendix A.2.1).

4.1 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

Laconic function evaluation. We formally define laconic function evaluation (LFE) in Ap-
pendix A.2.1. Informally, an LFE scheme consists of 4 algorithms. The CRS generation algorithm
generates a common random string given the security parameter and function parameters (e.g.,
function depth and input length) crs Ω LFE.crsGen(1Ÿ, params). The compression algorithm pro-
duces a small digest of a circuit digestC = LFE.Compress(crs, C; r). The encryption algorithm

18

corrupts the dummy party ÂPi. For every input message of the form (prove, sid, x, w) that ÂPi received,
set the random coins corresponding to the proof as (u1, . . . , u¸), where ui = HTDF.Invsk,wi(vi).

Claim 3.4. IDEALSext,FR
nizk

,Z
s© IDEALSsim,FR

nizk
,Z .

Proof. This follows from the security of the HTDF scheme by using a standard hybrid argument.
First, we show that the simulated proofs of Sext are statistically close to the simulated proofs
of Ssim. We define ¸ + 1 experiments, where in the i’th experiment the first i ≠ 1 values vj are
computed as vj Ω V and are explained as uj Ω HTDF.Invsk,wj (vj). The remaining ¸ ≠ i + 1 values
are computed as vj = fpk,wj (uj) for uj Ω U . The first experiment is exactly the way Sext simulates
the proof and the last experiment is exactly the way Ssim simulates the proof. By the properties
of the HTDF scheme neighboring experiments are statistically close, and therefore also the proof
simulated by Sext and Ssim.

Second, since the number of prove requests is bounded by a polynomial number, we can use a
second hybrid argument to replace the way the proofs are simulated and explained one by one, and
conclude that the simulation of Sext is statistically close to the simulation of Ssim.

Note that Ssim does not require any access to the internals of FR

nizk
. Therefore, we can now

define the simulator S that does not have any access to the internals of FR

nizk
, and operates exactly

like Ssim. As we have shown, S running with FR

nizk
is computationally indistinguishable from

the protocol finizk running with A in the (FRhtdf

nizk
, Fcrs)-hybrid model. The protocol finizk therefore

securely realizes FR

nizk
in the (FRhtdf

nizk
, Fcrs)-hybrid model.

By instantiating the FRhtdf

nizk
with the UC-NIZK protocol from [61], we obtain the following corollary.

Corollary 3.5. Under the decision linear assumption (or equivalently, the subgroup decision prob-
lem) in bilinear group, and the existence of HTDF schemes, the following holds. For every NP-
relation R, the functionality FR

nizk
can be UC-realized in the Fcrs-hybrid model tolerating an adaptive,

malicious adversary such that the size of the CRS is poly(Ÿ) and the size of the proofs is |w|·poly(Ÿ).

4 Sublinear Communication in the Fully Adaptive Setting
In this section, we consider the fully adaptive setting (where the adversary can corrupt all parties)
and construct two-round secure protocols with sublinear communication and online-computation
complexity (in the circuit size). Our starting point is the protocol of Quach et al. [85] that is based
on laconic function evaluation (LFE) (see Appendix A.2.1).

4.1 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

Laconic function evaluation. We formally define laconic function evaluation (LFE) in Ap-
pendix A.2.1. Informally, an LFE scheme consists of 4 algorithms. The CRS generation algorithm
generates a common random string given the security parameter and function parameters (e.g.,
function depth and input length) crs Ω LFE.crsGen(1Ÿ, params). The compression algorithm pro-
duces a small digest of a circuit digestC = LFE.Compress(crs, C; r). The encryption algorithm

18

Quach-Wee-Wichs’18

Laconic Function Evaluation (LFE)

corrupts the dummy party ÂPi. For every input message of the form (prove, sid, x, w) that ÂPi received,
set the random coins corresponding to the proof as (u1, . . . , u¸), where ui = HTDF.Invsk,wi(vi).

Claim 3.4. IDEALSext,FR
nizk

,Z
s© IDEALSsim,FR

nizk
,Z .

Proof. This follows from the security of the HTDF scheme by using a standard hybrid argument.
First, we show that the simulated proofs of Sext are statistically close to the simulated proofs
of Ssim. We define ¸ + 1 experiments, where in the i’th experiment the first i ≠ 1 values vj are
computed as vj Ω V and are explained as uj Ω HTDF.Invsk,wj (vj). The remaining ¸ ≠ i + 1 values
are computed as vj = fpk,wj (uj) for uj Ω U . The first experiment is exactly the way Sext simulates
the proof and the last experiment is exactly the way Ssim simulates the proof. By the properties
of the HTDF scheme neighboring experiments are statistically close, and therefore also the proof
simulated by Sext and Ssim.

Second, since the number of prove requests is bounded by a polynomial number, we can use a
second hybrid argument to replace the way the proofs are simulated and explained one by one, and
conclude that the simulation of Sext is statistically close to the simulation of Ssim.

Note that Ssim does not require any access to the internals of FR

nizk
. Therefore, we can now

define the simulator S that does not have any access to the internals of FR

nizk
, and operates exactly

like Ssim. As we have shown, S running with FR

nizk
is computationally indistinguishable from

the protocol finizk running with A in the (FRhtdf

nizk
, Fcrs)-hybrid model. The protocol finizk therefore

securely realizes FR

nizk
in the (FRhtdf

nizk
, Fcrs)-hybrid model.

By instantiating the FRhtdf

nizk
with the UC-NIZK protocol from [61], we obtain the following corollary.

Corollary 3.5. Under the decision linear assumption (or equivalently, the subgroup decision prob-
lem) in bilinear group, and the existence of HTDF schemes, the following holds. For every NP-
relation R, the functionality FR

nizk
can be UC-realized in the Fcrs-hybrid model tolerating an adaptive,

malicious adversary such that the size of the CRS is poly(Ÿ) and the size of the proofs is |w|·poly(Ÿ).

4 Sublinear Communication in the Fully Adaptive Setting
In this section, we consider the fully adaptive setting (where the adversary can corrupt all parties)
and construct two-round secure protocols with sublinear communication and online-computation
complexity (in the circuit size). Our starting point is the protocol of Quach et al. [85] that is based
on laconic function evaluation (LFE) (see Appendix A.2.1).

4.1 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

Laconic function evaluation. We formally define laconic function evaluation (LFE) in Ap-
pendix A.2.1. Informally, an LFE scheme consists of 4 algorithms. The CRS generation algorithm
generates a common random string given the security parameter and function parameters (e.g.,
function depth and input length) crs Ω LFE.crsGen(1Ÿ, params). The compression algorithm pro-
duces a small digest of a circuit digestC = LFE.Compress(crs, C; r). The encryption algorithm

18

corrupts the dummy party ÂPi. For every input message of the form (prove, sid, x, w) that ÂPi received,
set the random coins corresponding to the proof as (u1, . . . , u¸), where ui = HTDF.Invsk,wi(vi).

Claim 3.4. IDEALSext,FR
nizk

,Z
s© IDEALSsim,FR

nizk
,Z .

Proof. This follows from the security of the HTDF scheme by using a standard hybrid argument.
First, we show that the simulated proofs of Sext are statistically close to the simulated proofs
of Ssim. We define ¸ + 1 experiments, where in the i’th experiment the first i ≠ 1 values vj are
computed as vj Ω V and are explained as uj Ω HTDF.Invsk,wj (vj). The remaining ¸ ≠ i + 1 values
are computed as vj = fpk,wj (uj) for uj Ω U . The first experiment is exactly the way Sext simulates
the proof and the last experiment is exactly the way Ssim simulates the proof. By the properties
of the HTDF scheme neighboring experiments are statistically close, and therefore also the proof
simulated by Sext and Ssim.

Second, since the number of prove requests is bounded by a polynomial number, we can use a
second hybrid argument to replace the way the proofs are simulated and explained one by one, and
conclude that the simulation of Sext is statistically close to the simulation of Ssim.

Note that Ssim does not require any access to the internals of FR

nizk
. Therefore, we can now

define the simulator S that does not have any access to the internals of FR

nizk
, and operates exactly

like Ssim. As we have shown, S running with FR

nizk
is computationally indistinguishable from

the protocol finizk running with A in the (FRhtdf

nizk
, Fcrs)-hybrid model. The protocol finizk therefore

securely realizes FR

nizk
in the (FRhtdf

nizk
, Fcrs)-hybrid model.

By instantiating the FRhtdf

nizk
with the UC-NIZK protocol from [61], we obtain the following corollary.

Corollary 3.5. Under the decision linear assumption (or equivalently, the subgroup decision prob-
lem) in bilinear group, and the existence of HTDF schemes, the following holds. For every NP-
relation R, the functionality FR

nizk
can be UC-realized in the Fcrs-hybrid model tolerating an adaptive,

malicious adversary such that the size of the CRS is poly(Ÿ) and the size of the proofs is |w|·poly(Ÿ).

4 Sublinear Communication in the Fully Adaptive Setting
In this section, we consider the fully adaptive setting (where the adversary can corrupt all parties)
and construct two-round secure protocols with sublinear communication and online-computation
complexity (in the circuit size). Our starting point is the protocol of Quach et al. [85] that is based
on laconic function evaluation (LFE) (see Appendix A.2.1).

4.1 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

Laconic function evaluation. We formally define laconic function evaluation (LFE) in Ap-
pendix A.2.1. Informally, an LFE scheme consists of 4 algorithms. The CRS generation algorithm
generates a common random string given the security parameter and function parameters (e.g.,
function depth and input length) crs Ω LFE.crsGen(1Ÿ, params). The compression algorithm pro-
duces a small digest of a circuit digestC = LFE.Compress(crs, C; r). The encryption algorithm

18encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

Quach-Wee-Wichs’18

Laconic Function Evaluation (LFE)

corrupts the dummy party ÂPi. For every input message of the form (prove, sid, x, w) that ÂPi received,
set the random coins corresponding to the proof as (u1, . . . , u¸), where ui = HTDF.Invsk,wi(vi).

Claim 3.4. IDEALSext,FR
nizk

,Z
s© IDEALSsim,FR

nizk
,Z .

Proof. This follows from the security of the HTDF scheme by using a standard hybrid argument.
First, we show that the simulated proofs of Sext are statistically close to the simulated proofs
of Ssim. We define ¸ + 1 experiments, where in the i’th experiment the first i ≠ 1 values vj are
computed as vj Ω V and are explained as uj Ω HTDF.Invsk,wj (vj). The remaining ¸ ≠ i + 1 values
are computed as vj = fpk,wj (uj) for uj Ω U . The first experiment is exactly the way Sext simulates
the proof and the last experiment is exactly the way Ssim simulates the proof. By the properties
of the HTDF scheme neighboring experiments are statistically close, and therefore also the proof
simulated by Sext and Ssim.

Second, since the number of prove requests is bounded by a polynomial number, we can use a
second hybrid argument to replace the way the proofs are simulated and explained one by one, and
conclude that the simulation of Sext is statistically close to the simulation of Ssim.

Note that Ssim does not require any access to the internals of FR

nizk
. Therefore, we can now

define the simulator S that does not have any access to the internals of FR

nizk
, and operates exactly

like Ssim. As we have shown, S running with FR

nizk
is computationally indistinguishable from

the protocol finizk running with A in the (FRhtdf

nizk
, Fcrs)-hybrid model. The protocol finizk therefore

securely realizes FR

nizk
in the (FRhtdf

nizk
, Fcrs)-hybrid model.

By instantiating the FRhtdf

nizk
with the UC-NIZK protocol from [61], we obtain the following corollary.

Corollary 3.5. Under the decision linear assumption (or equivalently, the subgroup decision prob-
lem) in bilinear group, and the existence of HTDF schemes, the following holds. For every NP-
relation R, the functionality FR

nizk
can be UC-realized in the Fcrs-hybrid model tolerating an adaptive,

malicious adversary such that the size of the CRS is poly(Ÿ) and the size of the proofs is |w|·poly(Ÿ).

4 Sublinear Communication in the Fully Adaptive Setting
In this section, we consider the fully adaptive setting (where the adversary can corrupt all parties)
and construct two-round secure protocols with sublinear communication and online-computation
complexity (in the circuit size). Our starting point is the protocol of Quach et al. [85] that is based
on laconic function evaluation (LFE) (see Appendix A.2.1).

4.1 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

Laconic function evaluation. We formally define laconic function evaluation (LFE) in Ap-
pendix A.2.1. Informally, an LFE scheme consists of 4 algorithms. The CRS generation algorithm
generates a common random string given the security parameter and function parameters (e.g.,
function depth and input length) crs Ω LFE.crsGen(1Ÿ, params). The compression algorithm pro-
duces a small digest of a circuit digestC = LFE.Compress(crs, C; r). The encryption algorithm

18

corrupts the dummy party ÂPi. For every input message of the form (prove, sid, x, w) that ÂPi received,
set the random coins corresponding to the proof as (u1, . . . , u¸), where ui = HTDF.Invsk,wi(vi).

