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Abstract

Regional garbage collection offers a useful compromise between real-time

and generational collection. Regional collectors resemble generational col-

lectors, but are scalable. A scalable collector guarantees a positive lower

bound, independent of mutator and live storage, for the theoretical worst-

case minimum mutator utilization (MMU).

Standard generational collectors are not scalable. Some real-time collec-

tors are scalable, while others assume a well-behaved mutator or provide no

worst-case guarantees at all.

This dissertation presents regional garbage collection, coupled with a

theorem establishing that it is scalable in the sense above, as well as estab-

lishing upper bounds for its worst-case space usage and collection pauses.

Regional collectors separate summarization and refinement from the task

of object reclamation. They resolve “popularity” problems via two novel

technologies: summarization wave-off, and region fame.

Regional collectors cannot compete with hard real-time collectors at mil-

lisecond resolutions, but offer efficiency comparable to contemporary gener-

ational collectors combined with improved latency and MMU at resolutions

on the order of hundreds of milliseconds to a few seconds.

A prototype regional collector performs acceptably on a wide range of

benchmarks: It is comparable to a tuned generational collector on a set

of fifty-eight non-collection-intensive benchmarks, and achieves acceptable

throughput without violating its bounds on a set of thirteen collection-inten-

sive benchmarks.
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Chapter 1

Introduction

The ongoing shift from 32-bit to 64-bit processor environments forces gar-

bage collectors to cope with the larger heaps made possible by the increased

address space. On 32-bit machines, generational collectors that occasionally

pause to collect the entire heap work well enough for many applications, but

that paradigm does not scale up because collection pauses that take time

proportional to the total heap size can cause alarming or annoying delays

[24], even if they occur rarely.

Real-time, incremental, and concurrent collectors eliminate such delays

but introduce complex invariants to the memory-management system. Main-

tenance of these invariants during execution reduces application through-

put. Also, supporting these invariants increases the complexity of compilers,

run-time infrastructure, and low-level libraries (e.g., client modules written

in C and linked via a foreign function interface).

In non-real-time operating environments, real-time garbage collection is

overkill. It would be better to preserve the throughput of generational col-

lectors while eliminating the long delays associated with major collections.

Implementors would also appreciate a system with hard bounds on pause

times, but simpler than contemporary real-time memory managers.

Will Clinger (my thesis advisor) and I have designed, and I have imple-

mented, a regional garbage collector that collects bounded subsets of the heap

1



2 CHAPTER 1. INTRODUCTION

during every collection, thus disentangling the worst-case mutator pause

time from the total heap size. The design separates copying collections from

auxiliary tasks that perform “summarization” and “refinement.”

The regional collector incorporates a novel solution to the problem of

“popular objects.” The regional collector generalizes this problem from ob-

jects to regions. With that generalization, relatively few regions can be popu-

lar, so those popular regions can be temporarily “waved off” from collection

without violating asymptotic bounds for space efficiency. As explained in

Section 4.2.3 and proven in Section 5.4, this insight yields a solution to the

popularity problem.

The regional collector also introduces a novel “fame” heuristic, an ex-

tension of popular region wave-off, to reduce the overhead of regional re-

membered set size and maintenance. This fame heuristic tends to improve

throughput without sacrificing the worst case. The fame heuristic is de-

scribed and evaluated in Section 7.3.

The three primary goals of the design are:

1. Constant worst-case bounds for the CPU time required by each collec-

tion, and constant worst-case lower-bounds for minimum mutator uti-

lization (for granularities coarser than the worst-case CPU time bound

for each collection).

2. Asymptotic worst-case bounds for memory usage, within a small con-

stant factor of the total volume of live storage.

3. Typical throughput competitive with conventional generational garbage

collection technology.

A prototype of this regional collector implemented atop the Larceny run-

time shows that it performs acceptably on a wide range of benchmarks: It is

comparable to an efficient generational collector on a set of fifty-eight small,

non-collection-intensive benchmarks, and achieves acceptable throughput
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without violating its bounds on a set of thirteen collection-intensive bench-

marks.

My thesis is: Regional garbage collection with summarization, wave-

off, and snapshot refinement, provides mutator-independent worst-case

bounds on pause times and minimum mutator utilization, and provides

competitive throughput while maintaining a worst-case bound on over-

all memory usage.





Chapter 2

Garbage collection: background and

goals

This chapter outlines the goals of garbage-collection systems, defines stan-

dard terms used in the Computer Science community, and describes the par-

ticular problem solved in this work.

2.1 Garbage collection background

One way to document the design of an automatic memory manager is to

describe how it supports and interacts with the main program, called the

mutator. Most of the mutator’s state is made up of object structures that are

allocated in a portion of memory called the heap. Each object structure (or

simply object) is made up of a sequence of words. Some objects may have

header words that hold meta-data about the object, such as a type tag; others

may have no header at all. The rest of the words in an object, depending on

its type, are either raw binary data (uninterpreted by the garbage collector),

or the object’s slots (or fields); each slot potentially holds a reference to

another object on the heap.

During the course of a computation, the mutator issues requests for new

5



6 CHAPTER 2. GARBAGE COLLECTION: BACKGROUND AND GOALS

objects to the run-time environment. The memory manager responds by

identifying an unused area of the heap capable of holding an object of the

requested size and returning its address. This action could be trivial if the

heap has free space available, but if the free space is exhausted, the mem-

ory manager invokes the garbage collector to identify heap memory that is

no longer usable by the mutator (or dead) and thus can be reclaimed. An

automatic memory manager generally needs to perform dynamic analysis of

the system state in order to identify such reclaimable storage, as opposed

to memory-management systems that rely solely on static program analy-

ses (which fundamentally cannot achieve the same level of precision as a

dynamic analysis).

As objects are allocated and returned to the heap, the memory may be-

come fragmented, depending on memory-management policies. If the sys-

tem leaves gaps of free memory that are too small to accommodate future

requests, then it exhibits external fragmentation. If the system allocates extra

storage without intending to use it, for example by allocating an overly large

structure to ensure that memory addresses will be properly aligned, then it

exhibits internal fragmentation.

A tracing garbage collector (or often just garbage collector) identifies stor-

age to reclaim by starting from a fixed set of the object references provided

by the mutator, known as the root set, and transitively following the ref-

erences to determine what objects the mutator could possibly reach. The

objects reachable in this manner are the live objects; a sound mutator must

access only objects that it can reach via some path of references from one of

its roots. A simple tracing collector traverses all of the live objects starting

from the root set; thus a simple tracing collector can pause the mutator for

a duration proportional to the volume of live storage.

The memory store is often presented abstractly as a directed graph whose

vertices are the elements of the root set and objects in the heap and whose

edges are the object references in the objects’ slots and in the root set. A
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garbage collector finds some connected component of the abstract store that

includes the root set; I sometimes refer to the smallest such connected com-

ponent as the object graph, and to other such connected components as con-

servative approximations of the object graph. A conservative approximation

of the object graph often results from treating unreachable object structures

as if they are live (see “float” below).

A copying collector is a tracing collector that copies (or forwards) ob-

jects into a free memory area as it traces them, preserving the object graph

structure by updating the references within all objects (both forwarded and

non-forwarded) to refer to the new copies. (Having the freedom to ma-

nipulate the representation of the object graph in this manner can reduce

fragmentation and improve locality.)

A generational collector is a tracing collector that partitions the heap in

some manner so that younger objects are classified separately from older

objects. (The notion of “object age” can differ between collector designs, but

for now it suffices to think of it as some measure of the time since the object

was initially allocated by the mutator.) The collector attempts to reduce

tracing overhead by tracing only the young objects during most collections.

In some generational collectors, the youngest generation is known as the

nursery. Most objects are initially allocated in the nursery; when it fills up,

minor collection evacuates all live objects out of the nursery alone into an

older generation. (If the older generation runs out of room, a rare major

collection traces through both the old and young objects.)

Any collector that reclaims dead storage from a part of the heap by trac-

ing only objects within that part of the heap must ensure that there is no

way to reach any reclaimed objects via some untraced path through the

unprocessed portion of the heap. This assurance is typically provided by

maintaining a remembered set: a set of objects that have references into the

collected subset. Including the remembered set as part of the root set en-

sures that any reachable object in the collected subset will not be reclaimed.
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Thus a generational collector must maintain a remembered set to track the

older objects that have references to young objects.

When a collector maintains a precise remembered set, it is responsible

for ensuring that any object in the remembered set actually does contain a

reference that will need to be included during some future collection. Thus

with maximally precise remembered sets there is a double implication, in

that an object is in the remembered set if and only if it contains a reference

that crosses the heap partitioning. Many generational collectors guarantee

only that they maintain imprecise remembered sets, where any object with a

reference that crosses the heap partitioning must be in the remembered set,

but there is no constraint on how many extra objects with no such references

can occur in the remembered sets.

Collectors that use a conservative approximation of the object graph may

treat some unreachable object structures as if they were live. This floating

garbage, or float, is not reclaimed until the collector refines its approxima-

tion of the object graph. Some amount of float is usually acceptable in an

efficient collector, as the point of collecting only a part of the heap is to avoid

the cost of analyzing the whole heap structure to determine the exact set of

live objects. But if the amount of float grows unreasonably large, then per-

formance can suffer: the memory usage becomes unacceptably high, and a

copying collector wastes time copying and maintaining the useless data of

the float objects.

In many collectors, particularly generational collectors, the mutator must

notify the collector when it makes modifications to the memory store, so the

collector can maintain internal meta-information about object referencing

relationships in the store. Such notification is usually performed by a snip-

pet of code that is automatically emitted by the compiler alongside every

operation that modifies a memory cell in the store; this snippet is referred

to as a write barrier. The main purpose of the write barrier in a generational

collector is to ensure that references from old to young objects introduced
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by mutation operations are saved in the appropriate remembered set; refer-

ences from young to old objects need not be saved in a generational collector

and are typically filtered out by the write barrier.

In an incremental collector, the work of collection is divided into small

chunks, so that control passes to the collector for only a fixed amount of

time before it returns to the mutator. A problem is that bounding an indi-

vidual pause time is not enough; one must also ensure that the mutator can

accomplish an appropriate amount of work in between the pauses, keep-

ing the processor utilization high. The mutator utilization of a collector is

the fraction of time in which the mutator does useful work in a given period;

thus the minimum mutator utilization (MMU) is a lower bound on how much

work the mutator is able to get done despite interruptions by the collector.

A concurrent collector runs some or all of the collection-related tasks in

parallel with the mutator. The core difficulty of concurrent collection is that

the mutator’s and collector’s views of the heap must be kept coherent as the

concurrent tasks proceed. Supporting object forwarding concurrently with

the mutator is possible but involves the maintenance of complex invariants.

The work performed by a computing system can be measured in a variety

of ways, such as wall-clock elapsed time, or number of processor cycles. For

most of our abstract discussions, we measure work performed by the muta-

tor and garbage collector by the memory operations they perform: memory

reads, memory writes, mutator allocation requests, and collector memory

allocation and freeing. Therefore, we often present elapsed mutator time

as a count of memory writes and allocation requests the mutator can make

before control shifts to the collector, and collection pause times as the num-

ber of memory operations that the collector must perform before it can pass

control back to the mutator. As long as the total memory usage remains

reasonably bounded1, this is not an absurd simplification, especially consid-

1The bound on total memory usage is relevant for simplifying our reasoning about

elapsed time; it allows us to assume that memory operations do not cause significantly
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ering the ever widening CPU/memory gap. We present wall-clock times in

our performance results, however.

The regional collector presented here is implemented atop the Larceny

runtime system. Its performance is compared against the stop-and-copy and

generational collectors provided in Larceny. More information on Larceny

and a download of the Larceny runtime is available at the following website.

http://www.larcenists.org/

2.2 The facets of scalability

Scalable systems must have reasonable interactive performance, without

paying too much in terms of memory or throughput overhead.

Unlike standard generational collectors, the regional collector presented

here is scalable: Theorem 1 below establishes that the regional collector’s

theoretical worst-case collection latency and MMU are bounded by nontriv-

ial constants that are independent of the volume of reachable storage and

are also independent of mutator behavior. The theorem also states that these

fixed bounds are achieved in space bounded by a fixed multiple of the vol-

ume of reachable storage.

Although most real-time, incremental, or concurrent collectors appear to

be designed for embedded systems in which they can be tuned for a partic-

ular mutator, some (though not all) hard real-time collectors are scalable in

the same sense as the regional collector.

For programs that will run under non-real-time operating systems, hard

real-time garbage collection is overkill. Many programs do not need guar-

antees for minimum mutator utilization at sub-millisecond resolutions, but

would benefit from general-purpose scalable collectors that provide guaran-

teed lower bounds for worst-case MMU at resolutions of one second or less.

more OS-level page faults than would have occurred with some other collector.
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If the relaxed resolution were accompanied by superior MMU and overall

efficiency for the average case, all the better.

The following theorem characterizes the regional collector’s worst-case

performance.

Theorem 1. There exist positive constants c0, c1, c2, and c3 such that, for every

mutator, no matter what the mutator does:

1. GC pauses are independent of heap size: c0 is larger than the worst-case

time between mutator actions.

2. Minimum mutator utilization is bounded below by constants that are

independent of heap size: within every interval of time longer than 3c0,

the MMU is greater than c1.

3. Memory usage is O(P ), where P is the peak volume of reachable objects:

the total memory used by the mutator and collector is less than c2P + c3.

The constants c0, c1, c2, and c3 are completely independent of the mutator.

Their values do depend upon several parameters of the regional collector,

upon details of how the collector is implemented in software, and upon the

hardware used to execute the mutator and collector. Chapter 9 reports on

the performance actually observed on a number of benchmarks.

To enforce scalability, the collector adheres to a set of policies that con-

strain the behavior of the mutator. Both the allocation rate and the amount

of heap modifications must be bounded. To give a flavor for the mathematics

involved, here are the formulas for the relevant bounds:

• Allocation during any one full cycle, A, is kept proportional to peak

storage over the execution history. This is enforced via the policy

A = min

(
1

2
((1− k)Lhard − 1)Pold , (Lsoft − 1)Pold

)
.
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• The mutator activity during a summarization cycle, C, is at most the

product cN where

0 < c ≤ F2F3 − 1

F1F2

S − S⌈
N
R

⌉ − 1.

These formulas, their parameters, and relevant new terminology will be ex-

plained in the remainder of the document (largely in Chapter 5).



Chapter 3

Design space for heap-partitioning

collection

This chapter provides a background for the regional collector via an explo-

ration of the design space. I evaluate different points in the space by an-

ticipating whether such a design would make it more difficult to guarantee

bounds on pause times, mutator utilization, and memory usage. Not ev-

ery point in the design space provides a suitable basis for scalable garbage

collection.

3.1 Partitioning for independent collection

Ensuring scalability first requires that there be an upper bound on pause

time: when the mutator shifts control to the collector’s coroutines, they must

finish their work within a fixed amount of time. Batching together related

pieces of collection work is a second goal: forwarding several objects at

once and reclaiming a large chunk of memory is preferable to working on

only a single object at a time. Such batching of labor reduces overall system

overhead, though it also entails that I cannot impose pause-time bounds as

short as some real-time collectors [10, 15].

13
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The design assumes that the collector will need to migrate objects; that

is, it will use a copying collection scheme to some degree, rather than re-

lying solely on a pure mark/sweep strategy that does not forward objects.

This assumption is motivated by the difficulty of bounding the amount of

memory fragmentation in a pure mark/sweep collector without significantly

constraining the mutator a priori. If a memory-management strategy is to

be space-efficient, it cannot allow fragmentation to grow without bound.

Other arguments for favoring a design allowing object migration include en-

abling bump-pointer allocation rather than free-lists, and the potential for

improving memory locality.

The first step I take towards bounding collection work in a copying col-

lector appears simple: Partition the heap into disjoint regions, where each

region is bounded in size. Then ensure that the collector only works toward

reclaiming the memory associated with one region at a time. The region

size bound is presumed large (with respect to the size of individual objects)

to batch collection operations together and to bound the relative amount of

internal fragmentation due to unused space in a region.

The fixed region size bounds the amount of copying performed, which

may seem like it would immediately bound the maximum pause time. The

mistake in such reasoning is that it ignores the effort required (1) to identify

the region’s live objects, which may be reachable only indirectly via objects

in other regions, and (2) to update all references to the forwarded objects,

including those outside the selected region.

3.2 Remembering region-crossing references

Generational collectors face a similar problem as the regional collector: they

need to collect young generations without scanning the entirety of old gen-

erations, as the cost of such scanning would be self-defeating to their goal

of avoiding work proportional to the size of the older generations. Most
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modern generational collectors hosted on generic hardware employ some

form of a remembered set [28] to track old-to-young pointers; the mutator is

responsible for ensuring that modifications to old objects properly maintain

the remembered-set invariant:

Remembered-set invariant, Generational:

If live object B is older than object A and B has a reference to A,

then track B in the remembered set.

With this invariant in place, on each attempt to collect garbage a genera-

tional collector can choose a prefix of the generations (assuming a youngest-

to-oldest ordering) and collect only the objects in that prefix, scanning the

objects in the remembered set to find all pointers into the collected prefix

from the older uncollected generations.

A generalization of this idea allows a region to be collected indepen-

dently of other regions: use a remembered set that tracks references that

cross regions, without regard to ordering (age-based or otherwise). In this

scheme, the mutator must now ensure that modifications to objects maintain

the following invariant:

Remembered-set invariant, Regional:

If live objects A and B belong to distinct regions and B has a refer-

ence to A, then track B in the remembered set.

3.2.1 The remembered set is a heuristic

With the addition of a regional remembered set, the collector can focus its

attention on just the objects that contain region-crossing references, without

scanning the entire remainder of the heap outside the collected region.

However, this elaboration of a generational collector’s design does not

provide a guaranteed bound on pause times. The remembered set might, as

a direct consequence of the invariant, contain the address of every object in

every region (especially if the object distribution across regions is particu-
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Figure 3.1: A pathological object distribution

larly bad, as illustrated in figure 3.1). Thus the remembered set can grow

proportionally with the heap; some application benchmarks exhibit such

growth. If collection pause time were proportional to remembered-set size,

then the pause time would not be bounded by any application-independent

constant.

3.3 Tracking region crossings: the design space

The regional remembered-set invariant (page 15) implicitly suggests one

of many possible structurings of collector meta-data for tracking region-

crossing references. At this point, it is useful to take a step back and consider

alternative structures for narrowing the focus of the collector.

3.3.1 Points-out-of and points-into

One way of comparing such structures is to analyze how they distribute

information across the set of regions.

The regional remembered-set structure was presented earlier as a single

monolithic entity for the entire heap; that view is interchangeable with one

that perceives the remembered set as an array of individual disjoint sets,

one for each region. Each region’s set then tracks objects within that region

that may have references that point out to objects in other regions. I refer

to such a structure as a “points-out-of” structure. Figure 3.2 illustrates such
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Figure 3.2: A “points-out-of” structure
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Figure 3.3: A “points-into” structure

a structure in a partitioned heap diagram; the clouds sitting above the re-

gions collectively represent the remembered set (or, equivalently, an array

of disjoint sets). Note that all objects holding a reference pointing out (of

their respective region) appear in the remembered set, as required by the

invariant.

It is not hard to manipulate this abstract picture to obtain alternative

structures. One choice is to change what state is stored per-region so that

instead of tracking references going out of a region, one instead tracks ref-

erences coming into a region. Such a “points-into” structure is illustrated in

figure 3.3.

The object graphs in figures 3.2 and 3.3 are identical; the only difference
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is in how the meta-data structures of the collector abstractly describe the

region-crossing relationships.

One apparent difference between these approaches is that the points-

into structure provides the collector with an immediate focus on the objects

relevant to collecting a region. For example, collecting region R3 by for-

warding the objects x and y will require updating references in the objects i

and c, respectively; both i and c appear directly in the points-into structure

for R3, and the collector need not inspect the irrelevant objects held in the

points-into structure for other regions.

In summary, the “points-out-of”/“points-into” distinction describes a vari-

ation in how reference-tracking meta-data could be distributed across (and

abstractly charged to) different parts of the heap, using the direction of the

tracked references (from the relative viewpoint of the region associated with

the meta-data) as a convenient mnemonic. A “points-out-of” structure is the

natural generalization of a standard generational remembered-set represen-

tation, but a “points-into” structure can represent a more focused view for

the collector.

Lest the picture appear overly rosy for “points-into,” section 3.3.3 dis-

cusses the main drawback to a points-into structure.

3.3.2 Imprecision

The previous section defined a directional mnemonic, “points-out-of” and

“points-into,” describing one manner in which reference-tracking meta-data

could vary. Another important attribute of this meta-data is revealed by in-

vestigating an entirely different kind of direction: the direction of the impli-

cation in the regional remembered-set invariant. In particular, the invariant

describes a unidirectional implication, not a bidirectional one. This detail is

exactly what allows for the reference tracking performed by a remembered-

set structure to be imprecise.
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Figure 3.4: Less precise “points-out-of” structure
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Figure 3.5: A maximally precise “points-out-of” structure

The converse of the invariant’s implication is “if object B is tracked, then

(1) there exist live objects A and B in distinct regions and (2) B has a

reference to A.” This statement can be violated in two interesting ways: a

live object B can be tracked, but have no reference to an object in a distinct

region, or B itself can be dead. Each of these two situations is a separate

source of imprecision in a collector’s reference tracking structure.

