Broadcast-Optimal 2-Round MPC

Ran Cohen Juan Garay Vassilis Zikas

Secure Multiparty Computation

Impossible in general for $t \ge n/2$ [Cleve'86]

This work: t < n

Security with Abort

Identifiable abort

All honest parties either get output or abort & identify corrupted parties

Unanimous abort

All honest parties either get output or abort

Selective abort

Each honest party either gets output or aborts

How many rounds needed for MPC?

1 round isn't enough:

Residual-function attacks [Halevi-Lindell-Pinkas'11]

2 broadcast rounds suffice:

[Asharov-Jain-LópezAlt-Tromer-Vaikuntanathan-Wichs'12] [Garg-Gentry-Halevi-Raykova'14] [Gordon-Liu-Shi'15] [Mukherjee-Wichs'16]

Even from minimal assumptions (2-round OT):

[Garg-Srinivasan'18] [Benhamouda-Lin'18]

Optimal???

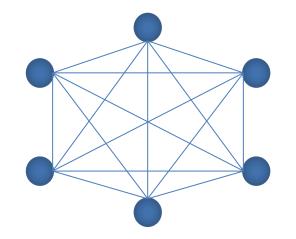
Optimal !!!

Broadcast

Crypto tools

Main Question

Do we really need it??



2-Round MPC w/o Broadcast

- Lower bound in plain model (no setup):
 2-round MPC with unanimous abort \Rightarrow 2nd round must be broadcast
 For n = 3, t = 1 [Patra-Ravi'18]
- ➢ OWF ⇒ 2-round MPC with selective abort over P2P
 For t < n/3 [Ishai-Kushilevitz-Paskin'10]
 For t < n/2 [Ananth-Choudhuri-Goel-Jain'19] [Applebaum-Brakerski-Tsabary'19]

Our Results (t < n)

1 st round	2 nd round	Selective abort	Unanimous abort	Identifiable abort
BC	BC	~	\checkmark	\checkmark
P2P	BC	✓	✓	×
BC	P2P		×	×
P2P	P2P	✓	×	×

LB: any correlated randomness UB: 2-round OT + CRS

Part 1: Impossibility Results

Our Results: Lower Bounds

Given any correlated randomness:

- MPC with identifiable abort \implies Both rounds BC
- MPC with unanimous abort $\implies 2^{nd}$ round is BC

The function for the lower bound

$$x_{1} = (x_{1,1}, x_{1,2}) \in \{0,1\} \times \{0,1\}$$

$$P_{1}$$

$$P_{1}$$

$$P_{2}$$

$$P_{3}$$

$$x_{3} = (x_{3,1}, x_{3,2}) \in \{0,1\}^{\kappa} \times \{0,1\}^{\kappa}$$

Consider the function

$$f(x_1, x_2, x_3) = \begin{cases} (x_{1,1} \oplus x_2)^{\kappa} \oplus x_{3,1} & \text{if } x_{1,2} = x_2 \\ (x_{1,1} \oplus x_2)^{\kappa} \oplus x_{3,2} & \text{if } x_{1,2} \neq x_2 \end{cases}$$

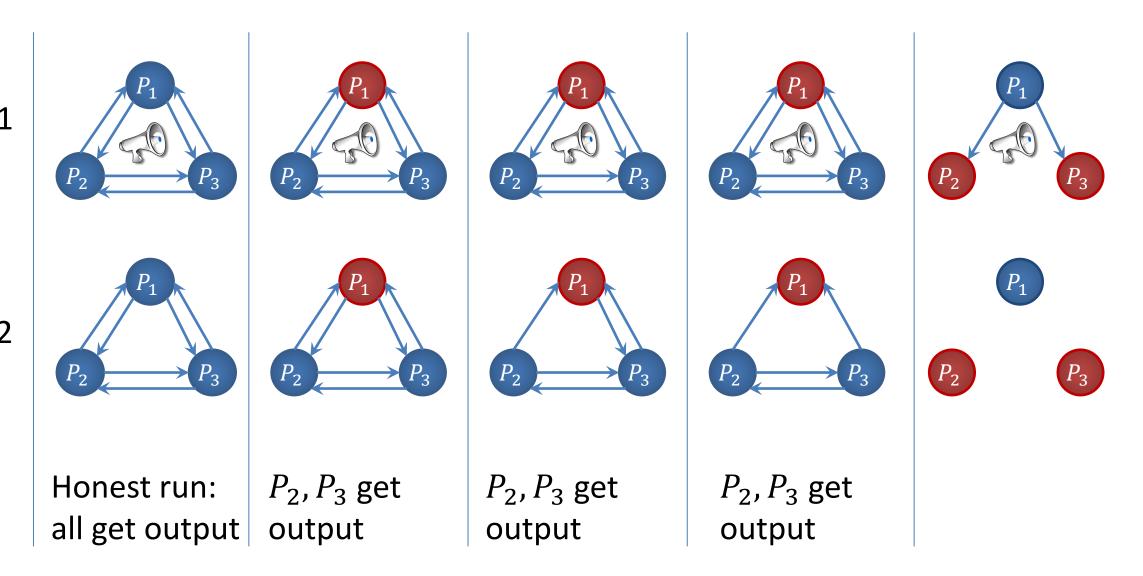
In ideal computation of f:

Property 1: Cheating P_2 and P_3 cannot force the output to be 0^{κ} **Property 2:** Cheating P_1 and P_2 cannot learn both $x_{3,1}$ and $x_{3,2}$

1) Unanimous abort \Rightarrow 2nd round is BC

Round 1

Round 2

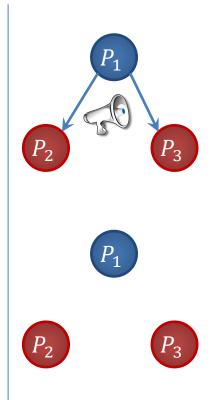


1) Unanimous abort \Rightarrow 2nd round is BC

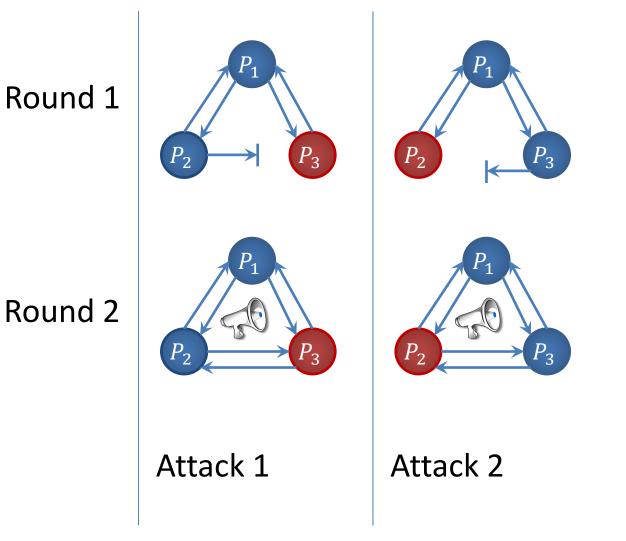
 P_2 , P_3 learn output from P_1 's 1st message