Claim 3.4. IDEALSext,FR
nizk

,Z
s© IDEALSsim,FR

nizk
,Z .

Proof. This follows from the security of the HTDF scheme by using a standard hybrid argument.
First, we show that the simulated proofs of Sext are statistically close to the simulated proofs
of Ssim. We define ¸ + 1 experiments, where in the i’th experiment the first i ≠ 1 values vj are
computed as vj Ω V and are explained as uj Ω HTDF.Invsk,wj (vj). The remaining ¸ ≠ i + 1 values
are computed as vj = fpk,wj (uj) for uj Ω U . The first experiment is exactly the way Sext simulates
the proof and the last experiment is exactly the way Ssim simulates the proof. By the properties
of the HTDF scheme neighboring experiments are statistically close, and therefore also the proof
simulated by Sext and Ssim.

Second, since the number of prove requests is bounded by a polynomial number, we can use a
second hybrid argument to replace the way the proofs are simulated and explained one by one, and
conclude that the simulation of Sext is statistically close to the simulation of Ssim.

Note that Ssim does not require any access to the internals of FR

nizk
. Therefore, we can now

define the simulator S that does not have any access to the internals of FR

nizk
, and operates exactly

like Ssim. As we have shown, S running with FR

nizk
is computationally indistinguishable from

the protocol finizk running with A in the (FRhtdf

nizk
, Fcrs)-hybrid model. The protocol finizk therefore

securely realizes FR

nizk
in the (FRhtdf

nizk
, Fcrs)-hybrid model.

By instantiating the FRhtdf

nizk
with the UC-NIZK protocol from [61], we obtain the following corollary.

Corollary 3.5. Under the decision linear assumption (or equivalently, the subgroup decision prob-
lem) in bilinear group, and the existence of HTDF schemes, the following holds. For every NP-
relation R, the functionality FR

nizk
can be UC-realized in the Fcrs-hybrid model tolerating an adaptive,

malicious adversary such that the size of the CRS is poly(Ÿ) and the size of the proofs is |w|·poly(Ÿ).

4 Sublinear Communication in the Fully Adaptive Setting
In this section, we consider the fully adaptive setting (where the adversary can corrupt all parties)
and construct two-round secure protocols with sublinear communication and online-computation
complexity (in the circuit size). Our starting point is the protocol of Quach et al. [85] that is based
on laconic function evaluation (LFE) (see Appendix A.2.1).

4.1 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

Laconic function evaluation. We formally define laconic function evaluation (LFE) in Ap-
pendix A.2.1. Informally, an LFE scheme consists of 4 algorithms. The CRS generation algorithm
generates a common random string given the security parameter and function parameters (e.g.,
function depth and input length) crs Ω LFE.crsGen(1Ÿ, params). The compression algorithm pro-
duces a small digest of a circuit digestC = LFE.Compress(crs, C; r). The encryption algorithm

18encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

Quach-Wee-Wichs’18

LFE Avoids Impossibility

We say an `-homomorphic encryption scheme is `-fully homomorphic if it is homomorphic for
all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require that the output of
Evalpk(C, c1, . . . , c`) should reveal nothing about C, even to the holder of the secret key sk. This
notion is called circuit privacy. There are di↵erent ways of formalizing such a notion. The definition
we use is slightly weaker than some others that have been considered previously, since we allow (an
upper bound on) the size of C to be revealed. A similar notion was considered in [GHV10].

Definition 2.4 (Circuit privacy). An `-homomorphic encryption scheme HE for a class of circuits

{Ck}k2N is circuit private if there exists an e�cient simulator S such that for every (pk, sk) generated
by Gen, every C 2 Ck, and every m1, . . . ,m`, the following two distributions are computationally

indistinguishable (even given pk, sk, C,m1, . . . ,m`):

�
c1 Encpk(m1); . . . , c` Encpk(m`) :

�
Evalpk(C, c1, · · · , c`), c1, . . . , c`

�

and n
c1 Encpk(m1); . . . , c` Encpk(m`) : S (1k, pk, |C|, C(m1 · · ·m`), c1, · · · , c`)

o
.

We say an `-homomorphic encryption scheme is circuit-private homomorphic if it is homomor-
phic for all boolean circuits, CPA-secure, and circuit private according to Definition 2.4.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a notion of adaptive security for FHE that is weaker than the notion considered
by Canetti et al. [CFGN96]. Specifically, we consider only adaptive corruption of the receiver.
(Alternately, we assume secure erasure and thus the sender can erase the randomness it uses for
encryption immediately after encryption is complete.) Here, a simulator is required to produce (a
bounded number of) simulated ciphertexts c1, . . . , c` that it gives to an adversary; the adversary
then outputs messages m1, . . . ,m` 2 {0, 1}, and the simulator should give the adversary a (single)
key sk that “explains” (i.e., decrypts) each ciphertext ci as mi.

We stress here that we only require adaptive security where there is an a priori upper bound
` on the number of encryptions. (This su�ces for applications where encryption is used as part of
an interactive protocol.) Thus, Nielsen’s impossibility result [Nie02] does not apply to our setting.

Definition 2.5 (Adaptively secure FHE). An `-homomorphic encryption scheme HE = (Gen,
Enc,Dec,Eval) is adaptively secure if there exists a non-uniform, polynomial-time algorithm S =
(S1,S2) such that for all non-uniform, polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]� Pr[RealA(k) = 1]|  negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s) S1(1k);
(m1, . . . ,m`, ⌧) A1(1k);
sk S2(s,m1, . . . ,m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

RealA(k)
(m1, . . . ,m`, ⌧) A1(1k);
(pk , sk) Gen(1k);
c1 Encpk (m1); . . . ;

c` Encpk (m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

5

c′� ← Eval+,(Cf, c1, …, cℓ)

We say an `-homomorphic encryption scheme is `-fully homomorphic if it is homomorphic for
all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require that the output of
Evalpk(C, c1, . . . , c`) should reveal nothing about C, even to the holder of the secret key sk. This
notion is called circuit privacy. There are di↵erent ways of formalizing such a notion. The definition
we use is slightly weaker than some others that have been considered previously, since we allow (an
upper bound on) the size of C to be revealed. A similar notion was considered in [GHV10].

Definition 2.4 (Circuit privacy). An `-homomorphic encryption scheme HE for a class of circuits

{Ck}k2N is circuit private if there exists an e�cient simulator S such that for every (pk, sk) generated
by Gen, every C 2 Ck, and every m1, . . . ,m`, the following two distributions are computationally

indistinguishable (even given pk, sk, C,m1, . . . ,m`):

�
c1 Encpk(m1); . . . , c` Encpk(m`) :

�
Evalpk(C, c1, · · · , c`), c1, . . . , c`

�

and n
c1 Encpk(m1); . . . , c` Encpk(m`) : S (1k, pk, |C|, C(m1 · · ·m`), c1, · · · , c`)

o
.

We say an `-homomorphic encryption scheme is circuit-private homomorphic if it is homomor-
phic for all boolean circuits, CPA-secure, and circuit private according to Definition 2.4.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a notion of adaptive security for FHE that is weaker than the notion considered
by Canetti et al. [CFGN96]. Specifically, we consider only adaptive corruption of the receiver.
(Alternately, we assume secure erasure and thus the sender can erase the randomness it uses for
encryption immediately after encryption is complete.) Here, a simulator is required to produce (a
bounded number of) simulated ciphertexts c1, . . . , c` that it gives to an adversary; the adversary
then outputs messages m1, . . . ,m` 2 {0, 1}, and the simulator should give the adversary a (single)
key sk that “explains” (i.e., decrypts) each ciphertext ci as mi.

We stress here that we only require adaptive security where there is an a priori upper bound
` on the number of encryptions. (This su�ces for applications where encryption is used as part of
an interactive protocol.) Thus, Nielsen’s impossibility result [Nie02] does not apply to our setting.

Definition 2.5 (Adaptively secure FHE). An `-homomorphic encryption scheme HE = (Gen,
Enc,Dec,Eval) is adaptively secure if there exists a non-uniform, polynomial-time algorithm S =
(S1,S2) such that for all non-uniform, polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]� Pr[RealA(k) = 1]|  negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s) S1(1k);
(m1, . . . ,m`, ⌧) A1(1k);
sk S2(s,m1, . . . ,m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

RealA(k)
(m1, . . . ,m`, ⌧) A1(1k);
(pk , sk) Gen(1k);
c1 Encpk (m1); . . . ;

c` Encpk (m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

5

f(m) ← Decsk(c′�)

Given input m = (m1, …, mℓ) compute f(m) as:

corrupts the dummy party ÂPi. For every input message of the form (prove, sid, x, w) that ÂPi received,
set the random coins corresponding to the proof as (u1, . . . , u¸), where ui = HTDF.Invsk,wi(vi).

Claim 3.4. IDEALSext,FR
nizk

,Z
s© IDEALSsim,FR

nizk
,Z .

Proof. This follows from the security of the HTDF scheme by using a standard hybrid argument.
First, we show that the simulated proofs of Sext are statistically close to the simulated proofs
of Ssim. We define ¸ + 1 experiments, where in the i’th experiment the first i ≠ 1 values vj are
computed as vj Ω V and are explained as uj Ω HTDF.Invsk,wj (vj). The remaining ¸ ≠ i + 1 values
are computed as vj = fpk,wj (uj) for uj Ω U . The first experiment is exactly the way Sext simulates
the proof and the last experiment is exactly the way Ssim simulates the proof. By the properties
of the HTDF scheme neighboring experiments are statistically close, and therefore also the proof
simulated by Sext and Ssim.

Second, since the number of prove requests is bounded by a polynomial number, we can use a
second hybrid argument to replace the way the proofs are simulated and explained one by one, and
conclude that the simulation of Sext is statistically close to the simulation of Ssim.

Note that Ssim does not require any access to the internals of FR

nizk
. Therefore, we can now

define the simulator S that does not have any access to the internals of FR

nizk
, and operates exactly

like Ssim. As we have shown, S running with FR

nizk
is computationally indistinguishable from

the protocol finizk running with A in the (FRhtdf

nizk
, Fcrs)-hybrid model. The protocol finizk therefore

securely realizes FR

nizk
in the (FRhtdf

nizk
, Fcrs)-hybrid model.

By instantiating the FRhtdf

nizk
with the UC-NIZK protocol from [61], we obtain the following corollary.

Corollary 3.5. Under the decision linear assumption (or equivalently, the subgroup decision prob-
lem) in bilinear group, and the existence of HTDF schemes, the following holds. For every NP-
relation R, the functionality FR

nizk
can be UC-realized in the Fcrs-hybrid model tolerating an adaptive,

malicious adversary such that the size of the CRS is poly(Ÿ) and the size of the proofs is |w|·poly(Ÿ).

4 Sublinear Communication in the Fully Adaptive Setting
In this section, we consider the fully adaptive setting (where the adversary can corrupt all parties)
and construct two-round secure protocols with sublinear communication and online-computation
complexity (in the circuit size). Our starting point is the protocol of Quach et al. [85] that is based
on laconic function evaluation (LFE) (see Appendix A.2.1).

4.1 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

Laconic function evaluation. We formally define laconic function evaluation (LFE) in Ap-
pendix A.2.1. Informally, an LFE scheme consists of 4 algorithms. The CRS generation algorithm
generates a common random string given the security parameter and function parameters (e.g.,
function depth and input length) crs Ω LFE.crsGen(1Ÿ, params). The compression algorithm pro-
duces a small digest of a circuit digestC = LFE.Compress(crs, C; r). The encryption algorithm

18

corrupts the dummy party ÂPi. For every input message of the form (prove, sid, x, w) that ÂPi received,
set the random coins corresponding to the proof as (u1, . . . , u¸), where ui = HTDF.Invsk,wi(vi).

Claim 3.4. IDEALSext,FR
nizk

,Z
s© IDEALSsim,FR

nizk
,Z .

Proof. This follows from the security of the HTDF scheme by using a standard hybrid argument.
First, we show that the simulated proofs of Sext are statistically close to the simulated proofs
of Ssim. We define ¸ + 1 experiments, where in the i’th experiment the first i ≠ 1 values vj are
computed as vj Ω V and are explained as uj Ω HTDF.Invsk,wj (vj). The remaining ¸ ≠ i + 1 values
are computed as vj = fpk,wj (uj) for uj Ω U . The first experiment is exactly the way Sext simulates
the proof and the last experiment is exactly the way Ssim simulates the proof. By the properties
of the HTDF scheme neighboring experiments are statistically close, and therefore also the proof
simulated by Sext and Ssim.

Second, since the number of prove requests is bounded by a polynomial number, we can use a
second hybrid argument to replace the way the proofs are simulated and explained one by one, and
conclude that the simulation of Sext is statistically close to the simulation of Ssim.

Note that Ssim does not require any access to the internals of FR

nizk
. Therefore, we can now

define the simulator S that does not have any access to the internals of FR

nizk
, and operates exactly

like Ssim. As we have shown, S running with FR

nizk
is computationally indistinguishable from

the protocol finizk running with A in the (FRhtdf

nizk
, Fcrs)-hybrid model. The protocol finizk therefore

securely realizes FR

nizk
in the (FRhtdf

nizk
, Fcrs)-hybrid model.