The first kind of imprecision is illustrated in figure 3.4; the object b has no

references to any objects in other regions, yet is included in the remembered

set. This sort of imprecision can arise when the mutator changes the object

graph structure. The illustrated configuration could arise if b in the past had

referred to some object in a distinct region (e.g. i), but the mutator replaced

the reference to that object in b with another value.
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The second kind of imprecision has already been implicitly illustrated:

the remembered set in figure 3.2 is not minimal, because it contains the

object c which is not reachable via any path from the roots. A minimal (and

thus maximally precise) remembered set for the same heap is illustrated in

figure 3.5.

Allowing imprecision in collector meta-data structures is important be-

cause it is too expensive to maintain maximal precision at all times. Consider

the maximally precise remembered set in figure 3.5: A single modification

by the mutator may require significant meta-data revision to recover maxi-

mal precision. For example, if the mutator were to change the object a to

refer to b instead of i, then recovering maximal precision would obviously

require removing a from the remembered set, since a no longer holds region-

crossing references (though determining that might be expensive). It would

also require removing the objects i and x, as the modification makes them

unreachable. Correctly determining that all three must be removed and also

performing the removal would be complicated and add too much overhead

to the mutator’s actions.

A “points-into” structure similarly requires some degree of imprecision.

But this leads to a crucial problem with adopting a “points-into” structure,

discussed in the next section.

3.3.3 Imprecision hinders bounding space for “points-into”

Since imprecision allows extra entries to appear in the reference tracking

structure (be it “points-out-of” or “points-into”) an obvious question arises:

how much space could the extra entries occupy? Could the garbage collec-

tion meta-data violate the asymptotic space-efficiency bound?

For “points-out-of,” there is a clear way to bound the space: since each

object appears at most once in the remembered set, its structure cannot grow

larger than the heap itself. Equivalently, each remembered-set cloud sitting
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Figure 3.6: Quadratic space blowup of näıve “points-into”

above the regions in Figures 3.2, 3.4 and 3.5 can grow no larger than the

region it is associated with.

Unfortunately, for “points-into,” there is no similar linear structural bound

on its size, because each object can appear multiple times in the entire struc-

ture, as illustrated by the two occurrences of c in figure 3.3. There is only

a quadratic structural bound on the size of a “points-into” structure; if pre-

cision is not otherwise bounded, then a worst-case mutator will cause every

region’s associated set to contain every object in every other region, as illus-

trated in figure 3.6.

The two kinds of imprecision described in section 3.3.2 make the “points-

into” structure less attractive. There is a third important kind of precision

distinct from these two: the granularity of the reference tracking structure.

This is the topic of the next section.

3.3.4 Granularity: objects versus locations

An implicit assumption in the presentation so far is that the collector meta-

data accumulates objects, without tracking which slot within each object

holds (or held) a region-crossing reference. When the collector attempts to

utilize such a meta-data structure, it will need to scan each object to find all
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region-crossing references it holds.

An alternative to working at the granularity of whole objects is to work at

the granularity of individual locations of slots within the objects: a location-

tracking rather than object-tracking structure. A location-tracking structure

obeys the invariant that if slot i in live object B has a reference to object

A in a different region, then the structure holds the location of B[i] (in

the notation of the C programming language, &B[i], assuming the slot is

located i words from the start of the object). Note that one object with

multiple region-crossing fields will yield multiple entries in such a structure;

thus there is a potential increase in meta-data space usage.

If a large object has few region-crossing references, focusing the collec-

tor’s attention on particular slots within the object is cheaper than scanning

the object in its entirety.

If most objects are small then tracking individual locations within the ob-

ject may increase memory usage, as each object may contribute multiple en-

tries to the meta-data structure, but saves little time. That is a bad tradeoff.

One way to counter this problem is to track locations at a coarser grain than

individual slots: when a location l needs to be tracked, a number of other

locations near l in memory are also tracked in the meta-data structure. A

standard way to achieve this is to store only the most significant bits of the

word representing l; if several nearby locations need to be tracked, only one

entry is added to the structure. Then, when the collector traverses the en-

tries in the structure, it walks through all of the locations whose high-order

bits match each entry. Such coarse-grained location-tracking structures are

often called card tables [29] in the garbage collection literature. I add the

qualification that such structures are coarse-grained card tables, to make it

clear that the cards are introducing a kind of imprecision. One might imag-

ine a similar bitmap structure that did not coalesce as many locations into

one entry; such a structure could then be called a fine-grained card table.

Comparing coarse-grained and fine-grained card tables provides a clear



3.3. TRACKING REGION CROSSINGS: THE DESIGN SPACE 23

example of adjusting precision in order to trade time spent scanning for

space (and, potentially, time) gained from a more compact imprecise rep-

resentation. Card tables also illustrate that the choice of whether to track

locations or objects is orthogonal to the level of precision sought.

3.3.5 Understanding the design space

I have presented three different design axes for a heap-partitioning garbage

collector’s meta-data structure: (1) “points-out-of” versus “points-into,”

(2) whether entries correspond to whole objects or to (sets of) locations,

and (3) the degree of precision.

A typical remembered set that builds a hashtable of objects is a relatively

precise points-out-of object-tracking structure. A card table is a relatively im-

precise points-out-of location-tracking structure. The atypical remembered

sets of Sun’s garbage-first collector [18] are imprecise points-into location-

tracking structures; points-into structures have other precedents as well, dis-

cussed in section 10.2.

I emphatically do not claim that these three options are the only axes on

which a collector’s meta-data structure may vary; instead, I present these

axes because they represent three important technological differences be-

tween a typical generational collector and a regional collector.

To my knowledge, the structural distinction between “points-out-of” and

“points-into” has not been previously explored in the manner above. This

oversight can be explained by observing that the distinction is more signif-

icant for a system maintaining the regional remembered-set invariant than

for a system maintaining the generational invariant. Figure 3.7 illustrates

this with a generational heap partitioning, where the upper generations in

the diagram are younger than the ones below. The diagram shows a “points-

out-of” structure for the heap via the cloud shapes on the left, and a “points-

into” structure via the triangles on the right.1 A generational collector works
1 This is not the only “points-into” structure imaginable; for example an alternative
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Figure 3.7: Generational “points-out-of” vs. “points-into”

by selecting a prefix of the generations and using the meta-data structure

as a source for additional roots to scan. A collection of the top two genera-

tions in a points-out-of system would require scavenging the cloud structures

of the bottom two generations; the same collection in a points-into system

would require scavenging the triangle structures of the top two generations.

A näıve inspection of the situation might lead one to think that the

“points-into” structure on the left is a mild reorganization of the “points-

out-of” structure on the right. However, each setup will require different

amounts of scavenging effort, and an imprecise “points-into” structure does

not have a linear structural bound on its space-usage, as discussed in sec-

tion 3.3.3.

3.3.6 Popular objects: another blight for points-into

There is no bound on the number of incoming references that any particular

object (or set of objects) may have. In particular, a single object may be

referenced by a significant proportion of the heap. This is not a hypothetical

problem; many applications have some central data structure or a collection

structure could, for each generation G, track the objects with references into G and also

objects with references into any generation younger than G.
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of interned objects that many other objects refer to. This is known as the

“popular object problem” [18] in the GC community.

The presence of popular objects means that even with a 100% precise

points-into meta-data structure, one would generally not be able to migrate

all objects out of an arbitrary region within a bounded pause time. If the

region contains a popular object, it will take time proportional to the size of

the heap to process the region’s points-into structure and update all of the

references to the migrated popular object. The problem also generalizes to

the case when a single region holds a set of semi-popular objects; to handle

the worst case, one must address both situations.

Typical incremental collectors handle this by allowing both the popular

object and a copy of it to persist simultaneously while the mutator runs.

Then the work of updating all of the references to a popular object can be

broken up into smaller units, at the cost of introducing overhead in space

(the two versions of the object) and in time (the mutator must cooperate

with the collector’s concurrent copying). We suggest a significantly different

approach, discussed in the next section.

3.4 Bounding collection pause times: insights

Section 3.1 established that when copying one region independently from

the others, the interesting question is how to identify (and update all refer-

ences to) the live objects in the region. Section 3.2 showed that a “points-

out-of” remembered set will not provide guaranteed bounds on pause time.

Sections 3.3.3 and 3.3.6 indicated that a “points-into” structure does not

provide an immediate bound either, because of problems introduced by im-

precision and popularity.
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3.4.1 The popularity insight

Popularity comes from the structure of the heap itself: words within the heap

are what contribute to the popularity of any particular region. Some number

of regions may be so popular that they would have a points-into structure of

size proportional to the heap, but most regions cannot be so popular at any

particular instant. This is related to the observation that it is impossible for

all regions to be more popular than average.

Section 5.4 presents a generalization of both of these observations for-

mally. The upshot of this insight: The phenomenon of popular objects does

not invalidate use of a points-into structure; it simply necessitates a bit more

care for how such structure is used.

3.4.2 The imprecision insight

Imprecision can be tackled by taking a different view on maintenance of

meta-data. Imprecision arises because the meta-data structure is not con-

structed solely from information garnered from the heap at one instant in

time, but rather from smearing together a series of heaps, where mutator

activity is introducing the gradual changes in the elements of the series. If

one attempts to maintain an imprecise structure for too long, such smearing

could make the structure take the useless form depicted in figure 3.6.

Bounding the degree of introduced imprecision is necessary for a points-

into structure to work in general. The main approach I employ for bounding

imprecision of a points-into structure is on-demand construction, discussed

in the next chapter.



Chapter 4

Abstract structure of regional

collection

The control structure of the regional memory management scheme is di-

vided into four main components: the mutator coroutine, the forwarder,

the marker, and the summarizer; the latter three components constitute

the coroutines of the collector. The division into two mutator and collec-

tor coroutines is a standard design for garbage collected languages. The

regional collector coroutine structure is a slight refinement.

The summarizer and marker coroutines both bound imprecision in the re-

gional collector. The summarizer provides on-demand construction of points-

into summary sets: rather than maintain meta-data for the whole heap dur-

ing the entire application run, the regional collector incrementally constructs

the points-into structure of a region scheduled for future collection. After the

collector processes the region, region’s points-into summary set is discarded.

Section 4.2 further describes the summarizer component.

The marker coroutine provides snapshot-based refinement of the collec-

tor’s meta-data. It incrementally traces a snapshot of the heap as the muta-

tor and forwarder each progress on their own. After the marker completes

its construction of the snapshot, the collector uses the snapshot to refine the

27
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meta-data, regaining precision lost due to mutator actions. Refinement of

the meta-data ensures that the presence of unprocessed regions and cyclic

garbage do not lead to violation of the system’s bounds on overall memory

usage.

The intention of this component structure is to assign the bulk of the col-

lection work (in the common case) to the forwarder, which copies objects

and reclaims the newly unoccupied areas the objects came from. The ad-

dition of the marker ensures that the system satisfies its space bounds; the

summarizer its pause-time bounds.

This chapter motivates the above decomposition by presenting a high-

level overview of these components: what purpose they serve, why each is

necessary, and how they interact. Descriptions of some system-wide invari-

ants are included when they would be illuminating.

4.1 The summarization solution

As stated earlier, a “points-out-of” remembered set may grow proportionally

with the heap. Therefore it is not generally acceptable to scan an entire

“points-out-of” remembered set during a collection pause.

However, much of a “points-out-of” remembered set structure may not

be relevant to the collection of a particular region.1 Therefore, rather than

waiting until a region is actually collected to scan the remembered set for in-

coming references, the regional collector periodically starts a summarization

routine (or summarizer) for a subset of the regions. The summarizer incre-

mentally scans the remembered set and builds up “points-into” summaries

for each selected region, where a summary is the collection of locations rel-

evant to collecting that region.

1Moreover, the collector ensures that there always exist regions for which not too much

of the remembered set structure is relevant; see section 5.4.
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Only regions with fully constructed summaries are eligible for collection.

Furthermore, if a region’s summary becomes too large, the region is removed

from the set of candidates for collection. Thus, instead of requiring a scan

of the entire remembered set during a collection pause, the collector need

only focus its attention on the summary for the collected region. Since the

summary for every collection candidate is bounded in size, the time spent

scanning the summary is likewise bounded; we can find all of the pointers

into a collected region within the pause time bounds.

Since the collector uses a region’s summary to find references into the

region, each summary must contain a superset of the locations pointing into

its region; otherwise live objects within the region could be overlooked and

erroneously reclaimed during collection. Therefore the regional collector

must maintain a summarization invariant:

Summarization Invariant:

If live objects A and B belong to distinct regions, B has a slot f where

B[f ] holds a reference to A, and A resides in a region considered

eligible for collection, then the address of B[f ] is in the summary for

A’s region.

Summary construction and maintenance is complex. To my knowledge

it is a novel aspect of this work (though others have made similar construc-

tions).

4.2 Revising the reference-tracking structure

Chapter 3 presented both “points-out-of” and “points-into” reference-track-

ing meta-data structures. A typical remembered set is “points-out-of.” If

the volume of object locations held in a remembered set were small rel-

ative to the size of a collected region, then scanning the remembered set

for additional references would not add significant overhead to the cost of

collecting the region (assuming the remembered set does not use a coarse-
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grained card table as described in section 3.3.4). But there is no guarantee

that the “points-out-of” remembered set will be relatively small, as discussed

in section 3.2.

4.2.1 Summaries are constructed on-demand

A “points-into” design may have more promise, as noted in section 3.4. A

potential objection to it is: If one were to maintain such structures for all of

the heap at once, even with 100% precision, then the “points-into” structure

associated with each region could get quite large, and the sum of the space

occupied by all such structures could be prohibitively large.

However, there is no requirement that such structures be maintained

for all of the heap at once. That is the crucial counter to the objection:

instead of maintaining “points-into” structures universally, one can instead

construct such structures for a proper subset of the regions, and perform their

construction on an on-demand basis. I refer to the “points-into” structures

so built as points-into summary sets (or simply summaries when clear from

context).

4.2.2 Summaries are imprecise, but not too imprecise

A second objection is that maintaining “points-into” summary sets at 100%

precision, even for a subset of the regions, is too expensive. I deal with

this problem by allowing the points-into summary sets to be imprecise, but

bounding the amount of imprecision that can be introduced. (This sounds

straight forward, but getting the details right requires careful analysis; see

chapters 5 and 6.)
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4.2.3 Summaries are waved off before getting too large

A third potential objection is that the number of references into any one

region is limited only by the size of the heap; thus a complete points-into

structure for such a popular region would still require time proportional to

the heap to process.

Section 3.4.1 hinted at a simple solution to this third problem: this popu-

larity scenario cannot be the case for all of the regions. So if a region’s com-

plete summary would be too large to process in our time bound, the runtime

waves off (abandons) collection of the region this time around. Since the re-

gion is no longer scheduled for collection, one need not bother completing

the construction of its summary either.

Waving off a popular region requires choosing another region to collect;

therefore, one generally needs to construct multiple summary sets at once,

because it will not suffice to build just one. This illustrates that it would be

a misnomer to describe “points-into” summary-set construction as a “just-in-

time” process; one will need to construct multiple summaries at once, but

spread out the consumption of the summaries over several collections. We

shall see that only a bounded number of regions can be waved off, and that

there are always summarized regions eligible for collection.

4.2.4 Summary sets hold locations, not objects

Section 3.3.4 discussed how a reference tracking structure could track lo-

cations within objects, rather than whole objects. The regional collector’s

points-into summary sets track individual locations, not objects. If the summ-

ary-set structure were to track whole objects, then the number of entries in

a particular summary set would not correspond to a precise measure of the

number of words that point into the region, yielding two distinct problems

described in the remainder of this section.
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Suppose that the summary-set structure tracked whole objects. Thus the

entries in the summary set for region r are (some superset of) the addresses

of every object outside of r that has a reference to an object within r. Let

sr be the number of entries in such a summary set for region r; thus when

a collection of r occurs, the collector will iterate over the sr entries, and for

each entry e, scan all of the slots in the object represented by e, searching

for references pointing to objects in r that must be updated.

This means that sr is not a terribly useful bound on pause time, because

each entry has a non-constant amount of scanning time associated with it.

That is the first problem.

The second problem with tracking objects is that the argument alluded

to in section 3.4.1 (and to be formally shown in section 5.4) requires that

locations in the summary sets be properly accounted for. If the summary sets

tracked objects, then a single entry in a summary set could represent one

slot from the corresponding object x, or all of the slots of x. The collector

would be forced to make conservative estimates of how popular a region

was becoming, and so the popularity lemmas 4 and 7 (introduced later in

section 5.4) would not hold.2

When tracking locations instead of objects, the number of entries in a

summary directly corresponds to the amount of work necessary during a

collection, and each slot in an object contributes to at most one entry in a

summary.3 So by tracking locations instead of objects, both of the problems

from above go away.

Proper accounting requires tracking locations, not objects.

2In a simplified domain where the number of slots per object is significantly limited

(e.g., where all objects are pairs), the object versus location distinction is mostly a distrac-

tion. When one object can hold thousands of slots, the distinction is important.
3The “one slot : one entry” correspondence glosses over issues introduced by impreci-

sion due to mutator activity; these issues are addressed by lemma 7 in section 5.4.
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4.3 On-demand summary set construction

As control transfers between the mutator and the forwarder, the summarizer

is responsible for preparing future regions for collection.

4.3.1 Incremental summary construction

In general, building the summary set for any one region r will require search-

ing the whole heap for locations of references to objects in r; this means that

constructing any complete summary set will generally require time propor-

tional to the size of the heap.

In general, the time between collections will not be proportional to the

size of the heap; thus the summarizer will not have time between two col-

lections to build a complete summary set.

The solution to this problem is to design the summarizer as an incre-

mental algorithm: it starts working alongside the mutator, but may be inter-

rupted when the mutator transfers control to the forwarder. The summarizer

and forwarder must cooperate to ensure that any intermediate state of the

summarizer is properly maintained by the forwarder.

In addition, the summarizer and the mutator must cooperate to guar-

antee the end summarization state will reflects changes introduced by the

mutator; such cooperation is implemented via the mutator’s write barrier.

4.3.2 Multiple-summary construction

Each collection will consume the summary associated with the collected re-

gion; that is, it will discard the summary after all of the objects in the col-

lected region have been forwarded to other regions. Therefore, at a mini-

mum the regional collector will consume one summary for every collected

region.



34 CHAPTER 4. ABSTRACT STRUCTURE OF REGIONAL COLLECTION

As mentioned in the previous section, constructing any one summary

generally requires work proportional to the size of the heap. If the summa-

rizer were to focus on building only one summary set at a time, the rate

of production could not always keep up with this lower bound on the rate

of summary consumption. Therefore, the summarizer must build multiple

summaries at once. The effort of scanning the heap can then be amortized

across all of the constructed summaries.

4.3.3 Searching for region crossings

The goal of the summarizer is to establish the summarization invariant (page

29) for a suitable set of regions. One can imagine many potential techniques

for constructing summary sets, especially since imprecision is allowed.

For example, one could incrementally trace the object graph (starting

from the roots) and record all of the locations with region-crossing refer-

ences that point into the regions being summarized. Alternatively, one could

maintain a “points-out-of” remembered set and use that to guide the summa-

rizer’s scanning of the heap, narrowing its focus on the objects that contain

region-crossing references. A third alternative is to gather region-crossing

references via a linear traversal of the heap’s address space, given suitable

assumptions. 4

The third approach will generally produce less precise summaries and

will often scan more locations than the first and second, which may seem

like two strikes against it. However, for our proofs we are only concerned

with simple models and worst-case scenarios. Summarization overhead is

maximal when the whole heap is filled with live objects that have as many

4In particular, if (1) the object layout is formatted so that references to other objects

can be differentiated from raw bytes during a such a traversal and (2) there are means of

filtering out objects identified as unreachable in the past (e.g., a mark bit or type-tag tricks)

then a direct scan of the heap can work.
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region-crossings as possible; in this worst-case scenario the three approaches

to summarization will not produce different results.

Therefore for now I describe summarization as an algorithm that works

via an incremental linear traversal of the heap address space. Chapter 7

describes the second strategy as an important refinement of the linear scan

algorithm. This refinement is crucial for the common case but has no effect

on the theoretical worst case; thus I omit it from discussion of the policies

and proofs.

4.4 The summarization algorithm

A summarization pass targeting a subset {r, . . .} of the regions is an incre-

mental traversal of the heap that attempts to construct summary sets for

{r, . . .}. As summarization progresses, control shifts between the mutator,

collector, and summarizer coroutines. Since the collector may be invoked

in the middle of a summarization pass and a region must be summarized to

be eligible for collection, at the start of a pass a collection of regions (dis-

tinct from {r, . . .}) must already have summaries available for consumption.

Thus, the on-going goal of summarization is to establish sufficiently many

summarized, collectible regions to allow the next wave of summarization.

4.4.1 Region categorization

Since the whole point of targeting regions for summarization is to make

them eligible for collection, it would not make sense to summarize empty

regions that contain no objects. A partially-filled region is also unlikely to

be worth the effort of summary construction if there exists a filled region to

target instead. Thus one can see a preliminary dynamic categorization of

regions into four groups:
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READY SUMMARIZING

FILLEDUNFILLED

R1

R2 R3 R4 S5 S6 S7 S8 S9

F10F11F12F13F14F15

U15

U16U1

summarize!

ready!