 \Rightarrow P_2 , P_3 can choose their input afterwards

 \Rightarrow P_2 , P_3 can force P_1 's output to 0^{κ}



2) Identifiable abort \Rightarrow both rounds are BC

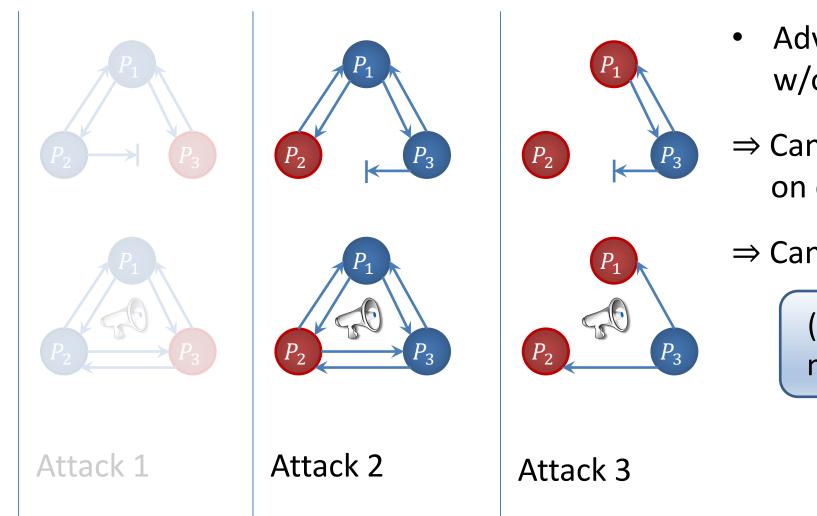


 P_1 can't abort \Rightarrow honest parties get output

2) Identifiable abort \Rightarrow both rounds are BC

Round 1

Round 2



 Adv gets P₃'s messages w/o playing P₂

 $\Rightarrow Can play \frac{P_2}{P_2}$ on different inputs

 \Rightarrow Can learn both P_3 's inputs

(*) See the paper for many missing details

 P_1 can't abort \Rightarrow honest parties get output

Part 2: Feasibility Results

Our Results: Feasibility

Given 2-round OT (in CRS model):

- Both rounds $BC \implies MPC$ with identifiable abort
- 2^{nd} round is BC \implies MPC with unanimous abort
- Both rounds $P2P \implies MPC$ with selective abort

Structure of 2-round protocols

Send $m_i^1 = \text{firstmsg}(x_i, r_i)$ Receive $\vec{m}_1 = (m_1^1, \dots, m_n^1)$

Send
$$m_i^2 = \text{secondmsg}(x_i, r_i, \vec{m}_1)$$

Receive $\vec{m}_2 = (m_1^2, ..., m_n^2)$

Output $y = \text{output}(x_i, r_i, \vec{m}_1, \vec{m}_2)$

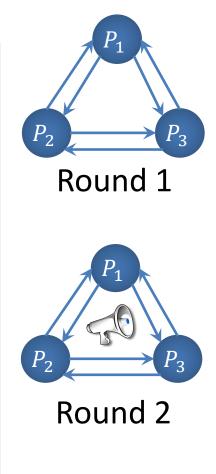
Inconsistency-detection compiler [ACGJ'19]

Round 1 (over P2P):

- Party P_i sends $m_i^1 = \text{firstmsg}(x_i, r_i)$ to everyone
- Compute $(GC_i, LBL_i) \leftarrow \text{Garble}\left(\text{secondmsg}_{x_i, r_i}(\vec{m}_1)\right)$
- \forall input wire *w*, share $lbl_i^{w,b} = lbl_{i \to 1}^{w,b} \oplus \cdots \oplus lbl_{i \to n}^{w,b}$
- \forall input wire w, send $lbl_{i \to j}^{w,b}$ to P_j
- Round 2 (over BC):
- Party P_i receives $\vec{m}_1 = (m_1^1, ..., m_n^1)$
- Broadcast GC_i and shares of labels corresponding to \vec{m}_1

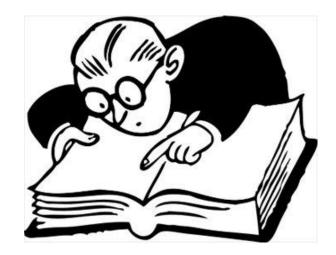
Output:

- $\forall j \text{ party } P_i \text{ reconstructs labels } LBL_i^{\overline{m}_1}$
- $\forall j \text{ party } P_i \text{ evaluates } GC_j \left(LBL_j^{\vec{m}_1} \right) \text{ to obtain } m_j^2$
- Output $y = \text{output}(x_i, r_i, \vec{m}_1, \vec{m}_2)$



Proof idea

- If every P_i sends the same m_i^1 to all parties
- \Rightarrow All parties can reconstruct the same labels for each GC
- \Rightarrow Security reduces to the original protocol
- If some P_i sent different messages $m_i^1 \neq \tilde{m}_i^1$ to different parties
- \Rightarrow No party can reconstruct the labels for GC_i \Rightarrow All parties abort
- Similar compiler used by [ACGJ'19] (for t < n/2) and [GIS'18] (for semi-honest) Simulation used **specific properties** of the original broadcast-model protocol
- We prove for any broadcast-model protocol (black-box simulation) New receiver-specific simulation technique (see the paper)
- Two P2P rounds \implies selective abort



Summary

1 st round	2 nd round	Selective abort	Unanimous abort	Identifiable abort
BC	BC	✓	✓	
P2P	BC	✓	✓	×
BC	P2P	✓	×	×
P2P	P2P	~	×	×