By instantiating the FRhtdf

nizk
with the UC-NIZK protocol from [61], we obtain the following corollary.

Corollary 3.5. Under the decision linear assumption (or equivalently, the subgroup decision prob-
lem) in bilinear group, and the existence of HTDF schemes, the following holds. For every NP-
relation R, the functionality FR

nizk
can be UC-realized in the Fcrs-hybrid model tolerating an adaptive,

malicious adversary such that the size of the CRS is poly(Ÿ) and the size of the proofs is |w|·poly(Ÿ).

4 Sublinear Communication in the Fully Adaptive Setting
In this section, we consider the fully adaptive setting (where the adversary can corrupt all parties)
and construct two-round secure protocols with sublinear communication and online-computation
complexity (in the circuit size). Our starting point is the protocol of Quach et al. [85] that is based
on laconic function evaluation (LFE) (see Appendix A.2.1).

4.1 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

Laconic function evaluation. We formally define laconic function evaluation (LFE) in Ap-
pendix A.2.1. Informally, an LFE scheme consists of 4 algorithms. The CRS generation algorithm
generates a common random string given the security parameter and function parameters (e.g.,
function depth and input length) crs Ω LFE.crsGen(1Ÿ, params). The compression algorithm pro-
duces a small digest of a circuit digestC = LFE.Compress(crs, C; r). The encryption algorithm

18

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

Fully Adaptive Succinct MPC

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

Succinct

Fully Adaptive Succinct MPC

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

Succinct

Fully Adaptive Succinct MPC

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

Succinct

Benhamouda-Lin-Polychroniado-Muthu

Fully Adaptive Succinct MPC

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19 Cf

Succinct

Benhamouda-Lin-Polychroniado-Muthu

Fully Adaptive Succinct MPC

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19• Upon receiving (output, sid, ct) from the ideal functionality, party Pi checks that ct ”= ‹
(otherwise, Pi outputs (output, sid, ‹)), computes y = LFE.Dec(crs, Cf , ct), and outputs
(output, sid, y).

Proving security of the protocol against a static adversary corrupting all-but-one of the par-
ties is straightforward. Namely, by definition of LFE schemes, the simulator can simulate
the ciphertext ct based on the output y, and without knowing the input values, as ct Ω
Simlfe(crs, Cf , digestf , y). Furthermore, by the properties of LFE, the size of the circuit computing
LFE.Enc is poly(Ÿ, ¸in, ¸out, d, n). By instantiating the ideal functionality using a statically secure
2-round protocol (e.g., the one from [79]), Quach et al. [85] achieved a statically secure protocol
with sublinear communication and online-computational complexity.

A closer look at the protocol of [85] shows that it remains secure even facing adaptive corruptions
of all-but-one of the parties, since a single honest party su�ces to keep the randomness used
for LFE.Enc hidden from the adversary. Furthermore, under the additional assumption of secure
erasures, each party can erase his random coins ri immediately after invoking FLFE.Enc

sfe-abort
, and the

protocol can satisfy adaptive corruptions of all the parties. By instantiating the functionality
FLFE.Enc

sfe-abort
with the 2-round adaptively secure MPC from [13], we obtain the following theorem.

Theorem 4.1 (Theorem 1.1, secure-erasures version, restated). Assume the existence of LFE
schemes for P/poly, of 2-round adaptively and maliciously secure OT, and of secure erasures, and
let f : ({0, 1}¸in)n æ {0, 1}¸out be an n-party function of depth d.

Then, Ff

sfe-abort
can be UC-realized tolerating a malicious, adaptive PPT adversary by a 2-

round protocol in the common random string model. The size of the common random string is
poly(Ÿ, d), whereas the communication and online-computational complexity of the protocol are
poly(Ÿ, ¸in, ¸out, d, n).

Note that following [85, 13], the assumptions in Theorem 4.1 hold under the adaptive LWE
assumption.

4.3 Adaptive Security with Sublinear Communication: Erasures-Free Setting
In the erasures-free setting, it is unclear how to simulate the output ciphertext, and later upon
learning all of the inputs values of the parties, explain the random coins that are used to generate
it. We get around this barrier by using explainability compilers.

4.3.1 Two-Round Protocol Assuming Adaptive Explainability Compilers

We consider explainability compilers with adaptive security (where the challenge ciphertext is dy-
namically chosen) that can be realized by sub-exponentially secure iO and OWF. To define the com-
mon reference string for the protocol, we define the distribution Dlfe(params) that is parametrized
by an LFE scheme and by the parameters of the function to be computed params. The distribu-
tion Dlfe computes crs Ω LFE.crsGen(1Ÿ, params) and (^LFE.Enc, Explain) Ω Comp(1Ÿ, LFE.Enc), and
outputs the reference string (crs, ^LFE.Enc).

We would like to define the protocol in the ^LFE.Enc-hybrid model; however, the function ^LFE.Enc

is only given in the CRS and is not known before the protocol begins. To get around this technicality,
we define the function fC((C1, x1, r1), . . . , (Cn, xn, rn)) that receives a circuit Ci, a value xi, and

20

Erase ri.

Cf

Succinct

Benhamouda-Lin-Polychroniado-Muthu

Fully Adaptive Succinct MPC

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19

encrypts the input based on the digest ct Ω LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [85] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2).

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: ÁAlg and Explain. The first algorithm ÁAlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = ÁAlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [40] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
on the compiled circuit follows via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting
We will show that assuming LFE every function can be securely realized in the common random
string model with secure erasures, by a 2-round protocol tolerating an arbitrary number of adaptive
corruptions with sublinear communication, online-computation, and CRS size. In Section 4.3, we
will show how to replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [85, Thm. 6.2] in the common
random string model, that is secure against n≠1 static corruptions and achieves sublinear commu-
nication and online-computation assuming the existence of LFE. The protocol from [85] is specified
in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc (i.e.,
the FLFE.Enc

sfe-abort
-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from each

party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn; üiœ[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ‹.
Given a circuit Cf computing the function f , the protocol of [85] is defined as follows:

• The common random string is computed as crs Ω LFE.crsGen(1Ÿ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf), sam-
ples a uniformly random ri Ω {0, 1}ú, and invokes the ideal functionality FLFE.Enc

sfe-abort
with

(input, sid, (crs, digestf , xi, ri)).

19• Upon receiving (output, sid, ct) from the ideal functionality, party Pi checks that ct ”= ‹
(otherwise, Pi outputs (output, sid, ‹)), computes y = LFE.Dec(crs, Cf , ct), and outputs
(output, sid, y).

Proving security of the protocol against a static adversary corrupting all-but-one of the par-
ties is straightforward. Namely, by definition of LFE schemes, the simulator can simulate
the ciphertext ct based on the output y, and without knowing the input values, as ct Ω
Simlfe(crs, Cf , digestf , y). Furthermore, by the properties of LFE, the size of the circuit computing
LFE.Enc is poly(Ÿ, ¸in, ¸out, d, n). By instantiating the ideal functionality using a statically secure
2-round protocol (e.g., the one from [79]), Quach et al. [85] achieved a statically secure protocol
with sublinear communication and online-computational complexity.

A closer look at the protocol of [85] shows that it remains secure even facing adaptive corruptions
of all-but-one of the parties, since a single honest party su�ces to keep the randomness used
for LFE.Enc hidden from the adversary. Furthermore, under the additional assumption of secure
erasures, each party can erase his random coins ri immediately after invoking FLFE.Enc

sfe-abort
, and the

protocol can satisfy adaptive corruptions of all the parties. By instantiating the functionality
FLFE.Enc

sfe-abort
with the 2-round adaptively secure MPC from [13], we obtain the following theorem.

Theorem 4.1 (Theorem 1.1, secure-erasures version, restated). Assume the existence of LFE
schemes for P/poly, of 2-round adaptively and maliciously secure OT, and of secure erasures, and
let f : ({0, 1}¸in)n æ {0, 1}¸out be an n-party function of depth d.

Then, Ff

sfe-abort
can be UC-realized tolerating a malicious, adaptive PPT adversary by a 2-

round protocol in the common random string model. The size of the common random string is
poly(Ÿ, d), whereas the communication and online-computational complexity of the protocol are
poly(Ÿ, ¸in, ¸out, d, n).

Note that following [85, 13], the assumptions in Theorem 4.1 hold under the adaptive LWE
assumption.

4.3 Adaptive Security with Sublinear Communication: Erasures-Free Setting
In the erasures-free setting, it is unclear how to simulate the output ciphertext, and later upon
learning all of the inputs values of the parties, explain the random coins that are used to generate
it. We get around this barrier by using explainability compilers.

4.3.1 Two-Round Protocol Assuming Adaptive Explainability Compilers

We consider explainability compilers with adaptive security (where the challenge ciphertext is dy-
namically chosen) that can be realized by sub-exponentially secure iO and OWF. To define the com-
mon reference string for the protocol, we define the distribution Dlfe(params) that is parametrized
by an LFE scheme and by the parameters of the function to be computed params. The distribu-
tion Dlfe computes crs Ω LFE.crsGen(1Ÿ, params) and (^LFE.Enc, Explain) Ω Comp(1Ÿ, LFE.Enc), and
outputs the reference string (crs, ^LFE.Enc).

We would like to define the protocol in the ^LFE.Enc-hybrid model; however, the function ^LFE.Enc

is only given in the CRS and is not known before the protocol begins. To get around this technicality,
we define the function fC((C1, x1, r1), . . . , (Cn, xn, rn)) that receives a circuit Ci, a value xi, and

20

Erase ri.

Cf

LFE is all-but-one adaptive secure.

Succinct

Removing erasures

Explainability Compiler Dachman-Soled—Katz-Rao’15

$-(Alg) → (Ãlg , $/+)(0%)

Explainability Compiler Dachman-Soled—Katz-Rao’15

$-(Alg) → (Ãlg , $/+)(0%)

Poly-time overhead

Explainability Compiler Dachman-Soled—Katz-Rao’15

$-(Alg) → (Ãlg , $/+)(0%)

Poly-time overhead

Alg(x) ≂ Ãlg (x) ∀xCorrectness:

Explainability Compiler Dachman-Soled—Katz-Rao’15

$-(Alg) → (Ãlg , $/+)(0%)

For any input/output (x,y), Explain produces coins r s.t. ~Alg(x,r) = y

Poly-time overhead

Alg(x) ≂ Ãlg (x) ∀xCorrectness:

Explainability Compiler Dachman-Soled—Katz-Rao’15

$-(Alg) → (Ãlg , $/+)(0%)

For any input/output (x,y), Explain produces coins r s.t. ~Alg(x,r) = y

• Polynomial slowdown. There is a polynomial p(·) such that, for any (ÁAlg, Explain) output
by Comp(1Ÿ, Alg) it holds that |ÁAlg| Æ p(Ÿ) · |Alg|.

• Statistical functional equivalence. With overwhelming probability over the choice of
(ÁAlg, ·) as output by Comp(1Ÿ, Alg), the distribution of ÁAlg(x) is statistically close to the dis-
tribution of Alg(x) for every input x.

• Explainability. For every stateful PPT adversary A it holds that
---Pr

Ë
Expt

Explain-Static

Comp,Alg,A (Ÿ) = 1
È--- Æ 1/2 + negl(Ÿ),

for the experiment Expt
Explain-Static defined below:

Expt
Explain-Static

Comp,Alg,A (Ÿ)

Output 1 if and only if bÕ = b
Compute bÕ Ω A(ÊAlg, yú, rb)
Sample b Ω {0, 1}
Compute r1 Ω Explain(xú, yú)
Compute yú = ÊAlg(xú; r0)
Sample r0 Ω {0, 1}ú
(ÊAlg, Explain) Ω Comp(1Ÿ, Alg)
xú Ω A(1Ÿ)

Theorem A.6 ([40]). Assuming the existence of an indistinguishable obfuscator for P/poly and of
one-way functions, there exists an explainability compiler with selective security for P/poly.

The definition and construction in [40] achieves selective security in the sense that the adver-
sary must choose the challenge input xú before learning the compiled algorithm ÁAlg. In some of
our constructions it will be simpler to use explainability compilers with adaptive security, where
the adversary can choose the challenge input after seeing ÁAlg. we denote the adaptive game as
Expt

Explain-Adapt

Comp,Alg,A (Ÿ) Adaptive security follows from selective security via complexity leveraging [16]
by assuming sub-exponential security of the cryptographic primitives.

Expt
Explain-Adapt

Comp,Alg,A (Ÿ)

Output 1 if and only if bÕ = b
Compute bÕ Ω A(yú, rb)
Sample b Ω {0, 1}
Compute r1 Ω Explain(xú, yú)
Compute yú = ÊAlg(xú; r0)
Sample r0 Ω {0, 1}ú
xú Ω A(1Ÿ, ÊAlg)
(ÊAlg, Explain) Ω Comp(1Ÿ, Alg)

Corollary A.7. Assuming the existence of an indistinguishable obfuscator for P/poly and of one-
way functions, both with sub-exponential security, there exists an explainability compiler with adap-
tive security for P/poly.