Figure 4.1: Preliminary region categorization

READY regions with complete constructed summaries and eligible for collec-

tion,

SUMMARIZING regions that are targets of the currently running summariza-

tion pass,

FILLED regions, recently filled with objects, that are eligible to be targets of

a summarization pass, and

UNFILLED regions, not yet filled with objects, that are targets for the collec-

tor’s object forwarding.

This preliminary categorization yields an immediate state transition dia-

gram (figure 4.1) illustrating how the regions change roles over time. The

thin arrow joining R1 to U1 represents the transition of a ready region when
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the collector forwards all of the objects out of R1 and subsequently recate-

gorizes the now empty region as UNFILLED. The thin arrow joining U15 to

F15 represents the transition of an unfilled region when the collector fills

it with newly-allocated and forwarded objects and subsequently recatego-

rizes the now full region as FILLED. The thick arrow from SUMMARIZING to

READY (but not connected to any region in particular) represents the recat-

egorization after a summarization pass targeting many regions, now with

completely constructed summary sets and eligible for collection. Likewise

the thick arrow from FILLED to SUMMARIZING represents the recategoriza-

tion of the newly targeted regions at the start of a summarization pass.

4.4.2 The POPULAR category

The previous preliminary categorization has omitted one crucial detail: a

region may be waved off from collection if its summary becomes too large

(section 4.2.3) to ensure that no one region requires an excessive amount

of collection effort. Supporting wave-off requires the introduction of a new

category:

POPULAR regions that, the last time they were selected for summarization,

were waved off before they could be collected.

The addition of the POPULAR category requires an extension to our state

transition diagram, shown in figure 4.2. Besides the addition of the new

category for POPULAR, figure 4.2 has three crucial features distinguishing it

from figure 4.1:

1. a thin arrow joins S8, a region in SUMMARIZING, to P8, a dotted space

in POPULAR, representing the potential wave-off of a region while it is

being summarized,

2. a thin arrow joins R2, a region in READY, to P2, a dotted space in

POPULAR, representing the potential wave-off of a region after it has
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READY SUMMARIZING

FILLEDUNFILLED POPULAR

R1

R2 R3 R4 S5 S6 S7 S8 S9

P2P8P10F11F12F13

U13

U14U1

summarize!

ready!

Figure 4.2: Region categorization with POPULAR

been completely summarized, and

3. the thick arrow joining FILLED to SUMMARIZING in figure 4.1 now has

an origin that spans both FILLED and POPULAR, representing the poten-

tial reselection of a popular region to be summarized again.

The first difference mentioned above is a direct consequence of adopting the

wave-off strategy. The second and third differences are more subtle; their

necessity is not immediately obvious.

Wave-off of a region with a completely constructed summary set is nec-

essary because mutator activity can make a region popular after it has been

summarized. It is not possible to ensure in general that every READY region
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is eventually collected without overly constraining the rate of mutator ac-

tivity. Instead, I allow (a bounded percentage of) READY regions to become

POPULAR; section 5.4.3 further discusses this issue.

Regions currently classified as POPULAR cannot generally remain uncol-

lected; that is, we cannot assume that such regions will remain POPULAR for

the remainder of the computation. Therefore POPULAR regions are gener-

ally candidates for summarization and subsequent collection. This detail is

one of several characteristics distinguishing this collector’s design from Sun’s

Garbage-First collector [18].5

4.4.3 High-level summarization algorithm

The preceding has provided a sketch of how on-demand summary set

construction proceeds. Figures 4.3 and 4.4 show pseudo-code for a single

summarization pass. The procedure SUMMARIZATIONPASS expects as param-

eters the current set of regions partitioning the heap and a number t count-

ing how many regions to use as goal targets for this summarization pass.

The value of t varies as a function of policy parameters and the number of

regions; I defer discussion of t’s definition to section 5.3.2.

SUMMARIZATIONPASS will spend most of its time in the nested loops in

lines 7–12; these loops are mostly a simple traversal of the heap accumulat-

ing locations into summary sets as appropriate. The main points of interest

are:

• Lines 1 and 8 of SUMMARIZATIONPASS keep track of which regions are

scheduled for future scanning during this pass; this allows the write

5 Section 7.3.1 introduces a stronger notion of popularity that would allow the system

to avoid reselection of absurdly popular regions, at least until it has evidence that they are

not likely to be waved off. In the general case, however, the collector cannot make such

determinations sufficiently far ahead of time, and must instead optimistically pass them

along to the summarizer.
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SUMMARIZATIONPASS(regions , t)

� shared global state: will -be-summ-scanned , class, summaries,

� last-completed -snapshot

1 will -be-summ-scanned ← regions

2 refine-basis ← last-completed -snapshot

3 targets ← choose t regions from FILLED and POPULAR

4 for r ∈ targets

5 do class [r]← SUMMARIZING

6 assert summaries [r] = ∅

7 for r ∈ regions

8 do will -be-summ-scanned ← will -be-summ-scanned \{r}

9 for x ∈ objects-in(r)

10 do if not-long-dead? (x, refine-basis) and has-slots?(x)

11 then SUMMARIZEOBJECT(x, r)

12 yield � allow control to shift to mutator

13 for r ∈ regions � shift successful targets to READY

14 do if class [r] = SUMMARIZING

15 then class [r]← READY

Figure 4.3: High-level code for summarization, part I

barrier to filter out cases that will be covered by the summarizer itself

(line 6 of WRITEBARRIER-SUMM), and

• Line 10 of SUMMARIZATIONPASS filters out summarization of objects

long known to be unreachable as well as objects known to contain no

reference-holding slots (such as bytevectors).

The not-long-dead? function referenced in line 10 of SUMMARIZATION-

PASS works by consulting a past snapshot of the state of the heap. Its speci-
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SUMMARIZEOBJECT(x, r)

� shared global state: class, summaries

1 assert rgnof(x) = r

2 for l ∈ slots(x)

3 do v ← MEM[l]

4 if v tagged as reference

5 then r′ ← rgnof(v)

6 if r′ 6= r and class [r′] = SUMMARIZING

7 then RECORDLOC(l, r′)

RECORDLOC(l, r′)

1 summaries [r′]← summaries [r′] ∪ {l}

2 if
∣∣summaries [r′]

∣∣ exceeds its wave-off limit

3 then summaries [r′]← ∅

4 class [r′]← POPULAR

Figure 4.4: High-level code for summarization, part II

fication is simply

not-long-dead?(x, M) = x ∈M.

Such snapshots are constructed by the marker, which is the topic of sec-

tion 4.5. Before the initial marker run, last-completed -snapshot can be a triv-

ial snapshot that classifies every object as live.

Figure 4.5 addresses the necessary cooperation between the summarizer

and the mutator. The write-barrier for the regional collector is presented in

increments; each piece of the write-barrier is presented with the component

it cooperates with. The notation used in the definition,

WRITEBARRIER-SUMM(x[i] := v),
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WRITEBARRIER-SUMM( x[i] := v )

� shared global state: will -be-summ-scanned , class

1 if v tagged as reference and x is not in nursery

2 then r ← rgnof(x)

3 r′ ← rgnof(v)

4 l← location of x[i]

5 if r 6= r′ and class [r′] = SUMMARIZING

6 and r 6∈ will -be-summ-scanned

7 then RECORDLOC(l, r′)

8 elseif r 6= r′ and class [r′] = READY

9 then RECORDLOC(l, r′)

Figure 4.5: High-level code for summarization portion of write-barrier

should be read as: “for every assignment statement of the form: x[i] := v,

schedule6 the following operations for eventual execution before the next

collection.”

4.5 Snapshot marking and refinement

The use of a reference-tracking structure such as a remembered set or points-

into summary sets introduces a pitfall that most every incremental or gener-

ational collector suffers from: floating garbage, or float.

6 This semantics of potentially delayed execution allows for the actual write-barrier of

the mutator to be implemented by adding an entry to a log and batching together many

invocations of RECORDLOC when the log is filled, rather than incurring the overhead of

directly piggy-backing RECORDLOC onto potentially every assignment operation.
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4.5.1 Imprecision implies floating garbage allowed

The implications in the remembered set and summarization invariants (pages

15 and 29) are unidirectional, capturing the meta-data’s role as an impre-

cise record of objects with region-crossing references, as discussed in sec-

tion 3.3.2.

In the particular case of floating garbage, the presence of b in the meta-

data does not imply that b represents a live object B with a reference to

an object A in another area of the heap, as the object B may no longer be

reachable from the mutator. However, determining whether B is reachable

requires processing the entire heap. Rather than incur that cost on every col-

lection, generational collectors conservatively assume that any object reach-

able from the generational remembered set is live. Thus some objects that

are not reachable from the mutator may still be copied during a collection;

those objects are the float. The same problem arises in the regional col-

lector: the summary sets may contain locations within objects that are no

longer reachable by the mutator.

4.5.2 Local collections do not suffice

In general, the forwarder can remove some imprecision from the meta-data.

In the regional collector, the summarizer process is imprecise and may add

entries to summary sets that eventually will be determined to be unreachable

by the forwarder. If the forwarder reclaims the heap storage of an object A

in the region ρ, the forwarder can also remove all locations associated with

A from all summary sets for both READY and SUMMARIZING regions. Re-

moving locations associated with an unreachable object makes the summary

sets more precise. However, such localized refinements of the summary sets

generally will not suffice for two reasons: cycles and wave-off. The first

is a problem common to many collectors, while the second is novel to the

regional collector.
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(roots) a b

ρ ρ′

b a

Figure 4.6: Floating garbage due to region-crossing cycles

A region-crossing cycle in the object graph, if left solely to the summa-

rizer and forwarder to handle, could remain uncollected forever after be-

coming unreachable, due to the same problem suffered by memory manage-

ment systems based on reference-counting.

As illustrated in figure 4.6, if objects A and B assigned to distinct regions

ρ and ρ′ mutually refer to each other, and if every time that ρ is collected

its objects are forwarded to a target region different from the target when

forwarding from ρ′, then the locations in B that refer to A would keep A

alive, and vice versa.

With luck, a single target region ρ′′ might remain unfilled long enough

that both objects A and B could end up co-located in ρ′′, in which case the

two objects would cease keeping each other afloat, but I do not assume such

a fortunate event. Instead I ensure that region-crossing cycles of unreach-

able objects will eventually be identified by the separate marker coroutine.

After the marker completes a snapshot of the heap in figure 4.6, B and A

will be absent from the snapshot and thus excluded from the summary sets

subsequently constructed. The objects A and B will be reclaimed when ρ

and ρ′ are next collected. Unreachable object cycles are the classic source of

floating garbage in the system necessitating the use of the marker.
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(roots)
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Figure 4.7: Floating garbage due to wave-off

The regional collector’s novel source of float is due to wave-off of pop-

ular regions. Section 4.2.3 introduced the regional collector’s solution to

the problem of popularity: waving off collection of regions whose complete

summary set would be too large to process during collection pause.

However, waving off whole regions (as opposed to isolating individual

popular objects and treating them specially, as Sun’s Garbage-First collector

[18] does) has a subtle consequence. Unreachable objects within a waved-

off region may have references to other unreachable objects residing in re-

gions that are eligible for collection. A näıve summarization that scanned

the heap without ever filtering out unreachable objects would continually

misclassify all references coming out of waved-off regions as live, and build

summaries that included such references.

Figure 4.7 illustrates this situation: The object a is live, resides in region

ρ, and popular enough that ρ will be waved off from collection. Thus the

unreachable object c that also resides in region ρ (but has a reference point-

ing into region ρ′) will not be collected. If no action is taken to counter this,

the summarization scan of ρ targeting ρ′ will include c, and thus the storage

of unreachable object b will not be reclaimed.

By a fortunate design coincidence, the same filtering of unreachable
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objects used to identify cyclic garbage can be used to identify waved-off

garbage. In this case, the point is not to reclaim the waved-off garbage itself

directly, but rather to ensure such garbage structure will stop being summa-

rized. Once waved-off garbage is filtered from summarization, unreachable

structure it refers to in other regions can be reclaimed properly.

In the particular case illustrated in figure 4.7, the refinement introduced

by the marker will ensure that c is marked as unreachable; thus c will be

excluded from the summarization scan targeting ρ′, and thus b will be re-

claimed when the region ρ′ is collected. Note that the storage of c itself may

remain uncollected indefinitely – as long as the object a is popular, the region

ρ will remain POPULAR, and the storage of c itself will not be reclaimed.7

4.5.3 Bounding floating garbage

If a memory management strategy is to be space-efficient, it cannot allow

float to accumulate without bound.

A typical generational collector bounds the amount of float by perform-

ing periodic collections of the whole heap. During these whole-heap collec-

tions, the collector does not consult the remembered set, but instead deter-

mines each object’s reachability in the object graph at the time of collection.

The regional collector never performs whole-heap collections. Instead it

bounds the amount of float by bounding the imprecision of the remembered

set, in the following manner. An incremental marking coroutine, initiated

periodically, constructs a snapshot of the object graph at a particular point in

time. Such construction is commonly known as a snapshot-at-the-beginning

algorithm [30]. When the snapshot has been completely constructed, all

objects are classified as either (1) unreachable or (2) reachable/unallocated

at the time the snapshot construction was initiated.

7One could further extend the design of the regional collector to enable c to be collected

and allow its storage within ρ to be reused. The point here is that it is possible to leave all

of ρ (including c) uncollected and still have a scalable collector.
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A snapshot, once completed, is used to refine the collector’s meta-data,

removing objects that have been proven to be unreachable at the time the

snapshot was initiated. This refinement makes the meta-data more precise

(though not maximally precise; just sufficiently precise to bound the amount

of floating garbage). Refinement is the primary purpose of the marker com-

ponent of the regional collector. (A secondary purpose of the marker is to

measure the amount of reachable storage at the time of the snapshot, which

affects heap-expansion policy; see section 5.3.3.) When refinement is com-

plete, the snapshot is discarded.

Incremental marking is certainly not a novel technology [5, 12, 2, 30,

11, 7, 24, 20]. However, it is important to point out that using the snapshot

as the basis for meta-data refinement differs from using the snapshot as the

basis for all collector actions. Conclusions about snapshot-at-the-beginning

from other contexts do not immediately apply to the regional collector’s use

of snapshots.

For example, consider the following statement from a standard garbage-

collection textbook [22]:

Snapshot-at-the-beginning algorithms are very conservative.

No objects that become garbage in one garbage collection cycle

can be reclaimed in that cycle: they must all wait until the next.

Consequently, new objects acquired during a marking phase are

effectively allocated black8 even though the chance of a young

object dying within a single cycle is high.

It is true that newly allocated objects are marked as live (or, more prop-

erly, “unallocated at time of snapshot”) within a snapshot; however, in the

regional collector this does not immediately imply that such objects are un-

reclaimable. Whether an object can be reclaimed in the regional collector

is not solely tied to its state in the mark snapshot, but is rather dependent

8 The term “allocated black” is jargon meaning that such objects are unreclaimable.
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Figure 4.8: Snapshots dictate refinement, not reclamation

upon the snapshot, the partitioning of the object graph into regions, and the

order that regions are considered for collection.

Figure 4.8 illustrates an instance of this phenomenon by showing a series

of heap configurations as the mutator and collector each progress. In the

figure, time progresses from left to right and then from top to bottom.

The initial configuration on the top left of the diagram has a garbage

cycle formed by objects labeled a and b. For the example, assume that a

snapshot is initiated at this initial configuration.

As the snapshot progresses, the mutator is allowed to make progress, so

it might allocate the objects labeled d and e, as depicted in the top mid-

dle configuration. Since they were unallocated at the time of the snapshot,

they are marked as live in the snapshot when they are promoted out of the

mutator’s nursery into the main heap area.
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Assuming that d and e subsequently become unreachable, they will re-

main part of the snapshot. This demonstrates the above quoted objection

to snapshot-at-the-beginning algorithms: these two unreachable objects are

considered live in the snapshot. The lower-middle configuration depicts this:

the objects a and b were dead at the time of the snapshot, and so are skipped

during subsequent summarization scans; but d and e are live and thus in-

cluded in the scan.

Finally, the transition between the lower-middle and lower-right config-

urations shows how the regional collector can be more aggressive than a

usual snapshot-at-the-beginning algorithm: the evacuation of region R1 is

able to reclaim the storage associated with d, because there are no refer-

ences to d that were included in the summarization scan. The object e does

not belong to R1 and so it would not be reclaimed during the collection of

R1, but a subsequent collection of R2 would allow e to be reclaimed.

Note that the snapshot process did lead to the construction of an impre-

cise summary targeting region R2; while the object e is obviously reclaimable

in the final lower-right configuration of figure 4.8, that is a consequence of

the forwarder making the summary for R2 more precise as it collects R1, in

the manner described in section 4.5.2. If the forwarder were to select R2

for collection before R1 (as it well might), then it would conclude from d’s

presence in R2’s summary set that the object e must be copied; the object e

would be floating garbage, and would remain ineligible for collection until

after the next snapshot construction or after R1 is itself collected (whichever

comes first).

4.5.4 High-level marking algorithm

Figure 4.9 describes how the incremental marking algorithm constructs

a snapshot of the heap. This routine can only be initiated immediately af-

ter the end of a nursery evacuation. Nursery evacuations occur during both
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MARKERBUILDSNAPSHOT(regions)

� shared global state: Kr (for r ∈ regions), K, T ,

� last-completed -snapshot

1 for r ∈ regions

2 do Kr ← [ ] � Kr is stack of references to objects in r

3 K ← [ ] � K is stack of references to stacks above

4 T ← ∅ � T is snapshot state, a set of references

5 for x ∈ ROOTREGISTERS

6 do v ← REG[x]

7 MARKERTRACEVALUE(v)

8 while K 6= [ ]

9 do x← pop(pop(K))

10 for l ∈ slots(x)

11 do v ← MEM[l]

12 MARKERTRACEVALUE(v)

13 yield � allow control to shift to mutator

� Trace completed; hand off snapshot as new basis for refinement.

14 last-completed -snapshot ← T

MARKERTRACEVALUE(v)

1 if isptr(v) and has-slots?(v) and v 6∈ T

2 then r ← rgnof(v)

3 T ← T ∪ {v}

4 Kr ← push(v, Kr)

5 K ← push(Kr, K)

Figure 4.9: High-level code for snapshot marker



4.5. SNAPSHOT MARKING AND REFINEMENT 51

MARKERWRITEBARRIER( x[i] := v )

1 if x is not in nursery

2 then u← x[i] � snapshot-at-beginning: save old value!

3 MARKERTRACEVALUE(u)

Figure 4.10: High-level code for snapshot marker portion of write-barrier

minor and major collections, so this is really just a matter of making the

collector responsible for atomically initiating MARKERBUILDSNAPSHOT. This

constraint is necessary to ensure the invariant that the snapshot state never

includes objects that are currently in the nursery. This allows for an opti-

mization of the mutator write-barrier, presented in figure 4.10.

The code for MARKERBUILDSNAPSHOT is mostly a standard marking al-

gorithm to build up the globally shared snapshot state T . Tracing each object

(MARKERTRACEVALUE) first checks if the object is already marked (in which

case it is skipped), and otherwise marks and then pushes it onto the marking

frontier of the graph traversal, scheduling the object for future processing by

the marker.

One important point is that this frontier is represented as a stack-of-

stacks K, rather than a single stack of object references. A single stack would

not suffice, because the incremental marking algorithm must periodically

yield to the mutator and collector, and the collector may forward objects

before the snapshot has been completely constructed. Forwarding objects

invalidates their old address on the mark frontier, so the mark frontier must

be updated in response to object forwarding after each collection of a region.

But in a pathological case, the mark frontier may contain every object on

the heap; if the frontier were represented as a single stack of references,

processing the entire stack would take too long to fit in a pause proportional

to the fixed region size.
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Instead of representing the mark frontier as a single stack of object ref-

erences, the elements of K are references to stacks of object references Kr,

where Kr is is a stack that solely holds references to objects in the region r.

When the region r is collected, the frontier substructure Kr can be updated

on its own, independently of the other stacks Ki on the mark frontier.

4.6 High-level forwarding algorithm

The remaining component of the regional collector is the copying collec-

tor itself, described in figures 4.11 and 4.12. The pseudo-code makes some

assumptions about object representation; for example, all objects occupy at

least two words, providing space to install forwarding pointers.

The most important modifications to the standard Cheney algorithm [14]

are:

• only objects in the collected region rgn and the nursery are forwarded

(lines 6, 10, and 19 of CHENEYEVACUATERGN); this is a standard mod-

ification for generational collectors,

• the summary for rgn is included in the root set (line 8 of CHENEY-

EVACUATERGN); this is analogous to including the remembered set in

a generational collector, also a standard modification,

• the current mark frontier is included in the root set (line 3 of CHENEY-

EVACUATERGN),

• the current mark snapshot T is updated as objects are forwarded (line 8

of FORWARDRGN),

• RECORDLOC (figure 4.4) is invoked so that the summary sets reflect

the changes to objects’ addresses as they are forwarded (line 18 of

CHENEYEVACUATERGN).
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CHENEYEVACUATERGN(to, rgn, S)

� shared global state: Kr (for r ∈ regions), T

1 scan ← to

2 next ← to

3 for l ∈ Krgn

4 do MEM[l] := FORWARDRGN(MEM[l], T )

5 for r ∈ ROOTREGISTERS

6 do if isptr(REG[r]) ∧ (rgnof(REG[r]) ∈ {rgn, nursery})

7 then REG[r] := FORWARDRGN(REG[r], T )

8 for l ∈ summaries [rgn]

9 do � l may no longer point into rgn

10 if isptr(MEM[l]) ∧ (rgnof(MEM[l]) ∈ {rgn, nursery})

11 then MEM[l] := FORWARDRGN(MEM[l], T )

12 while scan < next

13 do for l ∈ constituents(MEM[scan])

14 do v ← MEM[l]

15 if isptr(v)

16 then rgn ′ ← rgnof(v)

17 if class [rgn ′] = SUMMARIZING

18 then RECORDLOC(l, rgn ′)

19 if rgn ′ ∈ {rgn, nursery}

20 then MEM[l] := FORWARDRGN(v, T )

21 scan ← scan + objsize(MEM[scan])

22 for r ∈ regions � Real loop is more focused; see section 6.1.1.1.

23 do remove locations of rgn from summaries [r ].

Figure 4.11: High-level code for region-modified Cheney copying collector
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FORWARDRGN(l, T )

1 if MEM[l] = FORWARDED

2 then return MEM[l + 1]

3 else s← objsize(MEM[l])

4 t← next

5 for i← 0 to s

6 do MEM[t + i] := MEM[l + i]

7 if l ∈ T

8 then T ← T ∪ {t}

9 else assert t 6∈ T

10 next ← next + s

11 MEM[l] := FORWARDED

12 MEM[l + 1] := t

13 return t

Figure 4.12: High-level code for regionally-modified object forwarding rou-

tine

In addition, one change that is not described in the above pseudo-code

is that if an object at location l is forwarded to location t, and l is present in

the remembered set, then t must replace l in the remembered set, as the old

storage at l is about to be deallocated. This is a consequence of the regional

remembered-set invariant and it is not standard in all generational collec-

tors. Many generational collectors ensure that when an object is forwarded,

all objects that it references end up in the same generation or an older one;

in such systems, it suffices to just remove the old location l from the remem-

bered set. The new location t will not be in the remembered set (unless of

course the mutator introduces a new reference from the forwarded object to

some newly allocated younger object). This change is not included in the

above pseudo-code so that the reader will focus on the changes that are es-
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sential to regional collection, as opposed to an artifact of a heuristic measure

like the remembered set (further discussed in chapter 7).

The added invocations of RECORDLOC are an obviously necessary addi-

tion. It is also obvious that the snapshot state needs to be updated as objects

are forwarded, so that partially explains the changes to update the snapshot

state T and the inclusion of the mark frontier in the root set.

4.6.1 The mark stack must be a source of roots

However, one question remains: why not simply update the mark frontier,

and if an object on the frontier is not forwarded, then simply clear that entry

in the frontier in some manner (in essence, treating the mark stack as a set

of weak references). After all, the addition of the frontier to the root set may

well introduce floating garbage, which is undesirable. So why do we need

to adopt this harsh measure?

Figure 4.13 illustrates why the mark frontier must be included in the root

set. It presents a heap structure and an event sequence where, if the mark

frontier were a set of weak references, the system would become unsound.

The event sequence starts off with an chain of objects that crosses re-

gions, and then proceeds as follows:

1. The marker initiates construction of a new snapshot. The marker gets

as far as processing two of the involved objects (and scheduling a third

(y) for future processing) before it yields to the mutator.

2. The mutator performs two actions: it adds a new reference from one

of the marker-processed objects (a) to another object further along on

the chain (x). Since the system is using a snapshot-at-the-beginning

marker and the object a has already been processed, this reference

from a to x will not be traced by the marker; instead it relies on the

fact that x was reachable in the initial snapshot to ensure that x will

eventually be marked.
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a b y zx m

Rem.Set: { x }

Snapshot: { }

Frontier: { }

(marker initiates snapshot)

a b y zx m

Rem.Set: { x }

Snapshot: { a, z }

Frontier: { y }

(mutator introduces a to x reference)

a b y zx m

Rem.Set: { x }

Snapshot: { a, z }

Frontier: { y }

(mutator deletes y to m reference, making m unreachable)

a b y zx m

Rem.Set: { x }

Snapshot: { a, z }

Frontier: { y, m }

(collector collects region 2, reclaiming weakly-held m)

a b y zx

Rem.Set: { x }

Snapshot: { a, z }

Frontier: { y }

(marker finishes work; snapshot is “complete”)

a b y zx

Rem.Set: { x }

Snapshot: { a, z }

Frontier: { }

(refinement of the remembered set; reference to b is lost!)

a b y zx

Rem.Set: { }

Snapshot: { a, z }

Frontier: { }

Figure 4.13: Event sequence illustrating why mark stack must be in root set
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3. Then the mutator breaks the link from y to m; note that the only ref-

erence to x present in the original snapshot was the link from m to x.

Since this is a snapshot-at-the-beginning marker, the object m is added

to the mark frontier, in order to ensure that the link from m to x is

eventually processed.

4. Now the mutator yields to the collector, which happens to choose to

evacuate the second region. This is where things go wrong. Since we

are choosing to use the semantics where objects on the mark frontier

are considered weakly referenced, the object m is reclaimed, and re-

moved from the frontier structure. This removes the final arc to the

object x, so it will never be marked.

5. The collector yields to the marker, which eventually completes its snap-

shot.

6. The summarizer sees that x is unmarked in the snapshot, and removes

x from the remembered set. At this point, the heap structure violates

the regional remembered set invariant; the object b may be incorrectly

reclaimed as unreachable storage.

This counter-example illustrates why it is unsound to treat the mark fron-

tier merely as a set of weak references to heap objects; it must be considered

part of the root set. Note, however, that the mark snapshot is not part of the

root set, as discussed in section 4.5.3.





Chapter 5

Regional collection policies

The three memory-management components in the regional collector are all

coroutines that interoperate with the mutator. A crucial requirement of a

scalable system is that if the operation of the whole system is observed for

a reasonable1 length of time, the mutator will make a reasonable amount of

progress in that time. It would be unacceptable for a single component to

hog the processor for an unbounded amount of time. It would also be unac-

ceptable for the processor to spend its time solely shifting control between

memory-management components and never give the mutator a reasonably

sized timeslice.

This chapter describes how the memory-management coroutines are bro-

ken down into incremental operations; it also describes how their operations

are scheduled. The scheduling is designed to ensure that, no matter what

actions the mutator takes or how large the volume of live storage is,

• every memory-management component finishes its work by an appro-

priate deadline,

1Where “reasonable” here means both “reasonably short” (from the viewpoint of the

client of the runtime), and “reasonably long” (from the viewpoint of the runtime imple-

mentor and provider). The client and provider must find a point where their different

interpretations intersect.

59
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• the space usage of the system never grows beyond a fixed multiple of

the live storage plus a constant, and

• for some window size, the minimum mutator utilization has a non-zero

lower bound.

5.1 Coroutine control shifts

The regional collector responds to two kinds of mutator actions: allocation

of objects in the heap (adding new nodes to the object-reference graph), and

imperative assignment to fields of live objects (changing the aforementioned

graph structure). Object allocation, as observed by the regional collector,

may take the form of promotions out of the nursery and into the larger heap;

this can be readily modeled as a series of allocations all batched together,

simplifying the abstract model.

Non-allocation and non-assignment actions of the mutator, such as arith-

metic operations or reads of fields in objects, are not monitored by the re-

gional collector.

Some of the collector’s operations (namely summarization and snapshot

construction) can be performed concurrently with the mutator (see Chap-

ter 8). As an alternative to concurrent execution, these same operations

can be serially interleaved with the actions of the mutator at a fine grain.

I model such activity as overhead added to the summed cost of all of the

actions performed by the mutator, avoiding the burden of specifying the

relatively uninteresting control transfers between the mutator and those

memory-management components.

It is relatively straight forward to break down these iterative tasks into in-

terruptible sequences of short atomic actions; therefore the important thing

is not how control transfer is initiated nor at what frequency, but rather what

schedule the components must adhere to in order to ensure that the system
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as a whole remains scalable.

5.1.1 Work-based scheduling and accounting

The collector’s actions are interleaved with those of the mutator. Any action

taken by the mutator that does not affect the collector, such as an arithmetic

computation, could be viewed as an extra opportunity for the collector to

focus on making forward progress (as opposed to merely catching up with

the mutator’s view of the heap structure). A truly optimal schedule would

distribute collection work evenly with respect to mutator activity of any kind,

including activity unrelated to the heap and object graph.

While the above observation matters when optimizing a collector for a

particular application, it is a distraction when confronting worst-case sce-

narios with no a priori knowledge of the mutator. A hypothetical worst-case

mutator spends all of its time attempting to foil the collector’s attempts to

maintain its space bounds and time schedule. Such a mutator will focus

solely on unpredictable actions that the collector cannot ignore; in the case

of a collector with a write-barrier but no read-barrier, this means allocations

and assignments. Such allocations and assignments are the mutator work

that the collector must respond to.

In the worst case, practically all mutator actions will be allocations and

assignments requiring a response from the collector. Any scheduling method

providing hard guarantees without a priori knowledge of the mutator will

yield the same result as some work-based schedule, because wall-clock time,

processor cycles, and other bases for scheduling all are converted into mu-

tator work when a demon holding an oracle controls the mutator. Therefore

we simplify our design effort and presentation by focusing on work-based

scheduling policies that guarantee collector scalability.
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5.1.2 Mutator and Collector Activity

The collector’s responses to mutator work take the form of

allocation satisfying mutator requests for memory by promoting objects out

of the mutator’s nursery into some unfilled region,

evacuation reclaiming unreachable space by copying reachable objects from

a filled READY region unto some unfilled region, updating fields so that

the object graph is preserved,

summarization preparing for a future collection of a region r by scanning

heap substructure, recording the fields of objects that hold references

pointing into r in an (uncompleted) summary for r,

marking preparing for a future refinement of collector meta-data by pro-

gressively tracing an old snapshot of the heap state, and

write barrier updating collector meta-data to reflect that an assignment

a[i] := b occurred.

The allocation and evacuation activities are collectively referred to as

“object migration” or simply “migration.” “Evacuation” is also referred to as

“copying collection” or simply “collection” when unambiguous.

5.2 Policies

There are three main policies for scheduling collection activity, each relating

to the three memory-management components:

• how often do regions need to be evacuated,

• how many summaries does a summarization pass attempt to construct

and at what rate does it proceed, and
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• how often must a new snapshot be constructed via tracing the heap

(and how much latency can there be from initiation of the snapshot to

the completion of its tracing).

All three policies refer to a notion of time (“how often,” “at what rate”)

but as explained in section 5.1.1, I focus on work-based scheduling. “Time”

is measured in units of mutator work: the number of allocations and the

number of assignments. With this notion of time, these three policies imply

a fourth policy: how many assignments can the mutator perform and how

much storage can it allocate before the collector will forcibly interrupt in

order to maintain its own schedule, and how long can such collector inter-

ruptions last. This fourth derivative policy is what determines the utilization

of the mutator.

The three policies are related in other ways beyond their shared connec-

tion to the mutator’s actions. For example, a region can be evacuated only

if it has a usable summary. This means that summarization must proceed

frequently enough to support the evacuation rate.

5.3 Policy parameters

The scheduling policies of the regional collector are defined in terms of ab-

stract numeric parameters. These parameters are not intended to be tailored

to particular mutators, but rather to particular runtime implementations of

the regional collector. For example, one implementation might employ a

heavily optimized summary set representation and could afford to construct

a relatively large collection of summaries simultaneously. I refer to these as

runtime-selected parameters, or just parameters. The parameters are mutu-

ally constrained; not all values for one parameter are necessarily compatible

with all possible values for the others.2

2Note that a parameter’s range may be constrained only by other parameters, not by dy-

namically derived variables; otherwise selecting an appropriate value would require a priori
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There are also variables that the policies refer to that are not under the

runtime’s control, but rather are derived from the dynamic state of the sys-

tem. I refer to these as dynamically derived variables, or just variables.

5.3.1 Global parameters and variables

The variable N denotes the number of word-sized locations allocated to hold

the heap (but not the collector meta-data). N is trivially bounded from

below by the current volume of live storage in the heap. The N words of the

heap are partitioned into disjoint regions. The parameter R is the maximum

size of any region, measured in words.

The particular number of bits per word is ignored by the policies; we

assume that it is some constant large enough to represent a single tagged

reference to some object on the heap.

I often refer to the current number of regions as N/R (which is a bit of a

pun on N and R, as the number of regions is more accurately described by

dN
R
e, the form I shall use when the difference matters in algebraic manipu-

lations).

5.3.2 Summarization parameters

There are four parameters governing the summarization routine: F1, F2, F3,

and S. The parameters S, F1 and F2 are reals greater than 1, and F3 is a

positive integer.

The three parameters F1, F2, and F3 control the pace of summarization.

The intuition behind the three parameters is roughly as follows: F1 con-

trols how many new summaries the system attempts to build on each scan

of the heap. F1 and F2 together control how many summaries need to be

completely constructed and kept up-to-date. Finally, F3 controls how many

knowledge.
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times the summarizer is allowed to start a fresh scan in order to reach the

required number of summaries.

The summarizing wave-off parameter, S, bounds summary set size. If

adding a new entry to a summary set for a SUMMARIZING region would cause

the set to exceed SR entries, the collector discards the summary set and

recategorizes its associated region as POPULAR.

A summarization pass of the regions {ri1 , . . . , rit} is a traversal of the heap

structure to construct summary sets for t target regions. On each summa-

rization pass, 1/F1 of the N/R regions are targeted for summarization; thus

t = dN/Re
F1

. A summarization cycle is a sequence of summarization passes,

where each pass targets a new set of regions. The cycle iteratively performs

new passes until 1/(F1F2) of the N/R regions have usable summaries. The

scheduling policy is responsible for ensuring that every summarization cycle

requires at most F3 summarization passes. (Note that the expectation is that

most summarization cycles will require only one pass.)

Not every combination of Fi and S is valid; Sections 5.4.2 and 5.4.3

formally describes the constraints on their configuration.

The parameter configurations that perform best tend to be those that ap-

proach the limits of the constraints, coming as close as possible to violating

the mathematical inequalities of Sections 5.4.2 and 5.4.3 without crossing

over the line.

The proofs in this chapter involve formulas that can be used to derive

the worst-case bounds on pause time, space usage, and minimum mutator

activity, at least in the abstract: that is, up to constants of proportionality

that are mainly determined by the hardware. For example, if one sets 1/F1

to a small fraction like 1/100 (perhaps in an attempt to reduce memory

usage by lowering the number of summaries that are constructed at a time),

then intuitively each summarization will scan all of the regions in order to

prepare at most one percent of the regions for collection, which is a poor

space/time trade-off.
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We used those formulas to find candidate configurations and found three

that perform reasonably well. These three parameter configurations are de-

scribed in Section 9.2.

5.3.3 Collection parameters

The parameters Lhard and Lsoft , where Lhard ≥ Lsoft > 1, are the absolute and

desired inverse load factors, respectively. The collection policies are obligated

to ensure that N never grows beyond the product of Lhard and the volume

of live storage. The second parameter, Lsoft , describes a soft target that the

runtime may violate (but attempts to satisfy).

The ready wave-off parameter S ′ ≥ S bounds how large the summary

set for a READY region is allowed to grow. The parameter S ′ is similar to

S: a READY region will be reclassified as POPULAR if mutator activity would

cause its summary to exceed S ′R words. The (potentially) higher value of S ′

reflects that a fully constructed summary set is the result of significant sum-

marization effort and it may warrant a higher threshold before abandoning

collection of its corresponding region.

The runtime-selected parameter c controls the amount of mutator activ-

ity allowed by the collector relative to the current heap size; it is further

discussed in sections 5.4.2.

5.3.4 Snapshot parameters

The main parameter for the marker is the rate at which it should trace the

heap relative to the degree of mutator activity.

For these proofs, I assume that the rate of tracing matches the rate of

allocation. A less aggressive rate will suffice in some cases, but in general a

worst-case mutator will force the rates to match.

Now I derive properties of the regional collector, as functions of the

runtime-selected parameters and dynamically derived variables defined above.
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5.4 Popularity

The evacuation of any region r requires the construction of a summary set

holding all locations that refer to objects in r. If such a set would be too

large to process within the fixed pause time bound of the regional collector,

then r is considered too popular to evacuate.

For such a strategy to make any progress at all, one must ensure a num-

ber of properties. Most obviously, it would be disastrous if the system could

reach a state where every region were considered popular; choosing an ap-

propriate value for S avoids this. Second, one must ensure that the summa-

rizer will supply sufficiently many READY regions. Third, one must ensure

that the mutator will not be able to invalidate the forwarder’s schedule for

reclaiming space from the READY regions!

Suitable policies described in this section ensure that all of the compo-

nents can progress; these policies have associated formulae that capture the

trade-offs involved between pause times, space usage, and mutator utiliza-

tion.

5.4.1 Limiting popularity

I start off by deriving some simple results for the heap structure at any par-

ticular instant in time. I then generalize these derivations by accounting for

modifications to the heap structure and associated meta-data over time.

Definition 2. For any region r, the true summary set of r is the set of currently

allocated locations in other regions r′ 6= r that hold references to objects in r.

Definition 3. A region is truly popular if the size of its true summary set meets

or exceeds SR.

Lemma 4. The fraction of regions that are truly popular is 1/S or less.
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Proof. Let x be the fraction of the N/R regions that are truly popular. There

can be at most N locations in a heap of N words. Every location holds at

most one reference (to one object). Every truly popular region has at least

SR distinct locations referring to it alone. Therefore,

N ≥ x

⌈
N

R

⌉
SR ≥ x

N

R
SR = xNS.

Thus x ≤ 1/S.

The regional collector does not guarantee that it constructs true sum-

mary sets. The summarizer builds imprecise approximations to the true

summary sets by incrementally scanning the heap during a summarization

cycle and incorporating changes as the mutator imperatively modifies the

object graph.

Definition 5. The constructed summary set of a region r is the meta-data

structure built up by the summarization coroutine approximating the true sum-

mary set of r.

The constructed summary set is an approximation of the true summary

set, reflecting a series of closely related heaps rather than a heap at any

particular instant. To account for this, I introduce a running total,

C = Cal + Cas ,

which counts the number of words allocated (Cal) and assigned (Cas) over

the course of a summarization cycle. This allows the derivation of bounds

with respect to C, accounting for imprecision that the mutator could have

possibly introduced to the constructed summary sets.

Invariant 6. If the summarization of a region r would require exceeding the

limit of SR entries in the summary set of r, class [r] is set to POPULAR. Every

POPULAR region was at some point associated with a constructed summary set

containing at least SR entries.
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Lemma 7. If the number of words allocated and assigned performed during a

summarization cycle is bounded by C, then the fraction of the N/R regions that

could be classified as POPULAR during the summarization cycle is no greater

than (1 + C/N)/S.

Proof. Let x be the fraction of the N/R regions that would be classified

as POPULAR if they were included in the summarization cycle. At most

N + C locations contribute to the group of constructed summary sets over

the whole summarization cycle. Each of the POPULAR regions had at least

SR distinct locations referring to it at some point during the summarization

cycle.

N + C ≥ x

⌈
N

R

⌉
SR ≥ x

N

R
SR = xNS.

Therefore x ≤ 1
S
(1 + C

N
).

Note that to approach the worst-case upper bounds implied by lemmas 4

and 7, the mutator would have to ensure that the references into the regions

are precisely distributed so that they do not exceed SR by very much. That

is, every reference into a region beyond the first SR such references is a

reference that could have been put towards making another region popular;

every such reference is wasted from the perspective of a demonic mutator.

I anticipate that real-world applications will not tend to distribute ref-

erences in this manner; the size of the true summary set of any POPULAR

region will tend to exceed SR (probably by a significant margin; see also

section 7.3.2). If this prediction holds, the fraction of the N/R classified

as POPULAR during a summarization cycle will not tend to approach these

worst-case bounds.

It is clear from lemma 7 that the running total C must be bounded rel-

ative to N to ensure that the fraction of popular regions does not grow too

large. In the next section, we will revisit the quantity C and introduce tighter

constraints on the ratio C/N .
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5.4.2 Ensuring summarization succeeds

Lemma 7’s bound on the maximum number of regions classified as POPULAR

is not enough on its own to ensure that the collector will always have regions

with usable summary sets available to evacuate; just because non-popular

regions exist does not imply that the summarization coroutine selected them

as summarization targets.

In this section, we derive the constraints necessary to maintain the fol-

lowing invariant:

Invariant 8. At the start of any one summarization cycle at least 1/(F1F2) of

the regions will have usable summary sets.

To maintain this invariant, the collector’s parameters S, F1, F2 and F3

must be appropriately selected and the running count C must be appropri-

ately bounded.

Lemma 9. Suppose S, F1, and F2 are greater than 1, F3 is a positive integer,

and C, the mutator activity during a summarization cycle of at most F3 passes,

is at most the product cN where

0 < c ≤ F2F3 − 1

F1F2

S − S⌈
N
R

⌉ − 1.

Then F3 passes suffice to ensure 1/(F1F2) of the summaries are usable.