59

Poly-time overhead

Alg(x) ≂ Ãlg (x) ∀xCorrectness:

Fully-adaptive summary

LFE parameters), and then use an MPC protocol (possibly not communication e�cient) to jointly
compute the encryption of the inputs (x1, . . . , xn). The communication and online-computation
required are naturally proportional only to the encryption algorithm, which depends on the depth
of the original function but not on its size. Finally, each of the parties can then locally decrypt the
ciphertext with respect to the digest to recover the output.

Nonetheless, for adaptive security, it is unclear how to simulate the output ciphertext when
possibly all n parties can be corrupted. To circumvent this barrier, we first observe that the protocol
from [85] achieves adaptive security in the erasures model, without any additional assumptions, and
then remove the erasures using the explainability compiler technique from [40]. Loosely speaking,
an explainability compiler takes a randomized circuit C and compiles it to a circuit ÂC, computing
the same function, along with an additional program Explain, such that given any input/output
pair (x, y) the program Explain can produce coins r satisfying y = ÂC(x; r).

Overall, this framework achieves all of the round, communication, and online-computation
complexity goals, but it still requires a common reference string whose size is related to the depth
of the function being computed, and further in the erasures-free setting, it relies on iO. In contrast,
in the static corruption setting, only LWE is required.

Protocol
(erasures)

Security
Rounds Communication

Computation

Online
Setup size

type

Setup
Assumption

MW [79] static 2 poly(¸in, ¸out, d, Ÿ, n) poly(|C|, Ÿ) poly(Ÿ, d) CRS LWE, NIZK

ABJMS [3]
QWW [85] static 2 poly(¸in, ¸out, d, Ÿ, n) poly(¸in, ¸out, d, Ÿ, n) poly(Ÿ, d) CRS LWE

ALWE

CLOS [24] adaptive(no) O(d) |C| · poly(Ÿ, n) poly(|C|, Ÿ) poly(Ÿ) CRS dense-crypto
TDP, NCE

GS [50]ú adaptive(no) O(d) |C| · poly(Ÿ, n) poly(|C|, Ÿ) - -
dense-crypto
TDP, NCE
CRH

CGP [27]
DKR [40] adaptive(no) O(1) |C| · poly(Ÿ, n) poly(|C|, Ÿ) poly(|C|, Ÿ) Ref OWF, iO

GP [49] adaptive(no) 2 poly(¸in, ¸out, Ÿ, n) poly(|C|, Ÿ) poly(|C|, Ÿ) Ref OWF, iO

CPV [30] adaptive(no) O(1) |C| · poly(Ÿ, n) poly(|C|, Ÿ) poly(Ÿ) CRS dense-crypto
NCE

BLPV [13] adaptive(no) 2 |C| · poly(Ÿ, n) poly(|C|, Ÿ) poly(Ÿ) Ref 2-round OT
adaptive

This work adaptive(no)
adaptive(yes) 2 poly(¸in, ¸out, d, Ÿ, n) poly(¸in, ¸out, d, Ÿ, n) poly(¸in, ¸out, d, Ÿ, n)

poly(Ÿ, d)
Ref
CRS

ALWE, iO
ALWE

Table 1: Round, communication, and online-computation of MPC tolerating any number of cor-
ruptions, for f : ({0, 1}¸in)n æ {0, 1}¸out represented by a circuit C of depth d. CRS refers to a
common random string, whereas Ref refers to a common reference string whose sampling coins are
secret. (ú) The results in [50] only hold in the stand-alone setting.

1.1.2 Alice/Bob-Optimized protocols

Consider a two-message protocol for two parties, where Alice sends the first message, Bob replies
with the second, and only Alice learns the output. In this setting, it is possible for one party’s
total computation (and thus also total communication) to be proportional to the size of their input
and output, while the other party “does all of the work” of securely evaluating the function. These

4

Alice-optimal
xa xb

Alice learns y = f(xa,xb)

Alice-optimal
xa xb

Alice learns y = f(xa,xb)

Comm: |xa| + |y|

Comp: |xa| + |y|

Comp: |f|

Bob-optimal
xa xb

Alice learns y = f(xa,xb)

Bob-optimal
xa xb

Alice learns y = f(xa,xb)
Comm: |xb| + |y|

Comp: |xb| + |y|

Comp: |f|

protocol variants are designated as “optimized for Alice” or “optimized for Bob,” depending on
which party saves the work.

In the static-corruption setting, Alice-optimized protocols can be constructed assuming FHE,
where Alice encrypts her input, Bob homomorphically evaluates the circuit and returns the en-
crypted result. Quach et al. [85] showed that Bob-optimized protocols can be constructed from
LFE, where Alice compresses the function with her input hard-wired, sends the digest to Bob who
replies with the encryption of his input. Therefore, in the static setting, FHE and LFE are dual
notions with respect to the work-load of the computation. We next show that in the adaptive
setting this duality breaks. On the one hand, we extend the impossibility result of FHE [75] to
rule out adaptively secure 2-round Alice-optimized protocols (even assuming secure erasures). On
the other hand, we construct an adaptively secure, semi-malicious,6 Bob-optimized protocol from
LFE and explainability compilers (alternatively, just from LFE assuming secure erasures). We note
that any 2-round Bob-optimized protocol can be converted into a 3-round Alice-optimized protocol,
which is the best one could hope for. Table 2 summarizes our results vis a vis prior work.

Theorem 1.2 (Alice/Bob-optimized protocols, informal).

1. Assuming ALWE and secure erasures (alternatively, sub-exponential iO), there exists an adap-
tively secure semi-malicious 2PC, where the total communication and Bob’s computation are
sublinear in the function size and in Alice’s input size.

2. There exists 2-party functions such that in any adaptively secure, semi-honest, 2-round pro-
tocol realizing them, Bob’s message must grow linearly in his input, even assuming secure
erasures.

Approach Security CRS Communication Computation Assumptions
(erasures) Alice Bob Alice Bob

GC [92] static - ¸A |f | |f | |f | static OT
LOT [32] static O(1) O(1) |f | |f | |f | DDH, etc.
FHE [52] static - ¸A ¸out ¸A + ¸out |f | LWE
LFE [85] static O(1) O(1) ¸B + ¸out |f | ¸B + ¸out ALWE

GC [30]
equivocal adaptive (no) - ¸A |f | |f | |f | adaptive OT

This work
adaptive (yes) O(1) O(1) ¸B + ¸out |f | ¸B + ¸out ALWE
adaptive (no) ¸B + ¸out O(1) ¸B + ¸out |f | ¸B + ¸out ALWE and iO
adaptive (yes) |f | |f | ¸out + o(¸B) |f | |f | impossible

Table 2: Comparison of two-message semi-honest protocols for f : {0, 1}¸A ◊ {0, 1}¸B æ {0, 1}¸out .
Alice talks first, Bob the second, and only Alice learns the output. For simplicity, multiplicative
factors that are polynomial in the security parameter Ÿ or the circuit depth d are suppressed.

The key idea behind our Bob-optimized protocol is to use the same LFE approach put forth
in [85] for static security, and strengthen it to tolerate adaptive corruptions. To support an adaptive
corruption of Alice, the simulator will need to produce an equivocal first message, i.e., to simulate
the digest without knowing the input value of Alice, and upon a later corruption of Alice generate

6In the semi-malicious setting, the adversary follows the protocol as in the semi-honest case, but he can choose
arbitrary random coins for corrupted parties.

5

At what cost
lesser adaptive
security?

Adaptive UC-NIZK Groth-Ostrovsky-Sahai

Using bilinear pairings, Adaptive NIZK of size |C|*poly(k).

Succinct NIZK

Prover(x,w)

{vi}, pi

u* = FHE.Evalpk(R,x,wi,…wi)
pi = Nizk{ FHE.Dec(sk,u*) = 1 }

NIZK crs

vi = FHE.Encpk(wi)
sk,pk = FHE.Gen(r)

Gentry-Groth-Ishai-Peikert-Sahai-Smith

Succinct +
Adaptive

NIZK ?

Homomorphic Trapdoor Function
(pk, sk) ← #34" . 56%(1k,1d)

(x, w), the functionality verifies that (x, w) œ R, and asks the adversary to generate a proof fi for
the statement x. The functionality stores (x, fi) and returns the proof to Pi. Similarly, every party
Pj can send a verify request, consisting of a statement x and a proof fi. In case the pair (x, fi)
is stored, the functionality returns 1. Otherwise, the functionality asks the adversary to come up
with a witness w. If (x, w) œ R the functionality returns 1 to Pj ; otherwise, return 0.

3.2 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

3.2.1 Homomorphic Trapdoor Functions (HTDF)

We briefly recall the notion of homomorphic trapdoor functions, formally described in Ap-
pendix A.2.3. The key-generation algorithm outputs a public key and a secret key (pk, sk) Ω
HTDF.Gen(1Ÿ, 1d). The public key along with some bit x œ {0, 1} define an e�ciently com-
putable function fpk,x : U æ V, and the secret key acts as a trapdoor that enables inverting
the function, i.e., defines a function HTDF.Invsk,x : V æ U . Two homomorphic evaluation algo-
rithms are defined given a function g : {0, 1}¸ æ {0, 1} of depth d: the inner evaluation uú =
HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and the outer evaluation vú = HTDF.Eval
out(g, v1, . . . , v¸).

Informally, we require the following properties from an HTDF scheme:

• Correctness. Let x1, . . . , x¸ œ {0, 1} and vi = fpk,xi(ui) for i œ [¸]. Then, for
uú = HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and vú = HTDF.Eval
out(g, v1, . . . , v¸) it holds that

fpk,y(uú) = vú, where y = g(x1, . . . , x¸).

• Distributional equivalence of inversion. For a bit x œ {0, 1}, the tuple (pk, x, u, v)
computed as v = fpk,x(u) for a random u Ω U is statistically close to sampling v Ω V at
random and computing u = HTDF.Invsk,x(v).

• Claw-free security. Given the public key, no e�cient adversary can come up with u and uÕ

such that fpk,0(u) = fpk,1(uÕ) with more than a negligible probability.

For the remaining of the section it will be useful to think of an HTDF scheme as a fully
homomorphic, statistically-hiding commitment scheme with a trapdoor sk.

3.2.2 Strong One-Time Signatures

Strong one-time signatures are formally defined in Appendix A.2.4. Loosely peaking, the scheme
consists of three algorithms (Sig.Gen, Sign, Vrfy) . The key generation algorithm outputs a public
verification key and a secret signing key (vk, sigk) Ω Sig.Gen(1Ÿ). The signing algorithm uses the
signing key to sign an arbitrary message m as ‡ Ω Signsigk(m). The verification algorithm uses the
verification key to accept or reject the signature as b = Vrfyvk(‡, m). We require that the scheme
be correct and strongly existentially unforgeable under a single chosen message attack, meaning
that except for negligible probability, no e�cient adversary that chooses a message m and receives
a signature ‡ can come up with (mÕ, ‡Õ) ”= (m, ‡) such that 1 = Vrfyvk(‡Õ, mÕ).

14

(x, w), the functionality verifies that (x, w) œ R, and asks the adversary to generate a proof fi for
the statement x. The functionality stores (x, fi) and returns the proof to Pi. Similarly, every party
Pj can send a verify request, consisting of a statement x and a proof fi. In case the pair (x, fi)
is stored, the functionality returns 1. Otherwise, the functionality asks the adversary to come up
with a witness w. If (x, w) œ R the functionality returns 1 to Pj ; otherwise, return 0.

3.2 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

3.2.1 Homomorphic Trapdoor Functions (HTDF)

We briefly recall the notion of homomorphic trapdoor functions, formally described in Ap-
pendix A.2.3. The key-generation algorithm outputs a public key and a secret key (pk, sk) Ω
HTDF.Gen(1Ÿ, 1d). The public key along with some bit x œ {0, 1} define an e�ciently com-
putable function fpk,x : U æ V, and the secret key acts as a trapdoor that enables inverting
the function, i.e., defines a function HTDF.Invsk,x : V æ U . Two homomorphic evaluation algo-
rithms are defined given a function g : {0, 1}¸ æ {0, 1} of depth d: the inner evaluation uú =
HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and the outer evaluation vú = HTDF.Eval
out(g, v1, . . . , v¸).

Informally, we require the following properties from an HTDF scheme:

• Correctness. Let x1, . . . , x¸ œ {0, 1} and vi = fpk,xi(ui) for i œ [¸]. Then, for
uú = HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and vú = HTDF.Eval
out(g, v1, . . . , v¸) it holds that

fpk,y(uú) = vú, where y = g(x1, . . . , x¸).

• Distributional equivalence of inversion. For a bit x œ {0, 1}, the tuple (pk, x, u, v)
computed as v = fpk,x(u) for a random u Ω U is statistically close to sampling v Ω V at
random and computing u = HTDF.Invsk,x(v).

• Claw-free security. Given the public key, no e�cient adversary can come up with u and uÕ

such that fpk,0(u) = fpk,1(uÕ) with more than a negligible probability.

For the remaining of the section it will be useful to think of an HTDF scheme as a fully
homomorphic, statistically-hiding commitment scheme with a trapdoor sk.

3.2.2 Strong One-Time Signatures

Strong one-time signatures are formally defined in Appendix A.2.4. Loosely peaking, the scheme
consists of three algorithms (Sig.Gen, Sign, Vrfy) . The key generation algorithm outputs a public
verification key and a secret signing key (vk, sigk) Ω Sig.Gen(1Ÿ). The signing algorithm uses the
signing key to sign an arbitrary message m as ‡ Ω Signsigk(m). The verification algorithm uses the
verification key to accept or reject the signature as b = Vrfyvk(‡, m). We require that the scheme
be correct and strongly existentially unforgeable under a single chosen message attack, meaning
that except for negligible probability, no e�cient adversary that chooses a message m and receives
a signature ‡ can come up with (mÕ, ‡Õ) ”= (m, ‡) such that 1 = Vrfyvk(‡Õ, mÕ).

14

Gorbunov-Vinod-Wichs

Homomorphic Trapdoor Function
(pk, sk) ← #34" . 56%(1k,1d)

(x, w), the functionality verifies that (x, w) œ R, and asks the adversary to generate a proof fi for
the statement x. The functionality stores (x, fi) and returns the proof to Pi. Similarly, every party
Pj can send a verify request, consisting of a statement x and a proof fi. In case the pair (x, fi)
is stored, the functionality returns 1. Otherwise, the functionality asks the adversary to come up
with a witness w. If (x, w) œ R the functionality returns 1 to Pj ; otherwise, return 0.

3.2 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

3.2.1 Homomorphic Trapdoor Functions (HTDF)

We briefly recall the notion of homomorphic trapdoor functions, formally described in Ap-
pendix A.2.3. The key-generation algorithm outputs a public key and a secret key (pk, sk) Ω
HTDF.Gen(1Ÿ, 1d). The public key along with some bit x œ {0, 1} define an e�ciently com-
putable function fpk,x : U æ V, and the secret key acts as a trapdoor that enables inverting
the function, i.e., defines a function HTDF.Invsk,x : V æ U . Two homomorphic evaluation algo-
rithms are defined given a function g : {0, 1}¸ æ {0, 1} of depth d: the inner evaluation uú =
HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and the outer evaluation vú = HTDF.Eval
out(g, v1, . . . , v¸).

Informally, we require the following properties from an HTDF scheme:

• Correctness. Let x1, . . . , x¸ œ {0, 1} and vi = fpk,xi(ui) for i œ [¸]. Then, for
uú = HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and vú = HTDF.Eval
out(g, v1, . . . , v¸) it holds that

fpk,y(uú) = vú, where y = g(x1, . . . , x¸).

• Distributional equivalence of inversion. For a bit x œ {0, 1}, the tuple (pk, x, u, v)
computed as v = fpk,x(u) for a random u Ω U is statistically close to sampling v Ω V at
random and computing u = HTDF.Invsk,x(v).

• Claw-free security. Given the public key, no e�cient adversary can come up with u and uÕ

such that fpk,0(u) = fpk,1(uÕ) with more than a negligible probability.

For the remaining of the section it will be useful to think of an HTDF scheme as a fully
homomorphic, statistically-hiding commitment scheme with a trapdoor sk.

3.2.2 Strong One-Time Signatures

Strong one-time signatures are formally defined in Appendix A.2.4. Loosely peaking, the scheme
consists of three algorithms (Sig.Gen, Sign, Vrfy) . The key generation algorithm outputs a public
verification key and a secret signing key (vk, sigk) Ω Sig.Gen(1Ÿ). The signing algorithm uses the
signing key to sign an arbitrary message m as ‡ Ω Signsigk(m). The verification algorithm uses the
verification key to accept or reject the signature as b = Vrfyvk(‡, m). We require that the scheme
be correct and strongly existentially unforgeable under a single chosen message attack, meaning
that except for negligible probability, no e�cient adversary that chooses a message m and receives
a signature ‡ can come up with (mÕ, ‡Õ) ”= (m, ‡) such that 1 = Vrfyvk(‡Õ, mÕ).

14

(x, w), the functionality verifies that (x, w) œ R, and asks the adversary to generate a proof fi for
the statement x. The functionality stores (x, fi) and returns the proof to Pi. Similarly, every party
Pj can send a verify request, consisting of a statement x and a proof fi. In case the pair (x, fi)
is stored, the functionality returns 1. Otherwise, the functionality asks the adversary to come up
with a witness w. If (x, w) œ R the functionality returns 1 to Pj ; otherwise, return 0.

3.2 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

3.2.1 Homomorphic Trapdoor Functions (HTDF)

We briefly recall the notion of homomorphic trapdoor functions, formally described in Ap-
pendix A.2.3. The key-generation algorithm outputs a public key and a secret key (pk, sk) Ω
HTDF.Gen(1Ÿ, 1d). The public key along with some bit x œ {0, 1} define an e�ciently com-
putable function fpk,x : U æ V, and the secret key acts as a trapdoor that enables inverting
the function, i.e., defines a function HTDF.Invsk,x : V æ U . Two homomorphic evaluation algo-
rithms are defined given a function g : {0, 1}¸ æ {0, 1} of depth d: the inner evaluation uú =
HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and the outer evaluation vú = HTDF.Eval
out(g, v1, . . . , v¸).

Informally, we require the following properties from an HTDF scheme:

• Correctness. Let x1, . . . , x¸ œ {0, 1} and vi = fpk,xi(ui) for i œ [¸]. Then, for
uú = HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and vú = HTDF.Eval
out(g, v1, . . . , v¸) it holds that

fpk,y(uú) = vú, where y = g(x1, . . . , x¸).

• Distributional equivalence of inversion. For a bit x œ {0, 1}, the tuple (pk, x, u, v)
computed as v = fpk,x(u) for a random u Ω U is statistically close to sampling v Ω V at
random and computing u = HTDF.Invsk,x(v).

• Claw-free security. Given the public key, no e�cient adversary can come up with u and uÕ

such that fpk,0(u) = fpk,1(uÕ) with more than a negligible probability.

For the remaining of the section it will be useful to think of an HTDF scheme as a fully
homomorphic, statistically-hiding commitment scheme with a trapdoor sk.

3.2.2 Strong One-Time Signatures

Strong one-time signatures are formally defined in Appendix A.2.4. Loosely peaking, the scheme
consists of three algorithms (Sig.Gen, Sign, Vrfy) . The key generation algorithm outputs a public
verification key and a secret signing key (vk, sigk) Ω Sig.Gen(1Ÿ). The signing algorithm uses the
signing key to sign an arbitrary message m as ‡ Ω Signsigk(m). The verification algorithm uses the
verification key to accept or reject the signature as b = Vrfyvk(‡, m). We require that the scheme
be correct and strongly existentially unforgeable under a single chosen message attack, meaning
that except for negligible probability, no e�cient adversary that chooses a message m and receives
a signature ‡ can come up with (mÕ, ‡Õ) ”= (m, ‡) such that 1 = Vrfyvk(‡Õ, mÕ).

14

(x, w), the functionality verifies that (x, w) œ R, and asks the adversary to generate a proof fi for
the statement x. The functionality stores (x, fi) and returns the proof to Pi. Similarly, every party
Pj can send a verify request, consisting of a statement x and a proof fi. In case the pair (x, fi)
is stored, the functionality returns 1. Otherwise, the functionality asks the adversary to come up
with a witness w. If (x, w) œ R the functionality returns 1 to Pj ; otherwise, return 0.

3.2 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

3.2.1 Homomorphic Trapdoor Functions (HTDF)

We briefly recall the notion of homomorphic trapdoor functions, formally described in Ap-
pendix A.2.3. The key-generation algorithm outputs a public key and a secret key (pk, sk) Ω
HTDF.Gen(1Ÿ, 1d). The public key along with some bit x œ {0, 1} define an e�ciently com-
putable function fpk,x : U æ V, and the secret key acts as a trapdoor that enables inverting
the function, i.e., defines a function HTDF.Invsk,x : V æ U . Two homomorphic evaluation algo-
rithms are defined given a function g : {0, 1}¸ æ {0, 1} of depth d: the inner evaluation uú =
HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and the outer evaluation vú = HTDF.Eval
out(g, v1, . . . , v¸).

Informally, we require the following properties from an HTDF scheme:

• Correctness. Let x1, . . . , x¸ œ {0, 1} and vi = fpk,xi(ui) for i œ [¸]. Then, for
uú = HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and vú = HTDF.Eval
out(g, v1, . . . , v¸) it holds that

fpk,y(uú) = vú, where y = g(x1, . . . , x¸).

• Distributional equivalence of inversion. For a bit x œ {0, 1}, the tuple (pk, x, u, v)
computed as v = fpk,x(u) for a random u Ω U is statistically close to sampling v Ω V at
random and computing u = HTDF.Invsk,x(v).

• Claw-free security. Given the public key, no e�cient adversary can come up with u and uÕ

such that fpk,0(u) = fpk,1(uÕ) with more than a negligible probability.

For the remaining of the section it will be useful to think of an HTDF scheme as a fully
homomorphic, statistically-hiding commitment scheme with a trapdoor sk.

3.2.2 Strong One-Time Signatures

Strong one-time signatures are formally defined in Appendix A.2.4. Loosely peaking, the scheme
consists of three algorithms (Sig.Gen, Sign, Vrfy) . The key generation algorithm outputs a public
verification key and a secret signing key (vk, sigk) Ω Sig.Gen(1Ÿ). The signing algorithm uses the
signing key to sign an arbitrary message m as ‡ Ω Signsigk(m). The verification algorithm uses the
verification key to accept or reject the signature as b = Vrfyvk(‡, m). We require that the scheme
be correct and strongly existentially unforgeable under a single chosen message attack, meaning
that except for negligible probability, no e�cient adversary that chooses a message m and receives
a signature ‡ can come up with (mÕ, ‡Õ) ”= (m, ‡) such that 1 = Vrfyvk(‡Õ, mÕ).

14

(x, w), the functionality verifies that (x, w) œ R, and asks the adversary to generate a proof fi for
the statement x. The functionality stores (x, fi) and returns the proof to Pi. Similarly, every party
Pj can send a verify request, consisting of a statement x and a proof fi. In case the pair (x, fi)
is stored, the functionality returns 1. Otherwise, the functionality asks the adversary to come up
with a witness w. If (x, w) œ R the functionality returns 1 to Pj ; otherwise, return 0.

3.2 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

3.2.1 Homomorphic Trapdoor Functions (HTDF)

We briefly recall the notion of homomorphic trapdoor functions, formally described in Ap-
pendix A.2.3. The key-generation algorithm outputs a public key and a secret key (pk, sk) Ω
HTDF.Gen(1Ÿ, 1d). The public key along with some bit x œ {0, 1} define an e�ciently com-
putable function fpk,x : U æ V, and the secret key acts as a trapdoor that enables inverting
the function, i.e., defines a function HTDF.Invsk,x : V æ U . Two homomorphic evaluation algo-
rithms are defined given a function g : {0, 1}¸ æ {0, 1} of depth d: the inner evaluation uú =
HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and the outer evaluation vú = HTDF.Eval
out(g, v1, . . . , v¸).

Informally, we require the following properties from an HTDF scheme:

• Correctness. Let x1, . . . , x¸ œ {0, 1} and vi = fpk,xi(ui) for i œ [¸]. Then, for
uú = HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and vú = HTDF.Eval
out(g, v1, . . . , v¸) it holds that

fpk,y(uú) = vú, where y = g(x1, . . . , x¸).

• Distributional equivalence of inversion. For a bit x œ {0, 1}, the tuple (pk, x, u, v)
computed as v = fpk,x(u) for a random u Ω U is statistically close to sampling v Ω V at
random and computing u = HTDF.Invsk,x(v).

• Claw-free security. Given the public key, no e�cient adversary can come up with u and uÕ

such that fpk,0(u) = fpk,1(uÕ) with more than a negligible probability.

For the remaining of the section it will be useful to think of an HTDF scheme as a fully
homomorphic, statistically-hiding commitment scheme with a trapdoor sk.

3.2.2 Strong One-Time Signatures

Strong one-time signatures are formally defined in Appendix A.2.4. Loosely peaking, the scheme
consists of three algorithms (Sig.Gen, Sign, Vrfy) . The key generation algorithm outputs a public
verification key and a secret signing key (vk, sigk) Ω Sig.Gen(1Ÿ). The signing algorithm uses the
signing key to sign an arbitrary message m as ‡ Ω Signsigk(m). The verification algorithm uses the
verification key to accept or reject the signature as b = Vrfyvk(‡, m). We require that the scheme
be correct and strongly existentially unforgeable under a single chosen message attack, meaning
that except for negligible probability, no e�cient adversary that chooses a message m and receives
a signature ‡ can come up with (mÕ, ‡Õ) ”= (m, ‡) such that 1 = Vrfyvk(‡Õ, mÕ).