Proof. Each summarization pass will attempt to build summaries for 1/F1

of the regions; therefore F3 passes during the cycle will target a total of

F3/F1 of the regions. By lemma 7, at most 1/S(1 + C/N) of the regions

can be classified as POPULAR during the summarization cycle. Therefore the

F3 passes over the summarization cycle will yield at least u usable regions,
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where

u =
F3

F1

⌈
N

R

⌉
−
⌊

1

S

(
1 +

C

N

)⌈
N

R

⌉⌋
≥ F3

F1

⌈
N

R

⌉
−
⌊

1

S
(1 + c)

⌈
N

R

⌉⌋
≥ F3

F1

⌈
N

R

⌉
−

⌊
1

S

(
1 +

(
F2F3 − 1

F1F2

S − S⌈
N
R

⌉ − 1

))⌈
N

R

⌉⌋

=
F3

F1

⌈
N

R

⌉
−

⌊(
F2F3 − 1

F1F2

− 1⌈
N
R

⌉)⌈N

R

⌉⌋

=
F3

F1

⌈
N

R

⌉
−
⌊

F2F3 − 1

F1F2

⌈
N

R

⌉
− 1

⌋
≥ F3

F1

⌈
N

R

⌉
−
(

F2F3 − 1

F1F2

⌈
N

R

⌉
− 1

)
=

1

F1F2

⌈
N

R

⌉
+ 1

≥
⌈

1

F1F2

⌈
N

R

⌉⌉
Therefore F3 summarization passes will ensure that at least 1/(F1F2) of the

targeted regions will have usable summary sets.

Note that as the heap grows large relative to the region size, the S/
⌈

N
R

⌉
term in c’s upper bound becomes insignificant. Note also that this bound on

c does not need to be enforced when the total number of regions
⌈

N
R

⌉
is less

than S, because when
⌈

N
R

⌉
< S, it is impossible for any regions to become

popular, and therefore no summarization wave-off can occur.

5.4.3 Ensuring ready regions suffice

Unfortunately, our work does not end with the proof of lemma 9. The assur-

ance provided by invariant 8 (and proven by lemma 9) that each summariza-

tion cycle will end with a known fraction of READY regions ready to be used

as bases for collection during the next summarization cycle is necessary, but

will not suffice on its own.
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The remaining difficulty is that regions can still be waved-off as too pop-

ular to collect after they have already been declared READY. If this is allowed

to happen too often, the forwarder will run out of READY regions before the

summarizer has finished even one summarization pass, and the system will

fail to satisfy allocation requests!

To ensure that the work of the summarizer can be scheduled and dis-

tributed across the effort of the forwarder (and thus distributed across the

work of the mutator), one must ensure that this scenario cannot arise.

Each summarization cycle ends with at least 1/(F1F2) READY regions

with completely constructed summary sets; therefore it is reasonable to as-

sume that the next summarization cycle starts with those same constraints

in place. Furthermore, we can assume that the completely constructed sum-

mary sets have a total size of D, where D is known to the collector and

D ≤ N + cN (and will often be significantly smaller).

I can guarantee the bound D ≤ N + cN because (1) at most N words

contributed to the true summary sets at the start of the last summarization

cycle, and (2) over the course of the cycle, simultaneous mutator activity

contributed at most C = cN words to the summary sets being built. More-

over, at the start of a summarization cycle, the collector knows the current

value of D, as the summary sets for the ready regions are completely present.

(Contrast this against the not-yet-built summary sets for the regions being

summarized during the summarization cycle; the collector has no a priori

knowledge of their size, and therefore our calculations in section 5.4.2 as-

sume the worst.)

Finally, as mentioned in section 5.3.3, a completely constructed summary

set represents a significant investment of effort by the summarizer; READY

regions should not be waved-off without good reason; therefore the sum-

mary sets associated with READY regions use a different wave-off parameter,

S ′, as the basis for determining if they should be recategorized as POPULAR.
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Lemma 10. Let D be the total size of the completely constructed summary sets

of the READY regions at the start of a summarization cycle. If mutator activity

is limited to C = cN actions during the cycle then the collector can assume that

at least b READY regions will be available for evacuation over the entirety of the

summarization cycle, where

b =

(
1

F1F2

− D

NS ′ −
c

S ′

)
N

R
.

Proof. At the start of the summarization cycle the completely constructed

summary sets of the READY regions have a total of D entries. Over the course

of the summarization cycle at most cN new entries could be added to these

summary sets, for a total of at most D + cN entries in these summary sets.

Let v be the maximum number of READY regions waved off as popular

during a summarization cycle. A READY region only becomes POPULAR when

its summary set grows to contain S ′R entries. Therefore we have the con-

straint

vS ′R ≤ D + cN

Let b′ be the minimum number of regions that can safely be assumed

available during the entirety of the summarization cycle. The summariza-

tion cycle starts with at least 1/(F1F2) of regions classified as READY to be

evacuated. At most v of those could be waved-off as popular during the

cycle. Therefore,

b′ =
1

F1F2

⌈
N

R

⌉
− v

≥ 1

F1F2

⌈
N

R

⌉
− D + cN

S ′R

≥ 1

F1F2

N

R
− D + cN

S ′R

=

(
1

F1F2

− D

NS ′ −
c

S ′

)
N

R

= b

Thus b′ ≥ b, as desired.
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Lemma 10 is useful only if b > 0; otherwise the number of available

READY regions for evacuation during a summarization cycle has no lower

bound of use. In other words, if the collector does nothing to confront a de-

monic mutator’s increasing the size of the completely constructed summary

sets of the READY regions, then the collector must ensure

1

F1F2

− D

NS ′ −
c

S ′ > 0

or equivalently,

c <
S ′

F1F2

− D

N
.

As mentioned above, the collector’s policies can trivially ensure that D ≤

N + cN ; if D actually approaches that limit, the collector will encounter a

worst case scenario of enforcing the constraint:

c <
S ′

F1F2

− N + cN

N
=

S ′

F1F2

− 1− c

or equivalently

c <
1

2

(
S ′

F1F2

− 1

)
This is an additional constraint on the value taken by the runtime-selected

parameter c; it is orthogonal to the constraint documented in lemma 9.

As mentioned above, the collector tracks the sizes of the summary sets of

the READY regions. If

• the mutator activity during the cycle is not increasing their size, or

• if D is sufficiently small at the outset of the summarization cycle

then this second constraint on mutator activity is irrelevant to the collector

and can be ignored.

In a nutshell, the bound of lemma 9 is a matter of preparing for the worst

case ahead of time, while the mutator activity bound implied by lemma 10 is

more a matter of responding to a series of worst-case events after they have

already happened.
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5.4.4 Bounding waved-off regions

Lemma 7 bounds the number of regions that may be waved off during sum-

marization, but this does not immediately answer the question of whether

that bound will scale as summarization cycles are iterated. To tie up the pop-

ularity story, I answer the question of how many regions could be considered

popular during the entirety of a full collection cycle.

Lemma 11. The fraction of regions left waved-off (and thus uncollected) dur-

ing a full collection cycle is at most 1− 1/(F2F3).

Proof. In general, a single summarization cycle is divided into x summariza-

tion passes, where 1 ≤ x ≤ F3 (as F3 is the upper bound on summarization

restarts). A cycle of x passes attempts construction of summary sets tar-

geting x/F1 regions in total, because 1/F1 of the regions are targeted for

summarization in a single pass.

Assuming the beginnings and ends of full collection cycles are aligned

with those of summarization cycles, a full collection cycle of the whole heap

will contain n such summarization cycles, where the ith cycle is divided into

xi passes. Since the ith summarization cycle attempts summary construction

for xi/F1 of the regions, we have the constraint

n∑
i=1

xi

F1

= 1. (5.1)

Furthermore, each summarization cycle constructs usable summaries for

at least 1/(F1F2) of the regions. Therefore over the course of a full collection

cycle, at most

n∑
i=1

(
xi

F1

− 1

F1F2

)
=

n∑
i=1

xi

F1

−
n∑

i=1

1

F1F2

= 1− n

F1F2

(5.2)
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of the regions are waved off from summarization and subsequently collec-

tion.3

The bound (5.2) is clearly maximized when the number of summariza-

tion cycles, n, is minimal. This occurs when the pass counts xi in the con-

straint (5.1) are maximal: for all i, xi = F3. Therefore to minimize n we

must have:

1 =
n∑

i=1

xi

F1

= n
F3

F1

, (5.3)

Thus the minimal n = F1/F3, allowing the revision of the upper bound (5.2)

to:

1− n

F1F2

= 1− 1

F2F3
(5.4)

Thus 1 − 1/(F2F3) bounds the fraction of regions waved off during a full

collection cycle.

A natural question when first encountering lemma 11 is why it makes no

reference to the wave-off factor S, as that is what determines the threshold

between popular and non-popular regions. The answer is the system must

ensure the preconditions of lemma 9, which will require that

F2F3 − 1

F1F2

S − 1 > 0

and thus the value chosen for S constrains the range of valid choices for the

parameters F2 and F3.

5.5 Setting the Allocation Rate

Section 5.4 addressed the rate of summarization relative to the rate of gen-

eral mutator activity. It now remains to establish at what rate the forwarder

3 This does not directly address wave-off of READY regions. Note that any effort the

mutator spends waving off READY regions is effort that was not put towards waving off

SUMMARIZING regions. Since the threshold for wave-off of READY regions, S′R, is at least as

large as the threshold for wave-off of SUMMARIZING regions, the bound (5.2) is conserved.
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should evacuate the pool of READY regions, relative to the rate of allocation

activity by the mutator. From another perspective, this is the same as asking

how much the collector needs to constrain the mutator’s rate of allocation. I

refer to this as the allocation rate policy.

There are two main properties that I will require of the allocation rate

policy. Both are defined in terms of Pold , the peak live storage. The two

properties are: (1) the total heap size N cannot exceed LhardPold , and (2) A,

the allocation during any one full cycle, is proportional to the peak storage;

that is, A = Θ(Pold).

Isolating these two properties and proving the scalability theorem in

terms of them modularizes the design, allowing for experimentation with

new policies that need only preserve the above properties to remain scal-

able.

One detail that matters here is that we are deliberately requiring that

A = Θ(Pold), which is a stronger condition than A = O(Pold). That is,

the promotion rate must not only be bounded from above, but also from

below. The reason for this is that if we do not have A = Ω(Pold), then

we cannot subdivide the mutator actions into sufficiently large chunks in

between collection pauses to get the required summarization and marking

work done to support collection within a bounded pause time.

We express the policy in terms of Pold (which varies with the application

behavior), and the inverse load factors Lhard and Lsoft (which are fixed run-

time choices). We also include the parameter k, a fixed upper bound on the

worst-case fraction of non-empty regions that go uncollected during a full

cycle (e.g. due to popularity). This is also fixed by other runtime parame-

ters; lemma 11 proves that k ≤ 1− 1/(F2F3).

The current prototype uses the policy

A = min

(
1

2
((1− k)Lhard − 1)Pold , (Lsoft − 1)Pold

)
which clearly is Θ(Pold).
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I have also occasionally experimented with a potential alternative policy:

A = min

(
1

2
((1− k)Lhard − 1)Pold , (Lsoft − 1)N

)
This causes the heap to grow more quickly in response to a sudden increase

in the volume of storage, (assuming that Lsoft is significantly less than Lhard),

without the violating the hard space bound. It also means that the system

will be slower to ratchet back the heap usage when the growth was prema-

ture. However, from a theoretical point of view, this policy is problematic

because it does not ensure that A = Ω(Pold), and so it breaks the rules we

stated above. It is not hard to imagine fixes for this (e.g., incorporate a third

component that calculates some other function in Θ(Pold)).

5.6 What was all this for again?

This chapter laid the ground-work for our end-goal: proving that the re-

gional collector is actually scalable.

The regional collector uses the following properties to support its scala-

bility:

• If the summarization of a region r would require exceeding the limit

of SR entries in the summary set of r, class [r] is set to POPULAR.

• At the start of any one summarization cycle at least 1/(F1F2) of the

regions will have usable summary sets, and each summarization pass

(of at most F3 such passes) attempts to build summaries for 1/F1 of

the regions.

• During a summarization cycle of at most F3 passes, the mutator activ-

ity C (which includes both allocation and assignment) is at most the

product cN where 0 < c ≤ F2F3−1
F1F2

S − S

dN
R e
− 1.
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• Allocation during any one full cycle is proportional to peak storage:

A = Θ(Pold). I currently enforce this via the policy:

A = min

(
1

2
((1− k)Lhard − 1)Pold , (Lsoft − 1)Pold

)
.

The next chapter will be using the lemmas proven and properties de-

scribed here in order to prove the scalability theorem.





Chapter 6

Proving scalability

Chapter 1 stated the first two of the goals for the design of the regional col-

lector were to provide worst-case time and space bounds in order to ensure

that the collector would remain scalable. These two goals correspond to the

statement of theorem 1, which provides three proof obligations that must be

met for some mutator-independent choice of positive constants c0, c1, c2, and

c3:

1. c0 is larger than the worst-case time between mutator actions.

2. Within every interval of time longer than 3c0, the minimum mutator

utilization is greater than c1.

3. The total memory used by the mutator and collector is less than c2P +

c3, where P is the peak volume of reachable objects.

6.1 Bounding Memory Usage

I first address the last obligation: that the regional collector’s memory usage

is O(P ). This is easy to see. Section 5.5 specifies that the allocation rate

maintains a bound on total heap size N of LhardPold = O(P ).

81
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Assuming the addresses of heap objects are assigned reasonably close to

one another,1 the incremental snapshot structure is represented by a O(N)

bitmap (for the snapshot itself) and a stack of mark stacks (for the frontier

of the snapshot under construction). The stack of mark stacks may have

duplicate entries, since the snapshot traversal can push two references to

the mark stack for one region. The total number of entries on the stack of

mark stacks is bounded by the number of objects in the heap.2 There are at

most N/R mark stacks, one for each region (and each of size O(R)). So the

total snapshot structure occupies

O(N) + O(N) + N/R ·O(R) = O(N)

space.

Likewise, the remembered set can be represented by any reasonable

structure for holding a set of addresses; over the course of this project, I

started with a fixed-size hashtable for each region, and then later migrated to

a sparse representation: a shallow tree mapping a prefix of each address to a

bitmap or a distinguished null value. These are both O(N) representations;

the migration was not motivated by theoretical concerns, but rather real-

world performance problems with the large remembered sets that tended to

arise with the regional collector.

The only component left that could lead to a violation of the space

bounds is the summary set structure.

1This assumption requires a cooperative host environment; but there are reasonable

work-arounds if the operating system insists on allocating addresses from disparate points

in the address space, such as the sparse bitmap structure I used for the remembered set

representation.
2This O(N) size bound suffices because a O(R) time collection pause does not process

the stack of mark stacks.
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6.1.1 Bounding time and space for summary set structure

The summary set structure is interesting because it has to satisfy the follow-

ing constraints:

• Summary space: The space occupied by all of the summaries together

must occupy at most O(N) space,

• Summary traverse: When evacuating a region ρ, the collector must tra-

verse the summary for ρ (finding the locations of references pointing

into ρ) in O(R) time,

• Summary update: When migrating objects from a region ρ to region

ρ′, the collector must update the summaries for the other regions in

O(R) time to reflect the change in locations for the migrated objects.

There are many obvious structures that can meet any two of the above goals,

but satisfying all of the above conditions at once is non-trivial.

For example, consider a hypothetical representation that represented the

summary for a region ρ by a table of all of the locations that could hold refer-

ences into ρ. Since I wave off construction of summaries with more than SR

elements, the total size of any one table is at most SR, and the design meets

both the summary space and summary traverse requirements. However, af-

ter evacuating the region ρ, we would have a problem: there are N/R − 1

tables representing the summaries of other regions, each of size O(R), and

those tables might refer to locations in the region that the collector just fin-

ished evacuating. Even if the collector dynamically added new entries to the

tables corresponding to the objects that had been migrated, the old sum-

mary entries still must be invalidated. Otherwise, the summaries with old

entries will be unsound and the collector will eventually attempt to use the

unsound summaries as the basis for collection.
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6.1.1.1 A sparse matrix structure

One suitable representation is a sparse matrix, where the rows and columns

are both indexed by region. The column of the matrix associated with region

ρ gathers the locations that may hold a reference pointing into ρ. The row of

the matrix associated with region ρ′ gathers the locations in that region that

may hold a reference pointing into another region that has been summarized

or is undergoing summarization. Thus a cell at (ρ, ρ′) is all locations in ρ that

may have a reference pointing into ρ′. As the heap grows large relative to

the region size, most such cells will contain no locations at all, because it

is impossible for a heap of N locations to densely populate a N2 matrix.

This motivates a sparse matrix structure, where the trivial cells containing

no locations are not explicitly represented. Instead, the non-trivial cells can

be linked together, enabling efficient traversal of either row or column.

Consider the following object graph, partitioned into five regions.

a b c d e

Abstractly, its summary set structure looks like this.3

a b c d e

b, c, e b, d e

The sparse matrix representation of the summary set structure might

then look like this.

3The illustrations in this chapter all deliberately omit the distracting distinction between

an object versus references to individual locations within the object.
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b b

c

d

e e

a b c d e

In this illustration, a solid arc coming from the top of a rectangular region

ρ represents the pointer to a linked-list of column entries representing the

summary set holding references coming into ρ. A dashed arc coming from

the bottom of a rectangular region ρ′ represents the pointer to a linked list of

row entries representing the contribution of ρ′ to the entirety of the summary

set structure. If a region does not have an arc originating from its top, then

it has no column entries (a null list), and likewise for regions missing arcs

at their bottoms.

Note that the cells of the matrix can and should batch together many lo-

cations from the heap; if each cell held only one address, the space occupied

by the links of the sparse matrix would be intolerably large for reasonably

sized heaps.

This structure enables the collector to traverse the summaries in a fo-

cused manner. For example, if the collector chose to evacuate the region

holding the object c, it would traverse the column for that region, visiting

the relevant locations within d and b to find all exterior references into that

region. On the other hand, if the collector chose to evacuate the region hold-

ing b, it would not traverse any fields of objects in other regions because the
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column for b’s region is empty; but, it would traverse the row associated with

the region and clear out the entries stored there. Thus the summary sets for

the regions of a and c would both be modified to drop the location of b’s

field. Note that this clearing of the rows has nothing to do with whether b is

still alive or is determined to be dead during the collection cycle. When the

region is evacuated, b is either copied or deemed unreachable; either way,

the storage associated with b from before the collection will be invalidated

and reclaimed for future allocation.4

6.1.1.2 The rows are not redundant

The illustration above hints at a correspondence between references going

out of a region and the row for that region. This might lead the reader

to wonder if this linked row structure is unnecessary, and if instead this

cleaning of dead locations in the summary set structure could somehow be

performed by traversing the region after it has been evacuated. There are

a number of problems with this idea, however. Even ignoring details like

the fact that the act of evacuating a region may overwrite the old state of

its objects (e.g., by installing forwarding pointers), the simplest argument

against this approach is that the summary set structure is not 100% precise!

As a concrete example, consider the same object graph, but now the

summary set is slightly imprecise; perhaps at some point in the recent past

e had a reference to b, now overwritten.

4Obviously this observation does not generalize to mark-sweep style non-moving col-

lectors. It is not clear whether it would be possible to eliminate this row-traversal for live

objects in a non-moving collector without introducing a prohibitive cost elsewhere in the

system meta-data.
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a b c d e

b, c, e e b, d e

A corresponding sparse matrix representation for this abstract summary

structure could be the following.

b b

c

d

e e e

a b c d e

In this case, the row structure is crucial: if the collector evacuates the

region holding e, it might be able to look at the fields of e to determine that

the summaries for the regions holding a and d need to be updated to reflect

the death or migration of e; there is nothing left in the state of e to tell it

about the entry in the summary set of b’s region. I need the rows represented

by the dashed lines.

6.1.1.3 An anti-constraint: sortedness

A critical observation about the constraints on the summary set structure:

the collector does not need to traverse the elements of the summary struc-

ture in any particular order. This means that the rows and columns of the
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sparse matrix representation do not need to be linked in a sorted manner.

The above illustrations present a linked structure that happened to be row-

and column-ordered by the implicit region ordering in the presentation, but

the abstract summary set structure is not uniquely represented. The origi-

nal example could be represented by the following linked structure, among

many others:

b b

c

d

e e

a b c d e

It is not as pretty a picture as the original illustration, but it provides a

crucial insight: allowing the linked structure of the rows and columns to be

arbitrarily ordered dramatically simplifies maintenance of the summary set

structure.

If one had to keep the rows or columns linked in order, then the first

introduction of a reference from region ρ to ρ′ would require finding the

correct spot in the row and column linked lists for the insertion. Such ref-

erences could be introduced by the collector as it migrates objects or by the

write-barrier as the mutator modifies fields. After finding the spot for the en-

try (ρ, ρ′), it is straight-forward to create a cell for that entry, and a mapping

from the pair (ρ, ρ′) to that cell can be kept in an auxiliary table (to handle

subsequent introduction of other references between the same two regions;

the matrix associates many locations within ρ with the cells of its row, oth-

erwise the amount of space dedicated to the linkages in the summary set
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structure would dwarf the number of actual locations stored). But if the

links had to be kept ordered, then finding the correct spot for that first entry

would generally require traversing an unaffordable amount of structure.

By allowing unordered linkage, the insertion process is simple: first

check if (ρ, ρ′) already has a cell by looking in the auxiliary table; if there

is none, then take a free cell and add it to the head of the row list for ρ and

the head of the column list for ρ′.

6.2 Bounding Time

The remaining two scalability properties relate to execution time:

1. c0 is larger than the worst-case time between mutator actions, and

2. within every interval of time longer than 3c0, the minimum mutator

utilization is greater than c1,

where c0 and c1 are the existentially-bound constants from the main theo-

rem.

6.2.1 GC Pauses

The constant c0 is the constant bound on pause time. The most significant

interruption to the mutator is due to a major collection evacuating a region

ρ. Every region has size at most R, a summary of size at most SR, and an

associated portion of the mark-stack bounded by O(R).

Evacuating the region’s objects and updating the mark stack can be per-

formed in O(R) time.

By using the sparse matrix structure described previously, scanning the

summary column for ρ (to find locations of all incoming region-crossing ref-

erences) takes time proportional to the summary’s size.

There is also the cost of clearing the row for ρ. In one worst-case sce-

nario, the mutator would guess a choice of small single-field objects in one
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region ρ and iteratively update their fields to point to objects in every other

region, thus introducing entries for all of those locations into the row for ρ.

If nothing were done to eliminate such behavior, the row could grow to have

O(N/R) entries, which could not be cleared in O(R) time.5

I already limit the amount of mutator work during a summarization cy-

cle to cN ; but this does not eliminate the hypothetical case above (since

cN = O(N/R)).

However, not every row could grow to have O(N/R) entries. The solution

adopted here is to wave off collection of a region whose row is too large, the

same way that the collector already waves off regions whose summary sets

(the columns of the matrix) are too large. The bound of SR suffices for both

purposes. Thus the time to clear a row for ρ is bounded by O(R).

6.2.2 Worst-case MMU

My goal is to describe the worst-case minimum mutator utilization (MMU),

independent of what program is executed or input data is fed to the muta-

tor. The theoretical worst-case MMU at resolution ∆t is the infimum of the

mutator’s CPU time divided by ∆t, for all time slices of size ∆t from any

execution of any mutator.

A collector that occasionally interrupts the mutator to perform a full col-

lection has a theoretical worst-case MMU of zero regardless of resolution ∆t,

because one can always select a program that will grow the heap to a point

that requires more than ∆t time to traverse its structure.

If there is a finite bound on the worst-case collection pause, as above,

then the theoretical worst-case MMU may be positive for sufficiently large

∆t.

5 This scenario is perhaps absurd. Popular objects do arise in real programs and the

threshold SR on summary set size is something the collector encounters in practice (albeit

rarely). It is not clear what kinds of programming patterns would cause a corresponding

blow-up in row-size.
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Let c0 be an O(R) bound on worst-case duration of a collection pause,

and let ∆t = 3c0. At time samples of that length or greater, the worst-case

mutator utilization occurs when two maximal pauses surround a short inter-

val of mutator work time. As already stated, c0 = O(R); we now show that

the mutator will perform Ω(R) work between every two major collections.

Showing this tells us that the minimum mutator utilization, expressed

as a percentage of the interval ∆t, is independent of R. For example, if

one were to choose to double R, the utilization would not suddenly be cut

in half, as it might if the unit of uninterrupted mutator work were only

bounded from below by some constant unrelated to R. Of course doubling

R would increase ∆t = O(R); the MMU itself is a fraction of that interval.

The collector performs Θ(N/R) major collections per full cycle, and mu-

tator work drives the scheduling of those collections. By the policies in sec-

tion 5.5, the mutator performs A units of work (promotions or imperative

assignments) per full cycle. Since A = Θ(Pold) = Ω(N), the mutator work

evenly distributes into Ω(AR/N) = Ω(R) work between each major collec-

tion.

The above analysis accounts for time spent on collection effort and mu-

tator work, but does not include the time spent on the marking and sum-

marization processes. The effort expended by those two processes can be

scheduled so the overhead per major cycle is O(R), and therefore need not

dominate the interval ∆t = 3c0 to the point where the mutator will not fulfill

its obligatory c1 units of work.

The marking process requires O(N) time per full cycle, and it is straight-

forward to distribute its overhead to O(R) per major cycle.

The summarization process performs at most F3 passes over the remem-

bered set per summarization cycle. Each pass takes O(N) time scanning the

remembered set and creates

O

(
1

F1

N

R
SR

)
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entries in the summary set structure. The number of summarization cycles

per full cycle is bounded by F1, so the number of entries added by the sum-

marization per full cycle is

O

(
F3

N

R
SR

)
.

Distributing the work evenly across collection cycles in a full cycle implies

that there is O(F3SR) = O(R) overhead per major cycle.

Bounding the overhead to O(R) does not imply that the overhead might

not exceed the maximum time for a major collection, depending on how the

summarization and marking processes are implemented. We in fact must

choose c0 to not only bound the maximum collection time, but also the time

spent doing non-concurrent summarization and marking work during a ma-

jor cycle. However, the reason to focus on bounding c0 by the major col-

lection time is that in the regional design, the summarization and marking

processes can be run concurrently with the mutator, unlike the collector,

whose execution is interleaved with the mutator. Therefore we assume that

in the end, the summarization and marking work will not be a significant

source of mutator interruption, and the important thing was more to show

that the collector would not have to wait longer than O(R) time for each

to finish their obligations for a major cycle, because such waiting would be

classified as added mutator interruption.

Thus completes the proof of Theorem 1, restated here: There exist posi-

tive constants c0, c1, c2, and c3 such that, for every mutator, no matter what

the mutator does:

1. GC pauses are independent of heap size: c0 is larger than the worst-

case time between mutator actions.

2. Minimum mutator utilization is bounded below by constants that are

independent of heap size: within every interval of time longer than

3c0, the MMU is greater than c1.
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3. Memory usage is O(P ), where P is the peak volume of reachable ob-

jects: the total memory used is less than c2P + c3.





Chapter 7

Bringing back the remembered set

Points-into summary sets are guaranteed to be bounded in size; but they

must be periodically constructed. Section 4.3.3 outlines several summary set

construction techniques; this chapter argues that using a remembered set to

guide the summary set construction is an excellent heuristic technique.

7.1 Summary-set construction

Any summary-set construction technique must, given a subset {ri, . . .} of the

regions, incrementally visit every object in some sound approximation of the

object graph and find all of the locations that hold references to objects in

{ri, . . .}.

The following discussion of the construction techniques will ignore the

requirement that the algorithm be incremental. All three techniques can

be made incremental (mostly a matter of supporting interleaved object al-

locations and mutations), but describing those generalizations here would

obscure the main points.

95
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7.1.1 Construction via direct address scan

One approach to summary-set construction is to traverse the address space

directly, dereferencing each location capable of holding an object reference.

More specifically, for each mapped address l,

1. if l represents the start of an object o that was and is unreachable

according to the last completed snapshot, then skip ahead to the next

address following l; otherwise

2. if l is the address of a slot that may hold an object reference then

dereference the slot for l. If l holds a reference to an object in ri (where

ri is one of the regions {ri, . . .} given for this summary-set construction

cycle), and l itself is not part of the region ri, then the summarizer adds

the location l to the summary set for ri.

Employing this technique does require the runtime system to track al-

located memory blocks (as it must not attempt to dereference uninitialized

memory). The runtime system must also be able to identify, from inspect-

ing the object on its own, what slots within objects may hold references (as

opposed to systems where objects do not have headers with dynamic type

information and the runtime system relies solely on type tags encoded in

the references to such objects or on static types encoded in the program

text). Both requirements are easily satisfied in common garbage collection

systems.

This technique is simple and conservative; it generally requires scanning

all of the allocated memory, including some amount of floating garbage. It

will traverse objects that have never held region-crossing references. Scan-

ning all of allocated memory for each summarization pass intuitively sounds

expensive; section 7.3 provides concrete performance comparisons.
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7.1.2 Construction via reference graph tracing

The linear scan approach described above does filter out objects that are long

dead (according to the snapshot) from its traversal, but each pass includes

objects that have died since the last snapshot was taken. Therefore, one

might well consider constructing the summary sets by tracing the object ref-

erence graph, starting from the roots, and record all encountered locations

with region-crossing references.

This technique will yield more precise summaries, as it avoids traversing

floating garbage objects, but it will still spend time traversing objects that

have never held region-crossing references. Also, as an in-place traversal

of the object graph, it will need to maintain meta-data to ensure that each

object is traversed only once; this is additional overhead that the simpler

scanning approaches do not incur.

7.1.3 Construction via remembered-set scan

Section 3.2.1 explains that a relatively small remembered set can focus the

attention of the garbage collector, but that it is a heuristic technique and

does not provide a guaranteed improvement. The remembered set is not

guaranteed to be small relative to the total heap size.

7.1.3.1 The remembered-set observation

A sufficiently small remembered set is cheaper to scan in the common case

than either of two options above (but not in the worst case).

Assume heap size N words, a regional remembered set of size M ob-

jects, live object graph of size O objects, and individual objects of size c

words. Also assume that the remembered set is small relative to the live

object graph.
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It costs roughly N to do the linear address scan, roughly cO for the

graph traversal, and roughly cM to scan the objects in the remembered set.

Obviously cM < N , and since the remembered set is small, we also have

cM � cO.

7.2 The remembered-set hypothesis

The crucial assumption justifying the use of a remembered set is that it will

tend to be small relative to the whole heap. This is, a natural, dynamic

distribution of objects tends to yield a small remembered set in common

case programs.

This, the “regional remembered-set hypothesis,” is what justifies main-

taining a remembered set and using it as the basis for the summary set

structure.

The next section presents some data evaluating the remembered-set hy-

pothesis.

7.3 Comparing summarization techniques

To evaluate the different techniques and to test the remembered-set hypoth-

esis, I instrumented a prototype regional collector to analyze the heap pe-

riodically. On every nursery evacuation (roughly corresponding to every

megabyte of objects allocated), the instrumentation code traverses:

1. the objects in the remembered set,

2. the live objects in the heap, and

3. all allocated objects, including float.

In each object, all slots that could hold references are read, to make the

instrumentation code reflect the time it takes to load that data from memory.
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The three traversals are timed, and each traversal counts the number of slots

scanned.

This way, the traversals provide two foundations for comparing the three

summarization techniques: the number of words each technique would

read, and a rough estimate of the time each traversal takes. The area un-

derneath each elapsed time curve gives a relative idea of how much total

additional overhead a summarization technique adds; an occasional spike

in the curve should not lead to the dismissal of a technique if the area un-

derneath is small overall.

The instrumented collector was run with a nursery size of one megabyte

and a region size of four megabytes. So if the garbage collector collects the

entirety of a region without needing to allocate a fresh region, then the size

of the whole heap drops by one million words; such behavior can be seen in

the plotted curves below.

Figures 7.1 through 7.11 present the results of the instrumentation for

a collection of benchmarks. The top chart for each figure is the traversal

times and the bottom chart is the number of slots scanned; the two charts

are presented so that the x-axes of the two charts are aligned. (Note that the

shapes such as squares, triangles, and crosses that identify each set of data

appear only periodically amongst the dots that make up full set of data.)

The data for figures 7.1 through 7.11 present the initial setup for each

benchmark as well as the actual benchmark run itself. This is significant in

cases like gcold where the majority of the object allocation is spent setting

up the benchmark, while the actual benchmark behavior is a small slice at

the right end of the presented data.

Figure 7.1 presents data from a benchmark (earley:10) that does not

use much memory. One can clearly see a sawtooth pattern in the slots count

for whole heap traversal, corresponding to the gradual allocation and sud-

den reclamation of memory. One can also see the sawtooth looking at the

dots (as opposed to the data-tagging shapes) in figure 7.2, though the effect
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Benchmark: earley10
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Figure 7.1: Summarization traversals, earley:10

Benchmark: earley13
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Figure 7.2: Summarization traversals, earley:13
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is much more subtle here because this benchmark (earley:13) uses 20 times

as much memory and so the drop with each collection is less significant.

In both figures 7.1 and 7.2, and also in all of the succeeding figures, the

number of words scanned in the whole heap is always greater than or equal

to the number of words scanned in the live heap, which is unsurprising since

the whole heap is a superset of the live heap. More potentially surprising is

that the time it takes to scan the whole heap is often significantly less than

the time it takes to scan the live heap. I have two possible explanations for

this phenomenon. One is that the overhead of tracing just the live heap and

maintaining associated meta-data (such as a mark bitmap and mark stack

to represent the seen nodes and frontier of the graph) far exceeds the extra

time spent scanning floating garbage. The other attractive explanation is

that the direct scan used to traverse the whole heap makes better use of

the memory hierarchy, since it is essentially doing a streaming access of the

address space, while tracing the live heap may appear like a series of random

accesses from the viewpoint of the memory subsystem.

Figure 7.1’s benchmark uses so little memory that the runtime can keep

the live heap within a small number of regions (often just one) and it does

not have many region-crossing references; thus its remembered set does not

grow to a significant size, which is reflected in the series of red crosses that

line the bottom of both charts.

In figure 7.2 (earley:13), we see that the remembered set does often

grow large; the number of words scanned due to the remembered set some-

times exceeds the number of words scanned from the live heap. Likewise,

the time to scan the objects of the remembered set sometimes exceeds the

time it would take to scan the whole heap directly. Neither of the two tech-

niques is an obvious winner.

In figure 7.3 (gcbench), the remembered set again occasionally grows

large. But in this benchmark, it is always significantly cheaper with respect

to time to scan the remembered set than to use the other two techniques.
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Benchmark: gcbench
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Figure 7.3: Summarization traversals, gcbench

Benchmark: nboyer
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Figure 7.4: Summarization traversals, nboyer
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Benchmark: sboyer
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Figure 7.5: Summarization traversals, sboyer

In figure 7.4 (nboyer), the remembered set often takes more time to scan

than just directly scanning the whole heap. Unlike earley:13 (figure 7.2),

this area underneath the scan-times curve for the remembered-set scanner

seems to clearly exceed the area underneath the scan-times curve for the

whole-heap scanner. This indicates that the remembered-set hypothesis is

invalid: the size of the remembered set is growing quite large in the system’s

dynamic object distribution amongst the regions. This issue is addressed in

section 7.3.1.

In figure 7.5 (sboyer), the remembered-set scanning times again often

exceed the whole-heap scanning times.

In figure 7.6 (perm9), the remembered-set size and times are practically

nil; using a remembered set to guide the summary-set scanner seems well

motivated in this case.

In figure 7.7 (twobit), the size of the remembered set follows an interest-

ing sawtooth pattern. Its size occasionally grows larger than the live heap,

but the time to scan the remembered set is consistently far less than with

either of the other two techniques. Again, using a remembered set seems
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Benchmark: perm9
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Figure 7.6: Summarization traversals, perm9

Benchmark: twobit
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Figure 7.7: Summarization traversals, twobit
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Benchmark: gcold0
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Figure 7.8: Summarization traversals, gcold0

Benchmark: gcold1k
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Figure 7.9: Summarization traversals, gcold1k

well motivated in this case.

In figures 7.8 and 7.9 (gcold:0 and gcold:1k) the time scanning the

remembered set is practically nil; another motivating example.

In figure 7.10 (queue), the time scanning the remembered set is practi-

cally nil.
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Benchmark: queue
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Figure 7.10: Summarization traversals, queue

Benchmark: pueue
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Figure 7.11: Summarization traversals, pop-queue
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In figure 7.11 (pop-queue), which presents a variant of queue that in-

corporates popular objects, the remembered set grows to an enormous size

(its size curve often approaches that of the whole heap), and the time spent

scanning it is miserable.

This last example, as well as the earlier counter examples that seem to

invalidate the remembered-set hypothesis, motivate a thought experiment

presented in the next section.

7.3.1 Popularity and the remembered set hypothesis

Unfortunately, popular objects invalidate the regional remembered-set hy-

pothesis. If every object in the heap has a reference to an object in the

region ρ, then all of the objects in regions other than ρ have region-crossing

references. In such a situation, a remembered set built according to the re-

gional remembered-set invariant (page 15) would have size proportional to

that of the heap.

This is troublesome for the regional collector. The region ρ will eventu-

ally be classified as popular: too expensive to be a candidate for collection.

The objects within popular regions do not move. If most objects have no

region-crossing references other than the reference(s) to the popular object,

then the time spent scanning such objects for references into collectible re-

gions is wasted.

In this scenario, the remembered set fails to focus the attention of the

summarizer on the objects that actually matter for an upcoming collection.

7.3.2 Revising the hypothesis: region fame

The observation that popular objects invalidate the regional remembered-set

hypothesis motivates a modification to the regional collector.

The regional collector already classifies some regions as too popular to

collect, and abandons summary-set construction for such regions. Any effort
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spent tracking references into popular regions in a remembered set (and

potentially causing the remembered set to grow beyond a reasonable size)

seems like it is wasted in the short term, since such regions may well remain

popular long into the future.

In order to avoid wasting such effort, one must find a way to avoid track-

ing such references.

The modification I adopt is to introduce a subclass of the popular regions,

named the famous regions, which have such an abundance of incoming ref-

erences that the collector stops considering such references to be worth ex-

plicitly remembering. The modification is captured in the following revision

to the remembered-set invariant.

Remembered-set invariant, Famous:

If live objects A and B belong to distinct regions, A’s region is not

famous, and B has a reference to A, then track B in the remembered

set.

With famous regions, objects can have region-crossing references to pop-

ular objects without introducing the space and time overheads induced by a

large remembered set. The mutator’s write barrier can also be modified so

that it does not record references pointing into famous regions.

Fame introduces two main complications: First, what policy determines

when regions become famous? Second, how should the collector respond as

objects in famous regions die?

7.3.3 Fame policy

Regions become famous when their incoming reference count exceeds a mul-

tiple of the region size. The summarization process can track these incom-

ing reference counts independently of the summary set structure; that way,

when the summarizer abandons construction of a summary set when a re-

gion becomes popular, it can continue to maintain the incoming reference

count for the newly popular region.
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The introduction of famous regions must not break the asymptotic space

bounds of the collector. A simple way to ensure this is to restrict the max-

imum number of simultaneously famous regions to a fixed fraction of the

heap. This restriction can be directly implemented: before reclassifying any

region as famous, first ensure that the budget allows for the addition of

another famous region. If the budget is exhausted, then the region is not

reclassified as famous. (Note that fame is a heuristic, not a core part of the

regional collector, and therefore it is always sound to abandon such reclassi-

fication, as opposed to popularity, where it is a necessity to reclassify regions

as popular when appropriate in order to bound Cheney collection times.)

7.3.4 Recovery from fame

The objects in an famous region can die, of course. If the fame heuristic is

going to be effective in a long-running program, then famous regions must

be able to be eventually reclassified as non-famous and be subsequently col-

lected. Otherwise a worst-case program would first fill up the budget of

famous regions and then do the majority of its work with objects outside the

famous regions, and the fame heuristic would be essentially useless.

The essential attribute of famous regions is that references into famous

regions need not be tracked; such references can cross between regions and

still belong to objects that are not in the remembered set. If an famous

region is to be collected, then such objects need to be gathered and placed

into the remembered set.

Some runtime process must accumulate these additions to the remem-

bered set. The summarization process is not useful for this task, since it

scans only the objects that were already in the remembered set in the first

place. On the other hand, the marking process is a perfect match for this

task: it incrementally traces a complete snapshot of the heap, so while it

builds its snapshot, it can also reconstruct the remembered set as appropri-
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ate.

Of course, one does not want to waste time reconstructing the remem-

bered set just to discover that a region is still famous. Fortunately, the mark-

ing process again provides a suitable solution to this problem. Rather than

guessing when to reconstruct the remembered set for an famous region,

the marking process can maintain an incoming reference count for all fa-

mous regions. If the count stays high, then the region should remain fa-

mous. If the count drops suitably low, then the region is reclassified as

under-reconstruction. The next marking trace of the heap is instructed to

reconstruct the remembered set for references pointing into regions under-

reconstruction as it builds its snapshot. Once this second trace has been

completed, then all regions under-reconstruction can be reclassified as filled,

making them available for summarization and subsequent collection.

Regions that are under-reconstruction still cannot be collected until the

reconstruction has completed, but since the remembered set is being rebuilt

for them, the mutator’s write barrier must record any references pointing

into regions under-reconstruction, because that is part of the remembered

set recovery.

The big picture with respect to fame is that the summarization process

is in charge of turning popular regions into famous ones (up to a bounded

fraction of the regions), while the marking process is in charge of (1) de-

termining when the number of references into famous regions has dropped

sufficiently far to allow such regions to be garbage collected, and (2) re-

building the remembered set in preparation for such collection.
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Benchmark: earley10
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Figure 7.12: Traversals and fame comparison, earley:10

7.4 Fame and the regional remembered-set hy-

pothesis

Figures 7.12 through 7.22 present the same comparison of the three traver-

sal techniques, but with support added for famous regions. The left-hand

side of each figure is the same data that was presented in figures 7.1 through

7.11; the right-hand side shows the results after adding fame support.

A comparison of the left and right hand sides of figures 7.12 and 7.13

shows that the addition of fame support makes little difference for the earley

benchmark, regardless of whether the benchmark uses a small or large amount

of memory. Likewise, figure 7.14 shows that fame support makes no signifi-

cant difference for the gcbench benchmark.

Figure 7.15 shows the potential benefit of the fame heuristic. The re-

membered set size on the left side, before fame support, often rises above

the size of the live heap, and costs a significant amount of time to traverse.

After the addition of famous regions, the remembered set regularly drops to

essentially zero size.
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Benchmark: earley13
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Figure 7.13: Traversals and fame comparison, earley:13

Benchmark: gcbench
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Figure 7.14: Traversals and fame comparison, gcbench
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Benchmark: nboyer
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Figure 7.15: Traversals and fame comparison, nboyer:5

The sawtooth pattern of the remembered set size in the right hand side of

figure 7.15 should not be surprising. The remembered set does not remain

empty forever; the fame heuristic does not attempt to predict what objects

will become popular ahead of time. Therefore one should expect to see the

remembered set size rise and suddenly fall as the number of objects pointing

into a region grows up to the fame threshold and then passes it.