14

Gorbunov-Vinod-Wichs

Impossibility doesn’t apply to HTDF

We say an `-homomorphic encryption scheme is `-fully homomorphic if it is homomorphic for
all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require that the output of
Evalpk(C, c1, . . . , c`) should reveal nothing about C, even to the holder of the secret key sk. This
notion is called circuit privacy. There are di↵erent ways of formalizing such a notion. The definition
we use is slightly weaker than some others that have been considered previously, since we allow (an
upper bound on) the size of C to be revealed. A similar notion was considered in [GHV10].

Definition 2.4 (Circuit privacy). An `-homomorphic encryption scheme HE for a class of circuits

{Ck}k2N is circuit private if there exists an e�cient simulator S such that for every (pk, sk) generated
by Gen, every C 2 Ck, and every m1, . . . ,m`, the following two distributions are computationally

indistinguishable (even given pk, sk, C,m1, . . . ,m`):

�
c1 Encpk(m1); . . . , c` Encpk(m`) :

�
Evalpk(C, c1, · · · , c`), c1, . . . , c`

�

and n
c1 Encpk(m1); . . . , c` Encpk(m`) : S (1k, pk, |C|, C(m1 · · ·m`), c1, · · · , c`)

o
.

We say an `-homomorphic encryption scheme is circuit-private homomorphic if it is homomor-
phic for all boolean circuits, CPA-secure, and circuit private according to Definition 2.4.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a notion of adaptive security for FHE that is weaker than the notion considered
by Canetti et al. [CFGN96]. Specifically, we consider only adaptive corruption of the receiver.
(Alternately, we assume secure erasure and thus the sender can erase the randomness it uses for
encryption immediately after encryption is complete.) Here, a simulator is required to produce (a
bounded number of) simulated ciphertexts c1, . . . , c` that it gives to an adversary; the adversary
then outputs messages m1, . . . ,m` 2 {0, 1}, and the simulator should give the adversary a (single)
key sk that “explains” (i.e., decrypts) each ciphertext ci as mi.

We stress here that we only require adaptive security where there is an a priori upper bound
` on the number of encryptions. (This su�ces for applications where encryption is used as part of
an interactive protocol.) Thus, Nielsen’s impossibility result [Nie02] does not apply to our setting.

Definition 2.5 (Adaptively secure FHE). An `-homomorphic encryption scheme HE = (Gen,
Enc,Dec,Eval) is adaptively secure if there exists a non-uniform, polynomial-time algorithm S =
(S1,S2) such that for all non-uniform, polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]� Pr[RealA(k) = 1]|  negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s) S1(1k);
(m1, . . . ,m`, ⌧) A1(1k);
sk S2(s,m1, . . . ,m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

RealA(k)
(m1, . . . ,m`, ⌧) A1(1k);
(pk , sk) Gen(1k);
c1 Encpk (m1); . . . ;

c` Encpk (m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

5

c′� ← Eval+,(Cf, c1, …, cℓ)

We say an `-homomorphic encryption scheme is `-fully homomorphic if it is homomorphic for
all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require that the output of
Evalpk(C, c1, . . . , c`) should reveal nothing about C, even to the holder of the secret key sk. This
notion is called circuit privacy. There are di↵erent ways of formalizing such a notion. The definition
we use is slightly weaker than some others that have been considered previously, since we allow (an
upper bound on) the size of C to be revealed. A similar notion was considered in [GHV10].

Definition 2.4 (Circuit privacy). An `-homomorphic encryption scheme HE for a class of circuits

{Ck}k2N is circuit private if there exists an e�cient simulator S such that for every (pk, sk) generated
by Gen, every C 2 Ck, and every m1, . . . ,m`, the following two distributions are computationally

indistinguishable (even given pk, sk, C,m1, . . . ,m`):

�
c1 Encpk(m1); . . . , c` Encpk(m`) :

�
Evalpk(C, c1, · · · , c`), c1, . . . , c`

�

and n
c1 Encpk(m1); . . . , c` Encpk(m`) : S (1k, pk, |C|, C(m1 · · ·m`), c1, · · · , c`)

o
.

We say an `-homomorphic encryption scheme is circuit-private homomorphic if it is homomor-
phic for all boolean circuits, CPA-secure, and circuit private according to Definition 2.4.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a notion of adaptive security for FHE that is weaker than the notion considered
by Canetti et al. [CFGN96]. Specifically, we consider only adaptive corruption of the receiver.
(Alternately, we assume secure erasure and thus the sender can erase the randomness it uses for
encryption immediately after encryption is complete.) Here, a simulator is required to produce (a
bounded number of) simulated ciphertexts c1, . . . , c` that it gives to an adversary; the adversary
then outputs messages m1, . . . ,m` 2 {0, 1}, and the simulator should give the adversary a (single)
key sk that “explains” (i.e., decrypts) each ciphertext ci as mi.

We stress here that we only require adaptive security where there is an a priori upper bound
` on the number of encryptions. (This su�ces for applications where encryption is used as part of
an interactive protocol.) Thus, Nielsen’s impossibility result [Nie02] does not apply to our setting.

Definition 2.5 (Adaptively secure FHE). An `-homomorphic encryption scheme HE = (Gen,
Enc,Dec,Eval) is adaptively secure if there exists a non-uniform, polynomial-time algorithm S =
(S1,S2) such that for all non-uniform, polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]� Pr[RealA(k) = 1]|  negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c`, s) S1(1k);
(m1, . . . ,m`, ⌧) A1(1k);
sk S2(s,m1, . . . ,m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

RealA(k)
(m1, . . . ,m`, ⌧) A1(1k);
(pk , sk) Gen(1k);
c1 Encpk (m1); . . . ;

c` Encpk (m`);
b A2(⌧, pk , c1, . . . , c`, sk);
Return b.

5

f(m) ← Decsk(c′�)

Given input m = (m1, …, mℓ) compute f(m) as: Size of circuit
computing f is:

Succinct Adaptive NIZK

Prover(x,w)

crs = HTDF.pk

vi = HTDFpk(wi)

Succinct Adaptive NIZK

Prover(x,w)

u* = HTDF.Evalpk(R,x,wi,…wi)

crs = HTDF.pk

vi = HTDFpk(wi)

Succinct Adaptive NIZK

Prover(x,w)

u* = HTDF.Evalpk(R,x,wi,…wi)

crs = HTDF.pk

v* = HTDF.Evalpk(R,x,vi,..,vi)

vi = HTDFpk(wi)

Succinct Adaptive NIZK

Prover(x,w)

u* = HTDF.Evalpk(R,x,wi,…wi)

pi = Adp-Nizk{fpk(u*) = v*}

crs = HTDF.pk

v* = HTDF.Evalpk(R,x,vi,..,vi)

vi = HTDFpk(wi)

Succinct Adaptive NIZK

Prover(x,w)

{vi}, pi

u* = HTDF.Evalpk(R,x,wi,…wi)

pi = Adp-Nizk{fpk(u*) = v*}

crs = HTDF.pk

v* = HTDF.Evalpk(R,x,vi,..,vi)

vi = HTDFpk(wi)

Adaptive NIZK

appropriate random coins explaining the message. Our first technical contribution is to create an
equivocal version of the LFE scheme of [85]. Similarly, to support an adaptive corruption of Bob,
the simulator should be able to generate an equivocal second message, i.e., generate the ciphertext
without knowing the input of Bob, and upon a later corruption of Bob provide appropriate random
coins. This can be handled either assuming secure erasures, or using explainability compilers.

1.1.3 Succinct Adaptively Secure NIZK

Next, we consider the problem of constructing an adaptively secure non-interactive zero-knowledge
protocol (NIZK) that is “succinct,” i.e., the size of the proof and of the common reference string
should be smaller than the size of the circuit relation. The best we can hope for is for the proof
to be the size of the witness (as otherwise, the lower-bound of Gentry and Wichs [53] requires a
non-standard complexity assumption). The first adaptively secure NIZK was constructed by Groth
et al. [61], however it was not succinct. Gentry [52] and later Gentry et al. [56] combined FHE with
a standard NIZK system to construct such schemes that are secure against static corruptions, and
as observed in [56] also against adaptive corruptions in the secure-erasures setting. However, these
schemes are not secure against adaptive corruptions in the erasure-free setting. In particular, they
run into the FHE bottleneck for adaptive security by Katz et al. [75] described above.

Our main technique to overcome this lower bound is to use homomorphic trapdoor functions
(HTDF) [58]. HTDF schemes are a primitive that conceptually unites homomorphic encryption and
homomorphic signatures. In our usage, HTDF can be thought of as fully homomorphic commitment
schemes which are equivocal (hence, statistically hiding), where a trapdoor can be used to open any
commitment to any desired value. Using HTDF, the prover can commit to the witness (instead of
encrypting it), evaluate the circuit over the commitments, and use adaptive but non-succinct NIZK
(e.g., from [61]) to prove knowledge of the witness and that the result commits to 1. The verifier
evaluates the circuits over the committed witness, and verifies the NIZK to ensure that the result
is a commitment to 1. A summary of our results in comparison to prior work appears in Table 3.

Theorem 1.3 (short NIZK, informal). Assuming LWE, if there exists adaptively secure NIZK
arguments for NP, there exists adaptively secure NIZK arguments for NP with proof size sublinear
in the circuit size of the NP relation.

Protocol (erasures)
Security CRS size Proof size Assumptions

Groth [60] static |C| · poly(Ÿ) |C| · poly(Ÿ) TDP
Groth [60] static |C| · polylog(Ÿ) + poly(Ÿ) |C| · poly(Ÿ) Naccache-Stern
GOS [61] adaptive (no) poly(Ÿ) |C| · poly(Ÿ) pairing based
Gentry [52] adaptive (yes) poly(Ÿ) |w| · poly(Ÿ, d) LWE, NIZK
GGIPSS [56] adaptive (yes) poly(Ÿ) |w| + poly(Ÿ, d) LWE, NIZK
This work adaptive (no) poly(Ÿ) |w| · poly(Ÿ, d) LWE, NIZK

Table 3: NIZK arguments with security parameter Ÿ, for circuit size |C|, depth d, and witness size
|w|.

6

All-but-one in 2 rounds
ci ← 3$"#$. $%&pk(xi), s = [0]

pk, ski

y ← $'()pk(f, c1, c2, …, cn)
di ← Decski

(y + ri)

(receive from everyone)

f(x1, …, xn) ← Combine(d1, …, dn)
+ Adaptive NIZK for malicious security

All-but-one in 2 rounds
ci ← 3$"#$. $%&pk(xi), s = [0]

pk, ski

(receive c1,…,cn from everyone)
y ← $'()pk(f, c1, c2, …, cn)
di ← Decski

(y + ri)

(receive from everyone)

f(x1, …, xn) ← Combine(d1, …, dn)
+ Adaptive NIZK for malicious security

All-but-one in 2 rounds
ci ← 3$"#$. $%&pk(xi), s = [0]

pk, ski

(receive c1,…,cn from everyone)
y ← $'()pk(f, c1, c2, …, cn)
di ← Decski

(y + ri) di + si

(receive from everyone)

f(x1, …, xn) ← Combine(d1, …, dn)
+ Adaptive NIZK for malicious security

All-but-one corruptions

round adaptively secure OT, resulting in a 4-round variant in the CRS model. All of the necessary
primitives can be instantiated from LWE in the semi-malicious setting, and security in the malicious
case follows using NIZK. Table 4 summarizes the prior work and our contribution in this model.

Theorem 1.4 (all-but-one corruptions, informal). Assuming LWE and adaptively secure NIZK,
every function can be securely computed by a 2-round protocol in the threshold-PKI model toler-
ating a malicious adversary that can adaptively corrupt all-but-one of the parties such that the
communication complexity is sublinear in the function size.

Protocol Security Rounds Communication Assumptions Setup

AJLTVW [5] static 3
2 poly(¸in, ¸out, d, Ÿ, n) LWE, NIZK CRS

threshold PKI

MW [79] static 2 poly(¸in, ¸out, d, Ÿ, n) LWE, NIZK CRS

IPS [70] adaptive O(1) |C| + poly(d, log |C|, Ÿ, n) OT-hybrid -

GS [50] adaptive O(1) |C| + poly(d, log |C|, Ÿ, n) dense crypto
CRH, TDP, NCE -

DPR [45] adaptive 3 poly(¸in, ¸out, d, Ÿ, n) LWE, NIZK threshold PKI

This work adaptive 4
2 poly(¸in, ¸out, d, Ÿ, n) LWE, NIZK CRS

threshold PKI

Table 4: Comparison of maliciously secure MPC for f : ({0, 1}¸in)n æ {0, 1}¸out represented by a
circuit C of depth d, tolerating n≠1 corruptions. (ú) The results in [50] only hold in the stand-alone
model.