Most importantly, the scan times in the right-hand side of figure 7.15

clearly show that the remembered set traversal is superior to both whole

and live heap traversal.

Figure 7.16 shows that fame has some small effect on sboyer, but it is

not a clear win in this case.

Figure 7.17 shows that fame has no effect on perm9, which is unsur-

prising; the point of fame is to reduce the remembered set size, and this

benchmark already has a tiny remembered set.

Figures 7.18, 7.19 and 7.20 shows that fame has no effect on the twobit

and gcold benchmarks.

Figures 7.21 and 7.22 shows that fame has no effect on the queue bench-
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Benchmark: sboyer
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Figure 7.16: Traversals and fame comparison, sboyer:6

Benchmark: perm9

 0

 500

 1000

 1500

 2000

 0  500  1000  1500  2000  2500

Scan Times (no fame support)

live heap
whole heap

rem. set

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 0  500  1000  1500  2000  2500

Scan Slots (no fame support)

whole heap
live heap
rem. set

 0

 500

 1000

 1500

 2000

 0  500  1000  1500  2000  2500

Scan Times : (with fame support)

live heap
whole heap

rem. set

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 0  500  1000  1500  2000  2500

Scan Slots : (with fame support)

whole heap
live heap
rem. set

Figure 7.17: Traversals and fame comparison, perm9
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Benchmark: twobit
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Figure 7.18: Traversals and fame comparison, twobit

Benchmark: gcold0
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Figure 7.19: Traversals and fame comparison, gcold:0
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Benchmark: gcold1k
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Figure 7.20: Traversals and fame comparison, gcold:1k

Benchmark: queue
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Figure 7.21: Traversals and fame comparison, queue
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Benchmark: pueue
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Figure 7.22: Traversals and fame comparison, pop-queue

mark, and that fame has a dramatic effect on the pop-queue benchmark.

The pop-queue benchmark was specifically devised to illustrate the behav-

ior of the regional collector on programs with popular objects. This confirms

that fame has little effect on programs with no popular objects and that fame

can greatly improve the effectiveness of a remembered set on programs with

popular objects.

7.5 Effectiveness of the remembered set

The data presented in figures 7.1 through 7.22 is all based on preliminary

instrumentation of a regional collector. Section 9.2 presents results includ-

ing comparisons of overall elapsed times and memory usage before and after

the addition of the fame heuristic.

Similar analyses measuring live storage versus time can be found in [16].

The main conclusions to draw from these figures are as follows.

• Using a remembered set is almost always more efficient than trying to

traverse the live heap image.
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• The focus provided by a remembered set can make traversing it more

efficient in many cases than traversing the whole heap via a direct

scan.

• A remembered set can be foiled by popular objects such as those found

in the nboyer and pop-queue benchmarks; adding support for famous

regions can make the remembered set more effective in such cases, as

illustrated in figures 7.15 and 7.22.

• There are still cases (figures 7.13, 7.16) where the remembered set is

not a clear win over a direct traversal of the whole heap.

Perhaps a hybrid approach to summary-set construction, that chooses a

traversal technique dynamically, is worth investigating in future work. But

absent further information, use of a remembered set in the regional collector

appears justified in almost all cases.



Chapter 8

Opportunities for concurrency and

parallelism

Four processes constitute the design of the regional collector: the mutator,

the collector, the summarizer, and the marker.

I chose this decomposition because I believe it has much potential for

making use of multi-core parallel processing hardware that has become ubiq-

uitous.

This raises two questions: how much concurrent execution do we ex-

pect to exploit from this decomposition, and what complications arise when

making a truly parallel version of the regional collector?

8.1 What can run in parallel

When running processes in parallel, one must consider what potential sources

of interference could arise from their concurrent execution.

It is sound for many processes to read the same data structure in par-

allel, but if one process wants to modify the data structure, then either it

must obtain exclusive access, or the whole system must be designed so that

modification will not interfere with the actions of the parallel processes.
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However, the meaning of the phrase “modify the data structure” is a little

fuzzy in the context of a language runtime with a copying garbage collec-

tor. In particular, there are two kinds of modifications one must consider.

The first class of modifications are high-level changes to the abstract ob-

ject graph, which are introduced solely by the mutator (all other system

processes should preserve the structure of the abstract object graph).1 The

second class of modifications consists of low-level changes to the memory

representation of objects, which are introduced by a copying collector when

it reclaims storage and reuses it as a destination for newly copied objects.

Running the mutator and collector processes in parallel is a heavily-

researched area. We are deliberately not attempting to develop a runtime

that does the same; we assume from the outset that concurrent collection

introduces too many complications and overheads. We want a design that

gives implementors more flexibility in how to implement their mutator and

their collector.

However, the summarizer and marker processes are much simpler than

the full-fledged collector process. In particular, they do not attempt to re-

claim the memory associated with unreachable objects, and they do not

modify the structure of the object graph. This makes them attractive candi-

dates for parallel execution.

The read actions performed by the summarizer and marker could inter-

fere with both classes of modifications (high- and low-level) listed above.

For this work, I assume that the complications introduced by designing

the summarizer or marker to run in parallel with the collector are compa-

rable to the difficulties of running the mutator in parallel with the collector.

That assumption is largely based on my gut-intuition; it may well be the

case that the collector could efficiently focus its attention on shuffling ob-

jects between regions that are unrelated to the regions being traversed by

1There is the potential exception of primitive data structures that must allow observa-

tion of the collection behavior, such as finalizers or weak references.
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the summarizer or marker. But I doubt it, based on investigations while

debugging prototype regional collectors. So the collector will not run in par-

allel with any of the other processes; when it runs, it will have exclusive

access to the heap and all of the meta-data.

What about the mutator? The mutator’s actions can also interfere with

the summarizer and marker. So it would seem like the mutator would also

require a lock on the heap when it runs. However, the mutator is already

obligated to invoke a write-barrier when it modifies the object graph; this

provides a hook where the system can avoid granting the mutator an exclu-

sive lock for its write actions. Instead, the write-barrier acts as a channel that

communicates the object graph changes to the summarizer and marker. Fol-

lowing a snapshot-at-the-beginning philosophy, mutator writes do not dis-

card information about the past object graph state, but instead funnel the

old and new arcs in the object graph through to the summarizer and marker.

The summarizer and marker work with a nondecreasing collection of infor-

mation about the object graph, regardless of what actions the mutator takes.

This effectively means that even though the mutator’s writes present po-

tential for a read-write conflict between it and the summarizer and marker

processes, it is feasible to use the write-barrier to mediate the conflict. Thus

we can treat the mutator, summarizer, and marker as parallel readers, while

the collector is the sole writer.

8.2 How to make it work

A multiple-reader/single-writer locking mechanism is straight forward to

construct atop more primitive mutex and condition variable abstractions;

see for example section 7.1.2 of [13].

Many other complications already have to be handled in a merely incre-

mental, not parallel, setting. For example, an incremental summarizer and

marker must yield periodically to the collector; choosing the appropriate
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grain of work unit and making their internal data-structures properly re-

spond to the actions of the collector is a key task of making them incremen-

tal. See for example the event sequence presented in section 4.6.1, which

describes a scenario that is fundamentally due to the processes operating

incrementally and allowing control shifts between them.

In my prototypes so far, I have chosen one of the simplest units of work

for the summarizer’s scanning action: a whole region. If the mutator re-

quests a collection, it must wait until the summarizer has finished scanning

the region it is in the midst of, if any (or rather, the portion of the remem-

bered set for that region). This approach was not applicable to the incre-

mental marker, since it does not traverse the object graph region-by-region;

there I kept a count of the number of arcs traced and used that to bound the

amount of time the marker spent during any traversal step.

A bigger complication is the mutator’s write-barrier. It may be possible

to design the data structures of the summarizer and marker to allow the mu-

tator to feed them information in a lock-free manner, but determining how

to do this was out of the scope for this project. Instead, since the collector

periodically interrupts the work of all the other processes to claim exclusive

access to the heap, I chose to take advantage of that as a synchronization

point. The mutator’s write barriers, in addition to their work adding entries

to the remembered set, also update logs for the summarizer and marker. The

summarizer log tracks newly-introduced arcs from field A.f to object B; the

marker log tracks the previous value held in A.f. Then when the collector

runs, it folds those logs into the state of the summarizer and marker. In the

case of the summarizer, it adds new entries to the summaries (both those

under-construction and those that have been completed). In the case of the

marker, it enqueues the log entries onto the mark stack, as appropriate for a

snapshot-at-the-beginning system.
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8.3 Caveats

The prototype described in this document does not yet support parallel exe-

cution of the summarizer or marker processes. It is beyond the scope of this

project to add support for parallel tasks to the Larceny runtime, the test-bed

for the research. I have outlined above the main issues I encountered while

developing a smaller model of the system and then attempting to make it

parallel. This should not be considered an exhaustive list of the problems

one would encounter in a real-world implementation.





Chapter 9

Evaluation

This chapter presents data comparing the performance of the regional col-

lector in various configurations with established generational and stop-and-

copy collector technologies.

On programs that do not need much live memory at once, the regional

collector is intended to behave more like a standard generational collector

than a stop-and-copy collector. On programs that require large amounts

of live storage, the regional collector will not behave like either of them,

because both of the others will have occasional pauses of significant length,

while the regional collector’s pauses should never exceed a fixed bound.

9.1 Tiny Benchmarks

This section presents the performance of the regional collector on a set of

“small programs”: programs which do not need much memory because their

peak volume of live objects is small.

Such programs are worth investigating because one does not want to

pay much overhead for scalability guarantees when not intending to scale

an application to large heaps.

By design, if the heap does not get large relative to the size of a region,

then the regional collector should behave similarly to a generational collec-
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tor. Both reap the benefits of a nursery, and since the heap is small, the

regional collector’s remembered set cannot grow terribly large.

I evaluate how well the regional collector satisfies this goal by running

the regional collector on a large body of small benchmark programs. I com-

pare the performance of the regional collector (in a few different configura-

tions) to the performance of a stop-and-copy and a generational collector.

Each of the benchmarks in this section was run on top of six different run-

time configurations. The reason for six configurations is to show how similar

the regional collector is to the generational collector on most programs, as

explained below.

The performance characteristics of the generational collector largely de-

pend on the size of its nursery, which is a parameter of the runtime system

for both the generational and the regional collectors. In this section, I have

run the generational collector with a 1 megabyte nursery (its default setting

on Larceny at this time my research was initiated) and a 4 megabyte nursery

(its current default setting).

I have also run the regional collector with a 1 megabyte nursery and a

4 megabyte nursery (both with a region size of 8 megabytes) in order to

answer the following question: does changing the nursery size largely affect

the regional collector in the same manner that it does the generational col-

lector? If so, then that provides evidence that the regional collector behaves

much like the generational collector on the benchmarks in this section.

I have also run the regional collector with a 1 megabyte nursery and re-

gion size of 4 megabytes, because that is a configuration of the collector I

will be discussing later when I talk about scalability on gc-intensive bench-

marks.

On each benchmark, the following figures present a stack of three bar

charts. Each chart presents a different aspect of a benchmark’s behavior

when run atop various runtime configurations.

• The top chart in each figure shows the maximum mutator pause time
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observed over the program run.

• The middle chart shows the peak memory usage of each collector. The

bar is broken down into the memory used by the mutator (the heap),

which consumes the bulk of memory for most of these programs, and

the meta-data for each of the collector’s distinct subcomponents (the

marker’s bitmap and stacks, the summarizer’s summary sets, and sys-

tem’s remembered set).

• The bottom chart shows the total elapsed time to run the benchmark.

The bar is broken down into the time spent in the mutator, the Cheney

collector, the incremental summarization coroutine, and the incremen-

tal marker coroutine.

In all three of the stacked charts, smaller bars are better.

In most of these non-gc-intensive programs, the elapsed time is domi-

nated by mutator activity. Also, in many of these tiny programs, the elapsed

mutator time is independent of the collector technology (but this is not the

case in general).

The chart presentation is organized first by benchmark program, then by

collector technology and parameters. Each benchmark, which is labeled at

the bottom of the figure, has six columns associated with it. The first three

columns for each benchmark are the stop-and-copy and the two generational

configurations (first the large nursery and then the small one). They are

standard technology. The last three columns for each benchmark are three

configurations of the regional collector: first the large nursery and large

region size, then the small nursery with large region size, and finally the

small nursery with small region size.

There are three main expectations for this data. First, on most small

programs, the regional collector should act like the generational collector;

in particular, its behavior should mostly depend on its nursery size, as that

is what largely dictates the behavior of a generational collector. The two
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generational columns are for a large and small nursery, and the three re-

gional columns are for a large, small, and small nursery. So, for the most

part, the second column (generational, 4 MB nursery) should look much like

the fourth column (regional, 4 MB nursery). and the third column (gener-

ational, 1 MB nursery) should look much like the fifth and sixth columns

(regional, 1 MB nursery).

Second, on most programs the regional collector should behave more

like a generational collector than like a stop-and-copy collector. So the dif-

ferences among the last five columns (generational and regional collector

configurations) should tend to be small in comparison to how much they all

differ from the first column (a stop-and-copy collector).

Third, the heaps never get terribly large, so I expect the pause times to

be relatively small compared to when the heaps get large in section 9.2. The

regional collector’s maximum pauses for these small benchmarks may be

worse than the generational collector’s maximum pauses, but that is a result

of the generational collector doing particularly well on those benchmarks.

The regional collector design does not promise to always provide the best

maximum pause times; it merely guarantees that its pauses will never exceed

a program-independent fixed upper bound.

In figure 9.1, we see five benchmarks. For these five, the maximum pause

time of the stop-and-copy collector dwarfs that of the generational and re-

gional collectors. In four of the five benchmarks, the peak memory usage

bars follow a pattern, indicating that the choice between genera-

tional and regional technologies is insignificant in comparison to the choice

of nursery size. Likewise, the elapsed time results follow a either a

(all elapsed times are about the same) or a pattern (the stop-and-

copy collector takes significantly more time; note the thick solid bar repre-

senting time dedicated to Cheney style copying garbage collection). This

indicates that for these small programs, the choice between generational

and regional technology is irrelevant compared to the benefit of either tech-
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Figure 9.1: Collector comparisons, small programs 1
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Figure 9.2: Collector comparisons, small programs 2

nology over a stop-and-copy collector.

In figures 9.2, 9.3, 9.4, 9.5 and 9.6, the patterns in the maximum pause

times mostly match those of figure 9.1. The peak memory usage results are

inconclusive for these benchmarks. Sometimes the regional collectors use

a bit more memory than the other two technologies, but there are cases
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Figure 9.3: Collector comparisons, small programs 3
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Figure 9.4: Collector comparisons, small programs 4
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Figure 9.5: Collector comparisons, small programs 5
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Figure 9.6: Collector comparisons, small programs 6
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Figure 9.7: Collector comparisons, small programs 7

like the compiler benchmark (figure 9.2) where the generational collector

has the largest peak memory usage. The elapsed time results again indicate

that for these small programs, the choice between generational and regional

technology is irrelevant compared to the difference between such technolo-

gies and a stop-and-copy collector.1

Figure 9.7 presents some interesting behaviors worth pointing out. The

elapsed time results for the paraffins benchmark follow a pattern,

again indicating that the difference between generational and regional is

insignificant compared to the choice of nursery size (the small bars corre-

spond to a 4 megabyte nursery, while the last three large bars correspond

to a 1 megabyte nursery). The data for parsing:test.sch indicates a non-

trivial relationship between collector technology and peak memory usage.

The pattern indicates that generational/regional sometimes performs

1There are cases like the dynamic benchmark (figure 9.3) where the stop-and-copy

collector performs a bit better than generational/regional with a 1 megabyte nursery; the

point is not that generational/regional technologies provide a guaranteed benefit, but rather

that on most small benchmarks, the regional collector behaves like a generational one, for

better or for worse.



9.1. TINY BENCHMARKS 133

better than stop-and-copy, sometimes worse, and it is not clear what role the

nursery is playing in these results, as a 4 megabyte nursery consistently wins,

but a 1 megabyte nursery loses in two out of three cases.

Finally in figure 9.7, the data for the perm9 benchmark, the first case

among the small benchmarks where the max pause duration is significant

for the regional collector, shows two interesting pause time characteristics

in its pattern. First, the staircase effect for the final three bars shows

that the max pause time for the regional collector clearly depends on both

nursery size and the regional size; as either decreases, the maximum pause

time decreases. Second, on this benchmark the regional collector’s maxi-

mum pause time is worse than that for the stop-and-copy and generational

collectors; moreover, its maximum pause time approaches 130 milliseconds,

significantly larger than any of the other maximum pauses in the remaining

data for the small benchmarks. The pause time for the regional collector

on this benchmark, and thus the worst-case bound on the regional collec-

tor’s pause time, is significantly larger than what one typically witnesses for

established garbage collector technology on most small programs. In gen-

eral, the worst-case bound of the regional collector has no relationship to

the pauses observed on typical small programs. The goal of the regional col-

lector is to bound the pauses on programs using large amounts of memory,

as discussed in section 9.2.

The peak memory usage and elapsed time for the perm9 benchmark is

also interesting. It is one of the few cases among the small benchmarks

where the regional collector requires significantly more memory than both

the stop-and-copy and generational collectors. Likewise the regional collec-

tor requires significantly more elapsed time; some of that can be charged

to the incremental marker, but clearly a significant portion is due to time

spent doing extra Cheney collection. The Cheney collection time and extra

memory usage is an indication that the regional collector is suffering more

from floating garbage than the other collector technologies. This benchmark
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Figure 9.8: Collector comparisons, small programs 8
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Figure 9.9: Collector comparisons, small programs 9

clearly illustrates an interesting atypical case.

The data presented in figures 9.8 and 9.9 mostly match the patterns pre-

sented in figure 9.1. The pattern resurfaces in several of the peak

memory usage charts, and the maximum pause of the stop-and-copy collec-

tor again dwarfs the generational and regional collectors.
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Figure 9.10: Collector comparisons, small programs 10

In figure 9.10, the elapsed times for the slatex benchmark follow a

pattern, indicating that using the regional collector with a small

nursery and small region size, which was previously shown to have the best

pause time bound (observed), does have a potential cost, as that configura-

tion adds additional overhead to the mutator’s running time on this bench-

mark.

In figure 9.11, the peak memory usage for the tail benchmark follows a

pattern, indicating that the regional collector can be better or worse

than the other two technologies depending on nursery and region size.

Figure 9.12 shows three final small benchmarks where all of the collec-

tors have the same performance characteristics.
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Figure 9.11: Collector comparisons, small programs 11
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9.2 Big benchmarks, and the big picture

The regional collector does not behave like a generational one on programs

that have large amounts of live storage. On such programs, generational

collectors often have fewer significant pauses than a simple non-incremental

stop-and-copy collector, but the pauses still occur occasionally.

A regional collector’s pauses should never exceed a fixed bound. This

does not mean that a regional collector’s pauses will always be shorter than

those of a stop-and-copy or generational collector. This is not just a hypo-

thetical statement; several of my benchmark programs are cases where the

longest pause of a generational collector is shorter than the longest pause of

the regional collector, and this is reflected in the data described below.

Note also that the set of runtime configurations (the subdivisions within

a group) is totally different for this set of data than in the previous sec-

tion. In particular, I am no longer trying to illustrate similarities between

generational and regional collection, but rather their differences, as well as

illustrating the trade-offs when varying the parameters of the regional col-

lector.

The set of runtimes benchmarked here are:

• The stop-and-copy collector.

• The generational collector (with a 4 MB nursery).

• Three configurations of the regional collector (see below), with fame

support (see section 7.3.2).

• Finally, the same three regional configurations were run again, but

with region fame disabled.

My main goal in analyzing three configurations of the regional collec-

tor was to explore the effect of varying the popularity factor, S. It is not
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generally possible to vary S without having also to vary one of the other pa-

rameters of the collector. (One could choose extremely conservative values

for all the regional collector’s parameters, but such conservative configu-

rations would not yield useful comparisons against the stop-and-copy and

generational collector configurations.)

Therefore, I selected three sets of configurations that occasionally yield

interesting differences in behavior.

The first configuration is one that Will Clinger discovered during early

experiments with the system; it uses a relatively large value of 8 for the

popularity factor S, and a minimal number of summarization scan attempts

(F3 = 1).

The second and third are configurations I found more recently, in an

effort to find reasonable configurations with smaller values for S.

The first regional configuration is: F1 = 2, F2 = 2, F3 = 1, S = 8. The

second regional configuration is: F1 = 1.75, F2 = 2.75, F3 = 2, S = 6. The

third regional configuration is: F1 = 2, F2 = 3, F3 = 2, S = 4.

9.3 The big benchmark suite

This section presents the same pause/memory/time charts in the same style

shown earlier, but now for a set of benchmarks where the collector must

manage a large amount of memory. In particular, the benchmarks evaluated

are those presented in chapter 7 (figures 7.12 through 7.22).

Figure 9.13 shows the max pause, peak memory, and overall elapsed

time for earley:10, earley:13, and gcbench. The earley:10 benchmark

is short running and does not require much heap memory; the pause times

for all runtime configurations for earley:10 are also relatively short. The

earley:13 benchmark data illustrates an effect of scaling up the problem

size to a larger heap (reflected in the larger bars of the middle chart). Now

the collector’s summarization and mark state occupy a non-trivial amount
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Figure 9.13: Collector comparisons, big programs 1

of memory, though the size of this meta-data still pales in comparison with

the overall heap. The summarization state is largest with configuration Fi =

[2, 2, 1]; this makes sense, because the fraction of regions with summaries

is bounded from above by 1/(F1F2), which is maximal when the product

F1F2 is minimal. With Fi = [2, 2, 1], the product F1F2 = 4, while for the

other two regional runtime configurations the product F1F2 is 4.8125 and

6, respectively. The memory saved with larger values for F1F2 does not

come without cost; when a smaller fraction of the regions have summaries,

more summarization cycles are necessary relative to the number of collection

cycles, which costs more in overall elapsed time. This fact is reflected in

the elapsed time chart at the bottom, where the summarize portion of the

bars grows significantly for the configurations with Fi = [1.75, 2.75, 2] and

Fi = [2, 3, 2] in the earley:13 benchmark.

The maximum pauses for all runtimes in earley:13 are significantly

longer than those when running earley:10. Two configurations of the re-

gional collector have max pause times competitive with the stop-and-copy

and generational variants, while one configuration (Fi = [1.75, 2.75, 2]) has
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Figure 9.14: Collector comparisons, big programs 2 (boyer family)

a longer max pause time.

The gcbench benchmark data do not vary quite so much in response to

changes in the runtime configuration. The maximum pause times for the

regional collector are essentially the same regardless of the Fi setting. This

gcbench data also repeats the illustration that higher values for the product

F1F2, which reduces the fraction of summarized regions, yields an increase

in the overall time spent performing summarization; however, in this case

summarizing a larger fraction of the regions does not uniformly cost more

as it did for earley:13.

The data in figure 9.13 makes it clear that effect of the fame heuristic is

insignificant for these benchmarks; each column of data with fame turned

on looks essentially the same as the column with fame turned off. This

matches what one would predict from the instrumentation data presented

in figures 7.12, 7.13, and 7.14.

Note that all of the pauses in figure 9.13 are relatively short; the y-axis

of figure 9.13 only goes up to 250 milliseconds, while the other figures go

up to 1400, 900, 300, and 4000 milliseconds respectively.
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Figure 9.14 shows the max pause, peak memory, and overall elapsed

time for 5nboyer:5, 5nboyer:6 (the same benchmark but scaled to a larger

problem size, denoted by the :6 suffix), and 5sboyer:6 (the same bench-

mark, but now modified to use “sharing cons” [6]). The two nboyer runs

heavily stress the summarization routine. As noted in section 7.4’s analysis

of figure 7.15, nboyer is a benchmark where the benefit of the fame heuristic

is quite significant. These results are repeated here, as one can see by noting

how the size of the green summarize elapsed-time bar drops significantly in

both the 5nboyer:5 and 5nboyer:6 benchmarks.

In the 5sboyer:6 benchmark, fame does not make an impact, probably

because the use of “sharing cons” implies that fewer distinct objects are gen-

erated, and so while there may be more sharing of values overall in this

benchmark, no individuals become as “popular” as in nboyer. The maxi-

mum pause times for the regional collector remain bounded but are larger

on sboyer than for any of the other benchmarks evaluated; I have not iso-

lated what characteristic of this benchmark yields the increase in maximum

pause time compared to nboyer. However, I repeat here that the goal of

this design is not to provide pause times that are always shorter than what

one might achieve via a stop-and-copy or generational collector, but rather

to provide a bound on the pause times.

The data from the 200perm9:10:1 and 400perm9:20:1 benchmarks, pre-

sented in figure 9.15, is interesting in two ways. First, it illustrates that

the maximum pause time for the regional collector remains stable even as

the problem size is scaled up; note that both the stop-and-copy and genera-

tional collector’s max pause time more than doubles as the perm benchmark

is scaled up. Second, as the problem size increases, the amount of time spent

doing Cheney copying collections goes up for all of the runtimes. This added

cost is exacerbated in the regional collector, so that the blue Cheney elapsed-

time bar is quite large in 400perm9:20:1. Note that the regional collector’s

Cheney elapsed-time bars were already large compared to the other two col-



142 CHAPTER 9. EVALUATION

 0 100 200 300 400 500 600 700 800 900 Max pause (in milliseconds)
pause

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08 Peak memory usage (in words)
marker
summ

remset
heap

rts

 0
 20000
 40000
 60000
 80000

 100000
 120000

St
op

+C
op

y

G
en

R
gn

 2
21

 S
=8

R
gn

 2
21

 S
=8

 F
am

e

R
gn

 1
22

 S
=6

R
gn

 1
22

 S
=6

 F
am

e

R
gn

 2
32

 S
=4

R
gn

 2
32

 S
=4

 F
am

e

St
op

+C
op

y

G
en

R
gn

 2
21

 S
=8

R
gn

 2
21

 S
=8

 F
am

e

R
gn

 1
22

 S
=6

R
gn

 1
22

 S
=6

 F
am

e

R
gn

 2
32

 S
=4

R
gn

 2
32

 S
=4

 F
am

e

St
op

+C
op

y

G
en

R
gn

 2
21

 S
=8

R
gn

 2
21

 S
=8

 F
am

e

R
gn

 1
22

 S
=6

R
gn

 1
22

 S
=6

 F
am

e

R
gn

 2
32

 S
=4

R
gn

 2
32

 S
=4

 F
am

e

Elapsed time (in milliseconds)

200perm9:10:1 400perm9:20:1 5twobit:long

marker
summ

cheney
mutator

Figure 9.15: Collector comparisons, big programs 3
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Figure 9.16: Collector comparisons, big programs 4 (GCOld family)

lectors for 200perm9:10:1. This illustrates a clear cost in overall elapsed

time for employing the regional collector on the perm benchmark.

Figure 9.16 shows the GCOld benchmark. On the left, the parameters are

set so that the benchmark performs no mutations; here the regional collector

competes well on all fronts. On the right, the benchmark performs a signif-
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Figure 9.17: Collector comparisons, big programs 5 (queue family)

icant number of mutations, and this incurs significant relative overhead in

memory and time for the regional collector; however, its pause times remain

stable.

Finally, figure 9.17 shows the queue and pop-queue benchmarks. Once

again, the regional collector’s pause time remains stably bounded, at some

cost in elapsed time. In the pop-queue benchmark, the fame heuristic makes

a significant difference in overall elapsed time. This is unsurprising, since

the pop-queue benchmark was specifically constructed to illustrate how each

system deals with popular objects, and the fame heuristic is specifically de-

vised to address that problem in the regional collector.
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9.4 Big benchmarks, Observed utilization

In previous sections, I have argued that regional collectors provide worst-

case bounds on MMU, and provided a high-level proof of why this should be

true.

Unfortunately, my prototype, like many real-world systems, is a large and

complicated code base. I cannot hope to formally prove that it has worst-

case bounds on MMU. (Furthermore, such a proof may well fail due to bugs

in the prototype.)

However, I can provide evidence for the claim that regional collectors

provide worst-case bounds on MMU, by presenting the observed MMU.

In these graphs, the x-axis is the window size (on a log scale) and the

y-axis is the minimum fraction of time that the mutator received for its own

utilization. Note that the range of the y-axis does not always go to 1.

Many of these charts are not flattering towards the regional collector. The

percent utilization is often quite low (MMU is a harsh metric). But it does

seem that there is a window size where, for every benchmark, the regional

collector’s MMU is non-zero. Most importantly, this remains true even when

the heaps get large.

We saw previously (pages 140, 142, 143) that the benchmarks with the

largest memory usage are nboyer:6, perm, queue, and pop-queue. These

are the important cases when asking questions about scalability; and these

are the cases where the MMU for the regional collector shines; see below on

pages 147, 149, and 151.

Figures 9.18 and 9.19 plot the minimum mutator utilization for the

earley benchmark running on the different runtime configurations analyzed

in section 9.2. In both cases the stop-and-copy and generational collectors

exhibit better minimum mutator utilization than any configuration of the

regional collector.

It is to be expected that when the stop-and-copy and generational collec-
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Figure 9.20: GCBench:5:20 MMU

tors have relatively small maximum pause times that they would also have

quite impressive minimum mutator utilizations, because in both cases once

a major collection has been completed, the heap is adjusted relative to the

amount of live storage; with Larceny’s inverse load factor of 3, this guar-

antees that there is a lot of space available for new allocation/promotion

before the next major collector. Thus the pauses in both technologies are

widely spread apart. If the maximum pause for a benchmark is short, then

the minimum mutator utilization (for window sizes significantly larger than

that maximum pause time) will be large for these two garbage collection

technologies.

The regional collector also increases its maximum allowed heap size,

but policies that drive the collection of regions force major collections more

frequently for the regional collector than for the stop-and-copy and genera-

tional collectors.

Figure 9.20 plots the minimum mutator utilization for the GCBench bench-

mark. Again, the other two runtimes exhibit better minimum mutator uti-

lization than any configuration of the regional collector.



9.4. BIG BENCHMARKS, OBSERVED UTILIZATION 147

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 100  1000  10000

5nboyer:5

Stop+Copy
Gen

Rgn 221 S=8 Fame
Rgn 122 S=6 Fame
Rgn 232 S=4 Fame

Figure 9.21: 5nboyer:5 MMU

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100  1000  10000

5nboyer:6

Stop+Copy
Gen

Rgn 221 S=8 Fame
Rgn 122 S=6 Fame
Rgn 232 S=4 Fame

Figure 9.22: 5nboyer:6 MMU

While the regional collector has a guaranteed minimum mutator utiliza-

tion, that is not a guarantee that it will outperform the other runtimes in all

cases.

Figures 9.21 and 9.22 illustrate this point. They present the MMU data

for the nboyer benchmark. In this cases, both the stop-and-copy and gen-
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Figure 9.23: 5sboyer:6 MMU

erational collectors have zero utilization at small window sizes. This under-

scores the point that these technologies have high minimum mutator utiliza-

tion only at window sizes that are significantly longer than their maximum

pause times. As the maximum pause time grows, the number of window

sizes that are large enough dwindles; in 5nboyer:6, one must employ a win-

dow longer than a second before seeing non-zero minimum utilization for

the two non-regional collectors. The regional collector’s minimum mutator

utilization curve remains consistent.

Figure 9.23 presents the minimum mutator utilization for the 5sboyer:6

benchmark. As mentioned in section 9.2, the regional collector’s maximum

pause times are larger for sboyer than for any other benchmark I evaluated.

Thus its minimum mutator utilization suffers, yielding zero minimum uti-

lization in more cases. however, the regional collector configuration with

Fi = [232] and S = 4 does achieve non-zero utilization at window size 300.

Figures 9.24 and 9.25 quite dramatically illustrate that the regional col-

lector behaves in a consistent manner with respect to minimum mutator

utilization. As the perm benchmark’s problem size is scaled up, the two
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non-regional collector’s both have zero minimum utilization at steadily in-

creasing window sizes, while the curves for the regional collector remain

relatively stable.

Figure 9.26 illustrates another case where the non-regional collectors

exhibit high minimum mutator utilization at all window sizes.
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Finally, figures 9.27 and 9.28 illustrate a near worst-case benchmark for

the non-regional collectors; their maximum pause time is so long that they

exhibit zero minimum utilization at window sizes of 2 and 3 seconds. The

regional collector, on the other hand, exhibits a small but non-zero minimum

utilization at several window sizes in the sub-second range.





Chapter 10

Related Work

This chapter discusses related research efforts.

10.1 Generational garbage collection

Historically the idea of generational collection was introduced by Lieberman

and Hewitt [23]. A simplification of that design was first implemented by

Ungar [28]. Most generational collectors implemented today are modeled

after Ungar’s, but our regional collector’s design is more similar to that of

Lieberman and Hewitt.

10.2 Heap partitioning

Our regional collector is centered around the idea of partitioning the heap

and collecting the parts independently, which dates at least back to Bishop [8];

his work targets Lisp machines and requires hardware support.

The Garbage-First collector of [18] inspired many aspects of our regional

collector. The garbage-first collector does not have worst-case bounds on

space usage or pause times.

The Mature Object Space (a.k.a. Train) algorithm of [21] uses a fixed

policy for choosing which regions to collect. To ensure completeness, their
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policy migrates objects across regions until a complete cycle is isolated to its

own train and then collected. This gradual migration can lead to significant

problems with floating garbage. We use a concurrent marker to provide

collection completeness and non-directional remembered sets to allow more

flexible policies.

The Beltway collector of [9] uses a heap partitioning infrastructure to

enable flexible selection of policies expressive enough to emulate the be-

havior of semi-space, generational, renewal-older-first, and deferred-older-

first collectors. They demonstrate more flexible policy parameterization can

improve significantly upon a fixed generational collection policy. Unfortu-

nately, in the Beltway system one must choose between incremental or com-

plete collection. Our design achieves both.

The MarkCopy collector of [26] partitions the heap into fixed sized win-

dows. During a collection pause, it constructs precise points-into remem-

bered sets via a whole-heap marking pass. The authors claim the system

could support real-time constraints via extensions that perform the copy-

ing and the marking incrementally, but only implemented and benchmarked

incremental copying.

10.3 Bounding collection pauses

There is a broad body of research on bounding the pause times introduced by

garbage collection, including [2, 5, 7, 11, 12, 20, 24, 30]. Several attempts

to reduce pause times run afoul of the problem that bounding an individual

pause is not enough; one must also ensure that the mutator can accomplish

an appropriate amount of work in between the pauses, keeping the processor

utilization high.

Blelloch and Cheng [10, 15] describe a real-time concurrent copying col-

lector with proven bounds on pause times and space usage, and also in-

troduce the notion of minimum mutator utilization as a metric for evaluat-



10.3. BOUNDING COLLECTION PAUSES 155

ing how much progress the mutator can make concurrently with collection.

They report that supporting parallelism adds 39% overhead to the collection

time and supporting real-time constraints adds an additional 12% overhead.

Metronome [4] is a hard real-time collector. It is mostly non-moving,

but will copy objects to reduce fragmentation. Metronome requires a read

barrier, but its developers managed to reduce the read-barrier overhead to

an impressive average of 4%. Metronome must also be provided with ap-

plication’s maximum memory consumption and maximum allocation rate

in order to meet its bounds; if these mutator-specific parameters are under-

estimated, Metronome may exceed its predicted time and space bounds.

In contrast to Metronome, our regional collector is mostly copying and

has no read barrier. It does not make any hard real-time guarantees, but pro-

vides scalability guarantees independent of the mutator. Our collector is a

different point in the design space. Our collector’s worst-case guarantees are

independent of the mutator; Metronome, however, must be tuned to a par-

ticular mutator, and its worst-case guarantees hold only for the mutator to

which it is tuned. For any fixed mutator, I would expect Metronome’s worst-

case guarantees to be better than our mutator-independent guarantees, but

deriving Metronome’s mutator-dependent parameters with sufficient preci-

sion represents a significant burden to a developer using Metronome.

A fairer comparison would be to employ a hypothetical set of parameter

values that are sufficiently conservative to allow Metronome to support an

arbitrary application, thus providing a mutator-independent configuration.

Metronome’s worst-case performance under such a configuration has not

been described in the literature, and it is not even clear whether a sufficiently

conservative set of parameters can be found.

On typical programs, for which our regional collector’s performance is

nearly indistinguishable from that of a conventional generational collector, it

should deliver better throughput than Metronome. But the most important

point is that our regional collector imposes no requirement on the client
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to estimate memory consumption nor allocation rate, since its scalability

guarantees are mutator-independent.

10.4 Concurrent collection

There are many treatments of concurrent collectors dating back to [19],

which specifically points out how difficult they are to implement correctly.

In our collector, reclamation of dead object state is not performed concur-

rently. We believe this makes our design significantly easier to understand

and implement, because it is not fully concurrent.

Enabling concurrent summarization of the portion of the remembered set

relevant to scheduled collections was inspired by the performance of Detlefs’

concurrent refinement of the remembered set to reduce time spent scanning

objects during collection pause [17].

Extending our design to use concurrent processes to remove some scan-

ning and tracing work from the critical path of the collector requires a write

barrier. Larceny already inserts a write barrier to support its generational

collector; we piggy-back the new regional write barrier atop the genera-

tional barrier already present. This is similar to how [25], building on the

work of [11], merges the overhead of maintaining concurrency-related in-

variants with the overhead of maintaining generational invariants.

Another mark-sweep collector that uses a variant of snapshot-at-the-

beginning is [3]; in that context, snapshot-at-the-beginning removes the

need for a global stop-the-world pause, which is useful in the context of

systems with many mutator threads. We use a snapshot-at-the-beginning

marker to ensure collection completeness; Sun’s garbage-first collector shows

that collectors similar to ours can still support a reasonable number of mu-

tator threads.
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Future Work

This chapter discusses ideas for future research.

11.1 Distributed collection

This document presented a prototype regional collector that performs sum-

marization and marking in an incremental fashion; it did not make use of

parallel processors. Chapter 8 discussed some ideas for how that extension

would work.

A step beyond the presentation of Chapter 8 would be to see if the ideas

here are applicable in a distributed garbage collection setting. The collec-

tion of any particular region is a local process, which is a good sign. Build-

ing a complete summary is global, but the scan of each region when doing

such construction appears to be local. Two interesting questions are: (1)

how to efficiently communicate the results of summarization between the

distributed nodes, and (2) how to perform the snapshot-at-the-beginning

marking in a distributed fashion. In fact, the latter problem of the marker

seems like it is another instance of the original problem: How to perform

distributed garbage collection. Perhaps the real question is whether there

would be a benefit to layering a regional collection scheme on top of a pre-

existing distributed garbage collector.
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11.2 Operating system integration

In the prototype presented here, the region meta-data was maintained en-

tirely by the runtime system, without any support from the virtual memory

subsystem of the operating system. This was a design decision: the Larceny

runtime is portable across multiple operating systems, and we wanted to

maintain that when adding the regional collector.

Would there be any benefit to abandoning that design constraint, and

tying the regions of this collector into the virtual memory subsystem? For

example, would write-protecting the pages associated with a region under-

going a summarization scan allow a more efficient write-barrier? Appel re-

ports retrospectively [1] that repurposing virtual memory functions for this

may not work as well as one would hope, but perhaps just isolating the re-

purposing to the summarization or snapshot marking would be reasonable.

11.3 Language integration

This research focused on changing the garbage collector in a virtual ma-

chine. Our prototype test-bed was a Scheme runtime, but the ideas apply

more broadly.

One interesting research avenue would be to extend the programming

language by exposing the notion of regions at a level visible to the applica-

tion programmer.

For example, the programmer may have knowledge about what classes

of objects are likely to be popular. A programming language feature that al-

lowed such objects to be statically annotated as “popular,” and subsequently

kept isolated to a distinct region that the collector classifies as popular at

the outset, may allow for more efficient overall execution of the regional

collector, since it would not waste time building summaries for regions that
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are likely to be waved off. This sounds similar to generational systems that

allow pre-tenuring of objects.

Another example: The reference structure of the heap may follow pat-

terns that can be statically described. For example, objects of class X may

have references to those of class Y , but never in the other direction from

Y to X. If that information were fed into the regional collector, it could

potentially allocate each class to its own region, and subsequently choose

an ordering for region summarization and/or collection that would avoid

processing the references into objects of class Y until after the objects of

class X have been processed. Such effort may benefit from integration with

region-based1 memory-management schemes [27].

11.4 Tool integration

If we keep the programming language unchanged, the regional collector

could be integrated into the development tools for that language. For ex-

ample, the summarization process is building up a structure of incoming

references to a region; knowledge of that structure, such as the origins of

the references (or even just a count of incoming references), could be useful

information to provide to a developer profiling an application’s behavior.

1 The similarity in terminology is a historical accident; Tofte and Talpin’s technology is

unrelated to that presented here.





Chapter 12

Conclusion

I have described and prototyped a regional collector, which is a new kind of

generational garbage collector.

I have proved that the regional collector is scalable: It guarantees worst-

case bounds for gc latency, minimum mutator utilization, and space usage,

independent of the peak live storage and mutator behavior.

The regional collector incorporates novel and elegant solutions to the

problems presented by popular objects and floating garbage. The fame

heuristic introduced in chapter 7 handles one common source of remembered-

set size blowup.

The overheads introduced by the incremental summarization and mark-

ing coroutines are not insignificant. The regional collector was explicitly

designed to allow these processes to be offloaded onto additional proces-

sor cores. Future research efforts should investigate what effect that change

would make.

I have prototyped the regional collector and analyzed its behavior on a

large set of benchmarks, both gc-intensive and not, to illustrate its perfor-

mance. The gathered data show that on non gc-intensive benchmarks, the

regional collector performs as well as a generational collector, and on gc-

intensive benchmarks, the regional collector meets its scalability goals while

remaining competitive with a stop-and-copy collector.
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The regional collector maintains a bounded pause time and bounds the

amount of memory overhead beyond the heap structure. Since the regional

collector also ensures that the mutator time between pauses is bounded from

below, this ensures that its minimum mutator utilization is also bounded

from below.

Regional garbage collection with summarization, wave-off, and snap-

shot refinement, provides mutator-independent worst-case bounds on

pause times and minimum mutator utilization, and provides competi-

tive throughput while maintaining a worst-case bound on overall mem-

ory usage.
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