Our protocol follows the template of [5], where every party encrypts his input in the first
round, locally evaluates the circuit over the ciphertexts, uses its key-share to partially decrypt
the result, and broadcasts the decrypted share (some additional “smudging” noise is sometimes
required to protect the decryption share). The technical challenges are: (1) the ciphertexts in
the first round must be created in an equivocal way, and (2) the simulation strategy used for the
threshold decryption in [5] (and similarly in [79]) is inherently static, and does not translate in a
straightforward way to the adaptive setting.

We overcome the first challenge by constructing a novel threshold equivocal FHE scheme. The
scheme is equipped with an equivocal key-generation algorithm. All ciphertexts encrypted in this
mode are “meaningless” and carry no information about the plaintext; a trapdoor can be used to
equivocate any ciphertext to any message. We instantiate this FHE scheme using the dual-mode
HTDF scheme of Gorbunov et al. [58] that can generate the homomorphic trapdoor functions in an
extractable mode, corresponding to the standard (meaningful) mode of the FHE, and an equivocal
mode, corresponding to the meaningless mode.

We proceed to explain the second challenge. As observed in [5, 79], the threshold decryption
protocol may leak some information about the shares of the secret key, and the simulator for the
decryption protocol can be used to protect exactly one party. In the static setting, when the set
of corrupted parties is known ahead of time, the simulator can choose one of the honest parties
Ph as a special party for simulating the threshold decryption. This approach does not work in the
adaptive setting since the party Ph may get corrupted after simulating the decryption protocol. The
simulator cannot know in advance which party will be the last to remain honest. For this reason,

8

Honest majority results

is that the “smudging noise” (used to protect partial decryptions from leakage) is multiplied by
the Lagrange coe�cients, which may cause an incorrect decryption. Following [59], we have each
party secret shares his smudging noise using Shamir’s scheme, in a way that is compatible with the
reconstruction procedure. We show that this technique can support adaptive corruptions.

To conclude, in the threshold-PKI model, the price of adaptive security is the same as of static
security in terms of assumptions, number of rounds, and communication complexity. In the plain
model, the cost is an additional constant number of rounds. Table 5 summarizes prior work and
our results.

Protocol Security Rounds Communication Assumptions Setup

AJLTVW [5] static 5
4 poly(¸in, ¸out, d, Ÿ, n) LWE, NIZK CRS

threshold PKI

GLS [59] static 3
2 poly(¸in, ¸out, d, Ÿ, n) LWE, NIZK CRS

threshold PKI

ACGJ [4] static 3 |C| · poly(Ÿ, n) PKE and zaps -

BJMS [6] static 3
2 poly(¸in, ¸out, d, Ÿ, n) dense crypto

LWE, zaps,
-
threshold PKI

DI [41] adaptive O(1) |C| · poly(Ÿ, n) OWF -

This work adaptive
O(1)
2 poly(¸in, ¸out, d, Ÿ, n) LWE, NIZK -

threshold PKI

Table 5: Comparison of maliciously secure MPC for f : ({0, 1}¸in)n æ {0, 1}¸out represented by a
circuit C of depth d, in the honest-majority setting.

1.3 Additional Related Work
Adaptive security tolerating an arbitrary number of corruptions has been considered in various mod-
els, including protocols in the CRS model [24, 30, 13], the sunspot model [26], the key-registration
model [8], the temper-proof hardware model [66], the super-polynomial simulation model [7, 64],
and more generally, based on UC-puzzles [39, 91]. All of these protocols require super-linear com-
munication complexity.

Adaptive security in the secure-erasures model was considered in [10, 76, 71, 12, 82, 44, 65],
and in the erasures-free model tolerating all-but-one corruptions in [73, 70, 62, 45] as well as in the
honest-majority setting [38, 43, 41]. With the exception of [45], all of these protocols also require
super-linear communication complexity.

Garay et al. [48] considered information-theoretic MPC in the client-server setting, where a
constant number of clients uses n servers that assist with the computation, and studied sublinear
communication in the number of servers. They gave a complete characterization for semi-honest
security with static corruptions and adaptive corruptions with or without erasures.

In the static setting, MPC with sublinear communication complexity over eventual-delivery
asynchronous channels was constructed in [35]. We conjecture that our techniques can also be
applied in the asynchronous setting to obtain adaptive security with low communication.

We note that since the protocol of Garg and Polychroniadou [49] has low communication com-
plexity, and its CRS size depends on the circuit size, it is possible to use a more compact represen-
tation of the function, e.g., by a Turing machine (TM) (or a RAM program as considered in [29]),

10

Open questions
Are erasures/io necessary for adaptive succinct MPC?

LFE parameters), and then use an MPC protocol (possibly not communication e�cient) to jointly
compute the encryption of the inputs (x1, . . . , xn). The communication and online-computation
required are naturally proportional only to the encryption algorithm, which depends on the depth
of the original function but not on its size. Finally, each of the parties can then locally decrypt the
ciphertext with respect to the digest to recover the output.

Nonetheless, for adaptive security, it is unclear how to simulate the output ciphertext when
possibly all n parties can be corrupted. To circumvent this barrier, we first observe that the protocol
from [85] achieves adaptive security in the erasures model, without any additional assumptions, and
then remove the erasures using the explainability compiler technique from [40]. Loosely speaking,
an explainability compiler takes a randomized circuit C and compiles it to a circuit ÂC, computing
the same function, along with an additional program Explain, such that given any input/output
pair (x, y) the program Explain can produce coins r satisfying y = ÂC(x; r).

Overall, this framework achieves all of the round, communication, and online-computation
complexity goals, but it still requires a common reference string whose size is related to the depth
of the function being computed, and further in the erasures-free setting, it relies on iO. In contrast,
in the static corruption setting, only LWE is required.

Protocol
(erasures)

Security
Rounds Communication

Computation

Online
Setup size

type

Setup
Assumption

MW [79] static 2 poly(¸in, ¸out, d, Ÿ, n) poly(|C|, Ÿ) poly(Ÿ, d) CRS LWE, NIZK

ABJMS [3]
QWW [85] static 2 poly(¸in, ¸out, d, Ÿ, n) poly(¸in, ¸out, d, Ÿ, n) poly(Ÿ, d) CRS LWE

ALWE

CLOS [24] adaptive(no) O(d) |C| · poly(Ÿ, n) poly(|C|, Ÿ) poly(Ÿ) CRS dense-crypto
TDP, NCE

GS [50]ú adaptive(no) O(d) |C| · poly(Ÿ, n) poly(|C|, Ÿ) - -
dense-crypto
TDP, NCE
CRH

CGP [27]
DKR [40] adaptive(no) O(1) |C| · poly(Ÿ, n) poly(|C|, Ÿ) poly(|C|, Ÿ) Ref OWF, iO

GP [49] adaptive(no) 2 poly(¸in, ¸out, Ÿ, n) poly(|C|, Ÿ) poly(|C|, Ÿ) Ref OWF, iO

CPV [30] adaptive(no) O(1) |C| · poly(Ÿ, n) poly(|C|, Ÿ) poly(Ÿ) CRS dense-crypto
NCE

BLPV [13] adaptive(no) 2 |C| · poly(Ÿ, n) poly(|C|, Ÿ) poly(Ÿ) Ref 2-round OT
adaptive

This work adaptive(no)
adaptive(yes) 2 poly(¸in, ¸out, d, Ÿ, n) poly(¸in, ¸out, d, Ÿ, n) poly(¸in, ¸out, d, Ÿ, n)

poly(Ÿ, d)
Ref
CRS

ALWE, iO
ALWE

Table 1: Round, communication, and online-computation of MPC tolerating any number of cor-
ruptions, for f : ({0, 1}¸in)n æ {0, 1}¸out represented by a circuit C of depth d. CRS refers to a
common random string, whereas Ref refers to a common reference string whose sampling coins are
secret. (ú) The results in [50] only hold in the stand-alone setting.

1.1.2 Alice/Bob-Optimized protocols

Consider a two-message protocol for two parties, where Alice sends the first message, Bob replies
with the second, and only Alice learns the output. In this setting, it is possible for one party’s
total computation (and thus also total communication) to be proportional to the size of their input
and output, while the other party “does all of the work” of securely evaluating the function. These

4

Open questions
Are Ref strings/erasures necessary for fully adaptive succinct MPC?

LFE parameters), and then use an MPC protocol (possibly not communication e�cient) to jointly
compute the encryption of the inputs (x1, . . . , xn). The communication and online-computation
required are naturally proportional only to the encryption algorithm, which depends on the depth
of the original function but not on its size. Finally, each of the parties can then locally decrypt the
ciphertext with respect to the digest to recover the output.

Nonetheless, for adaptive security, it is unclear how to simulate the output ciphertext when
possibly all n parties can be corrupted. To circumvent this barrier, we first observe that the protocol
from [85] achieves adaptive security in the erasures model, without any additional assumptions, and
then remove the erasures using the explainability compiler technique from [40]. Loosely speaking,
an explainability compiler takes a randomized circuit C and compiles it to a circuit ÂC, computing
the same function, along with an additional program Explain, such that given any input/output
pair (x, y) the program Explain can produce coins r satisfying y = ÂC(x; r).

Overall, this framework achieves all of the round, communication, and online-computation
complexity goals, but it still requires a common reference string whose size is related to the depth
of the function being computed, and further in the erasures-free setting, it relies on iO. In contrast,
in the static corruption setting, only LWE is required.

Protocol
(erasures)

Security
Rounds Communication

Computation

Online
Setup size

type

Setup
Assumption

MW [79] static 2 poly(¸in, ¸out, d, Ÿ, n) poly(|C|, Ÿ) poly(Ÿ, d) CRS LWE, NIZK

ABJMS [3]
QWW [85] static 2 poly(¸in, ¸out, d, Ÿ, n) poly(¸in, ¸out, d, Ÿ, n) poly(Ÿ, d) CRS LWE

ALWE

CLOS [24] adaptive(no) O(d) |C| · poly(Ÿ, n) poly(|C|, Ÿ) poly(Ÿ) CRS dense-crypto
TDP, NCE

GS [50]ú adaptive(no) O(d) |C| · poly(Ÿ, n) poly(|C|, Ÿ) - -
dense-crypto
TDP, NCE
CRH

CGP [27]
DKR [40] adaptive(no) O(1) |C| · poly(Ÿ, n) poly(|C|, Ÿ) poly(|C|, Ÿ) Ref OWF, iO

GP [49] adaptive(no) 2 poly(¸in, ¸out, Ÿ, n) poly(|C|, Ÿ) poly(|C|, Ÿ) Ref OWF, iO

CPV [30] adaptive(no) O(1) |C| · poly(Ÿ, n) poly(|C|, Ÿ) poly(Ÿ) CRS dense-crypto
NCE

BLPV [13] adaptive(no) 2 |C| · poly(Ÿ, n) poly(|C|, Ÿ) poly(Ÿ) Ref 2-round OT
adaptive

This work adaptive(no)
adaptive(yes) 2 poly(¸in, ¸out, d, Ÿ, n) poly(¸in, ¸out, d, Ÿ, n) poly(¸in, ¸out, d, Ÿ, n)

poly(Ÿ, d)
Ref
CRS

ALWE, iO
ALWE

Table 1: Round, communication, and online-computation of MPC tolerating any number of cor-
ruptions, for f : ({0, 1}¸in)n æ {0, 1}¸out represented by a circuit C of depth d. CRS refers to a
common random string, whereas Ref refers to a common reference string whose sampling coins are
secret. (ú) The results in [50] only hold in the stand-alone setting.

1.1.2 Alice/Bob-Optimized protocols

Consider a two-message protocol for two parties, where Alice sends the first message, Bob replies
with the second, and only Alice learns the output. In this setting, it is possible for one party’s
total computation (and thus also total communication) to be proportional to the size of their input
and output, while the other party “does all of the work” of securely evaluating the function. These

4

Are erasures/io necessary for adaptive succinct MPC?

Open questions
Are Ref strings/erasures necessary for fully adaptive succinct MPC?

Are erasures/io necessary for adaptive succinct MPC?

Are setup relaxations possible for all-but-one adaptive succinct MPC?

round adaptively secure OT, resulting in a 4-round variant in the CRS model. All of the necessary
primitives can be instantiated from LWE in the semi-malicious setting, and security in the malicious
case follows using NIZK. Table 4 summarizes the prior work and our contribution in this model.

Theorem 1.4 (all-but-one corruptions, informal). Assuming LWE and adaptively secure NIZK,
every function can be securely computed by a 2-round protocol in the threshold-PKI model toler-
ating a malicious adversary that can adaptively corrupt all-but-one of the parties such that the
communication complexity is sublinear in the function size.

Protocol Security Rounds Communication Assumptions Setup

AJLTVW [5] static 3
2 poly(¸in, ¸out, d, Ÿ, n) LWE, NIZK CRS

threshold PKI

MW [79] static 2 poly(¸in, ¸out, d, Ÿ, n) LWE, NIZK CRS

IPS [70] adaptive O(1) |C| + poly(d, log |C|, Ÿ, n) OT-hybrid -

GS [50] adaptive O(1) |C| + poly(d, log |C|, Ÿ, n) dense crypto
CRH, TDP, NCE -

DPR [45] adaptive 3 poly(¸in, ¸out, d, Ÿ, n) LWE, NIZK threshold PKI

This work adaptive 4
2 poly(¸in, ¸out, d, Ÿ, n) LWE, NIZK CRS

threshold PKI

Table 4: Comparison of maliciously secure MPC for f : ({0, 1}¸in)n æ {0, 1}¸out represented by a
circuit C of depth d, tolerating n≠1 corruptions. (ú) The results in [50] only hold in the stand-alone
model.

Our protocol follows the template of [5], where every party encrypts his input in the first
round, locally evaluates the circuit over the ciphertexts, uses its key-share to partially decrypt
the result, and broadcasts the decrypted share (some additional “smudging” noise is sometimes
required to protect the decryption share). The technical challenges are: (1) the ciphertexts in
the first round must be created in an equivocal way, and (2) the simulation strategy used for the
threshold decryption in [5] (and similarly in [79]) is inherently static, and does not translate in a
straightforward way to the adaptive setting.

We overcome the first challenge by constructing a novel threshold equivocal FHE scheme. The
scheme is equipped with an equivocal key-generation algorithm. All ciphertexts encrypted in this
mode are “meaningless” and carry no information about the plaintext; a trapdoor can be used to
equivocate any ciphertext to any message. We instantiate this FHE scheme using the dual-mode
HTDF scheme of Gorbunov et al. [58] that can generate the homomorphic trapdoor functions in an
extractable mode, corresponding to the standard (meaningful) mode of the FHE, and an equivocal
mode, corresponding to the meaningless mode.

We proceed to explain the second challenge. As observed in [5, 79], the threshold decryption
protocol may leak some information about the shares of the secret key, and the simulator for the
decryption protocol can be used to protect exactly one party. In the static setting, when the set
of corrupted parties is known ahead of time, the simulator can choose one of the honest parties
Ph as a special party for simulating the threshold decryption. This approach does not work in the
adaptive setting since the party Ph may get corrupted after simulating the decryption protocol. The
simulator cannot know in advance which party will be the last to remain honest. For this reason,

8

All-but-one corruptions prior work
Damgard-Polychroniadou-Rao

ci ← $780'"#$. $%&pk(xi)
pk, ski

y ← $'()pk(f, c1, c2, …, cn)

di ← Decski
(y + ri)

(receive from everyone)

f(x1, …, xn) ← Combine(d1, …, dn)

All-but-one corruptions prior work
Damgard-Polychroniadou-Rao

ci ← $780'"#$. $%&pk(xi)
pk, ski

(receive c1,…,cn from everyone)
y ← $'()pk(f, c1, c2, …, cn)

di ← Decski
(y + ri)

(receive from everyone)

f(x1, …, xn) ← Combine(d1, …, dn)

All-but-one corruptions prior work
Damgard-Polychroniadou-Rao

ci ← $780'"#$. $%&pk(xi)
pk, ski

(receive c1,…,cn from everyone)
y ← $'()pk(f, c1, c2, …, cn)

di ← Decski
(y + ri)

di

(receive from everyone)

f(x1, …, xn) ← Combine(d1, …, dn)

All-but-one corruptions prior work
Damgard-Polychroniadou-Rao

ci ← $780'"#$. $%&pk(xi)
pk, ski

(receive c1,…,cn from everyone)
y ← $'()pk(f, c1, c2, …, cn)

di ← Decski
(y + ri)

di

(receive from everyone)

f(x1, …, xn) ← Combine(d1, …, dn)

ri ← $780'"96 . $%&(0)

Adaptive LWE

A.1 Cryptographic Assumptions
A.1.1 Learning With Errors

The decisional learning with errors (LWE) problem, introduced by Regev [87], is defined as follows.

Definition A.1 (decision LWE). Let n = n(Ÿ) and q = q(Ÿ) be integer parameters and ‰ = ‰(Ÿ)
be a distribution over Z. The learning with errors (LWE) assumption LWEn,q,‰ states that for all
polynomials m = poly(Ÿ) the following distributions are computationally indistinguishable:

(A, sT A + e) c© (A, u),

where A Ω Zn◊m
q , s Ω Zn

q , e Ω ‰m, and u Ω Zm
q .

We rely on LWE security with the following range of parameters. We assume that for any
polynomial p = p(Ÿ) = poly(Ÿ) there exists some polynomial n = n(Ÿ) = poly(Ÿ), some q = q(Ÿ) =
2poly(Ÿ), and some B = B(Ÿ)-bounded distribution ‰ = ‰(Ÿ) such that q/B Ø 2p and the LWEn,q,‰

assumption holds. Throughout the paper, the LWE assumption without further specification refers
to the above parameters. The sub-exponentially secure LWE assumption further assumes that
LWEn,q,‰ with the above parameters is sub-exponentially secure, meaning that there exists some
‘ > 0 such that the distinguishing advantage of any polynomial-time distinguisher is 2≠Ÿ

‘ .

A.1.2 Adaptive Learning With Errors

Quach et al. [85] used the following natural variant of the LWE problem, denoted adaptive LWE.

Definition A.2 (decision ALWE). We define the decision adaptive LWE assumption ALWEn,k,q,‰

with parameter n, k, q œ Z and a distribution ‰ over Z which are all parametrized by the security
parameter Ÿ. Let m = n · Álog qË. We let G œ Zn◊m be the gadget matrix (as defined in [78], see
also Appendix C.1). For any polynomial mÕ = mÕ(Ÿ), we consider the following two games GAME

—

for — œ {0, 1}.between a challenger and an adversary A.

• The Challenger picks k random matrices Ai Ω Zn◊m
q for i œ [k], and sends them to A.

• A adaptively picks x1, . . . , xk œ {0, 1}, and sends it to the Challenger.

• The Challenger samples s Ω Zn
q and computes for all i œ [k]

I
bi = sT (Ai ≠ xi · G) + ei where ei Ω ‰m, if — = 0.
bi Ω Zm

q , if — = 1.

The Challenger also picks Ak+1 Ω Zn◊m
Õ

q and computes
I

bk+1 = sT Ak+1 + ek+1 where ek+1 Ω ‰m
Õ
, if — = 0.

bk+1 Ω Zm
Õ

q , if — = 1.

The challenger sends Ak+1 and {bi}iœ[k+1] to the adversary.

The ALWEn,k,q,‰ assumption states that for all polynomial m = m(Ÿ), the games GAME
0 and GAME

1

are computationally indistinguishable.

56

HTDF

(x, w), the functionality verifies that (x, w) œ R, and asks the adversary to generate a proof fi for
the statement x. The functionality stores (x, fi) and returns the proof to Pi. Similarly, every party
Pj can send a verify request, consisting of a statement x and a proof fi. In case the pair (x, fi)
is stored, the functionality returns 1. Otherwise, the functionality asks the adversary to come up
with a witness w. If (x, w) œ R the functionality returns 1 to Pj ; otherwise, return 0.

3.2 Cryptographic Primitives used in the Protocol
We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

3.2.1 Homomorphic Trapdoor Functions (HTDF)

We briefly recall the notion of homomorphic trapdoor functions, formally described in Ap-
pendix A.2.3. The key-generation algorithm outputs a public key and a secret key (pk, sk) Ω
HTDF.Gen(1Ÿ, 1d). The public key along with some bit x œ {0, 1} define an e�ciently com-
putable function fpk,x : U æ V, and the secret key acts as a trapdoor that enables inverting
the function, i.e., defines a function HTDF.Invsk,x : V æ U . Two homomorphic evaluation algo-
rithms are defined given a function g : {0, 1}¸ æ {0, 1} of depth d: the inner evaluation uú =
HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and the outer evaluation vú = HTDF.Eval
out(g, v1, . . . , v¸).

Informally, we require the following properties from an HTDF scheme:

• Correctness. Let x1, . . . , x¸ œ {0, 1} and vi = fpk,xi(ui) for i œ [¸]. Then, for
uú = HTDF.Eval

in(g, (x1, u1), . . . , (x¸, u¸)) and vú = HTDF.Eval
out(g, v1, . . . , v¸) it holds that

fpk,y(uú) = vú, where y = g(x1, . . . , x¸).

• Distributional equivalence of inversion. For a bit x œ {0, 1}, the tuple (pk, x, u, v)
computed as v = fpk,x(u) for a random u Ω U is statistically close to sampling v Ω V at
random and computing u = HTDF.Invsk,x(v).

• Claw-free security. Given the public key, no e�cient adversary can come up with u and uÕ

such that fpk,0(u) = fpk,1(uÕ) with more than a negligible probability.

For the remaining of the section it will be useful to think of an HTDF scheme as a fully
homomorphic, statistically-hiding commitment scheme with a trapdoor sk.

3.2.2 Strong One-Time Signatures

Strong one-time signatures are formally defined in Appendix A.2.4. Loosely peaking, the scheme
consists of three algorithms (Sig.Gen, Sign, Vrfy) . The key generation algorithm outputs a public
verification key and a secret signing key (vk, sigk) Ω Sig.Gen(1Ÿ). The signing algorithm uses the
signing key to sign an arbitrary message m as ‡ Ω Signsigk(m). The verification algorithm uses the
verification key to accept or reject the signature as b = Vrfyvk(‡, m). We require that the scheme
be correct and strongly existentially unforgeable under a single chosen message attack, meaning
that except for negligible probability, no e�cient adversary that chooses a message m and receives
a signature ‡ can come up with (mÕ, ‡Õ) ”= (m, ‡) such that 1 = Vrfyvk(‡Õ, mÕ).

14

Full adaptive case

• Upon receiving (output, sid, ct) from the ideal functionality, party Pi checks that ct ”= ‹
(otherwise, Pi outputs (output, sid, ‹)), computes y = LFE.Dec(crs, Cf , ct), and outputs
(output, sid, y).

Proving security of the protocol against a static adversary corrupting all-but-one of the par-
ties is straightforward. Namely, by definition of LFE schemes, the simulator can simulate
the ciphertext ct based on the output y, and without knowing the input values, as ct Ω
Simlfe(crs, Cf , digestf , y). Furthermore, by the properties of LFE, the size of the circuit computing
LFE.Enc is poly(Ÿ, ¸in, ¸out, d, n). By instantiating the ideal functionality using a statically secure
2-round protocol (e.g., the one from [79]), Quach et al. [85] achieved a statically secure protocol
with sublinear communication and online-computational complexity.

A closer look at the protocol of [85] shows that it remains secure even facing adaptive corruptions
of all-but-one of the parties, since a single honest party su�ces to keep the randomness used
for LFE.Enc hidden from the adversary. Furthermore, under the additional assumption of secure
erasures, each party can erase his random coins ri immediately after invoking FLFE.Enc

sfe-abort
, and the

protocol can satisfy adaptive corruptions of all the parties. By instantiating the functionality
FLFE.Enc

sfe-abort
with the 2-round adaptively secure MPC from [13], we obtain the following theorem.

Theorem 4.1 (Theorem 1.1, secure-erasures version, restated). Assume the existence of LFE
schemes for P/poly, of 2-round adaptively and maliciously secure OT, and of secure erasures, and
let f : ({0, 1}¸in)n æ {0, 1}¸out be an n-party function of depth d.

Then, Ff

sfe-abort
can be UC-realized tolerating a malicious, adaptive PPT adversary by a 2-

round protocol in the common random string model. The size of the common random string is
poly(Ÿ, d), whereas the communication and online-computational complexity of the protocol are
poly(Ÿ, ¸in, ¸out, d, n).

Note that following [85, 13], the assumptions in Theorem 4.1 hold under the adaptive LWE
assumption.

4.3 Adaptive Security with Sublinear Communication: Erasures-Free Setting
In the erasures-free setting, it is unclear how to simulate the output ciphertext, and later upon
learning all of the inputs values of the parties, explain the random coins that are used to generate
it. We get around this barrier by using explainability compilers.

4.3.1 Two-Round Protocol Assuming Adaptive Explainability Compilers

We consider explainability compilers with adaptive security (where the challenge ciphertext is dy-
namically chosen) that can be realized by sub-exponentially secure iO and OWF. To define the com-
mon reference string for the protocol, we define the distribution Dlfe(params) that is parametrized
by an LFE scheme and by the parameters of the function to be computed params. The distribu-
tion Dlfe computes crs Ω LFE.crsGen(1Ÿ, params) and (^LFE.Enc, Explain) Ω Comp(1Ÿ, LFE.Enc), and
outputs the reference string (crs, ^LFE.Enc).

We would like to define the protocol in the ^LFE.Enc-hybrid model; however, the function ^LFE.Enc

is only given in the CRS and is not known before the protocol begins. To get around this technicality,
we define the function fC((C1, x1, r1), . . . , (Cn, xn, rn)) that receives a circuit Ci, a value xi, and

20

