
Scalable Garbage Collection
with Guaranteed MMU

Felix S Klock II (pnkfelix@ccs.neu.edu)
William D Clinger (will@ccs.neu.edu)

1

mailto:pnkfelix@ccs.neu.edu
mailto:pnkfelix@ccs.neu.edu
mailto:will@ccs.neu.edu
mailto:will@ccs.neu.edu

Problem: Garbage Collection

• Naїve GC introduces pauses

• Generational GC introduces (infrequent) pauses

- Still disruptive and annoying for users

• Real-time / incremental / concurrent can eliminate
delays

- but at significant cost

2

Goal:
Scalability in space and time

3
SPACE: GC META DATA + BOUNDING FLOAT. TIME: PAUSE TIMES, MMU. (Not worried so much about very fine-
grained control flow between collector and mutator, but rather the experience for the end-user in interactive
applications.)

Control Space:
Metadata & Floating Garbage

META DATA; FLOAT

Control Time:
Max Pause as metric?

(an artificial illustration)

Minimum Mutator
Utilization (MMU)

[Cheng and Blelloch ’01]

interval

interval

Our Scalability Theorem

For a! mutators, no matter what the mutator does:

1. Max GC pause length is independent of heap size

2. MMU bounded from below, independent of heap
size

3. Memory usage is O(P), where P = peak volume of
reachable objects

13
- Most incremental collectors do not provide theorems like this
- Blelloch and Cheng ’99 is an important exception, but they only provide (1) and (3), not (2).
- We believe they could have proven (2.) after they introduced MMU in 2001, but constant overheads are unclear

“Simple” Idea

• Partition heap into fixed sized “regions”

• Collect each region independently

• Since regions are bounded in size, can do this in
bounded time, right (?)

14

“Simple” Idea

• Partition heap into fixed sized “regions”

• Collect each region independently

• Since regions are bounded in size, can do this in
bounded time, right (?)

14

(yes, but just barely)

Regional GC Illustrated
(review of Cheney)

15

a

m

n

o

p q

x

y

16
here’s a region. The ovals are objects, the arrows are references.
If you care, you might notice that the orange arrows cross regions (as opposed to the yellow ones) We’re just going
to collect the middle stuff; the {A, X, Y} belong to regions elsewhere.
Start by scanning the object A

a

m

m’

n

o

p q

x

y

17
Scanning A implies M is reachable from A; copy M to M’ (which includes that reference to N), install a forwarding
pointer from M to M’, and continue scanning A.

a

m

m’

n

o

o’

p q

x

y

18
Scanning A also finds a reference to O, so forward that to O’. We’re done scanning A, so lets just continue from
left-to-right and scan M’ next.

a

m

m’

n

n’

o

o’

p q

x

y

19
Scanning M’ uncovers that reference to N; forward that to N’. Continuing left-to-right means scanning O’ and N’,
which uncovers no more references within the region. So move on to the right side, where we have X and Y...

a

m

m’

n

n’

o

o’

p q

x

y

20
Scanning Y reveals that reference to O that needs to be updated to O’. Now we’ve finished scanning everything we
need to. Note there are no more references into the region we were collecting; we can reclaim it!

a

m’

n’

o’

x

y

21
And we are done.

How to do this efficiently?

22
I hand-waved about scanning the stuff on the left and right of the region, but in fact that’s the name of the game
here!

Goal: Avoid inspecting
extraneous state

23
We don’t want to scan the whole heap outside of the region, because that would break our pause time bounds.

Remembered Set?

([Lieberman and Hewitt ’83]),
[Ungar ’84]

24
We might first take inspiration from generational collectors. The original Lieberman and Hewitt paper on GenGC
was actually trying to solve the very problem we’re talking about. So how about REMEMBERING the objects that
have region-crossing references?

a

m

n

o

p q

x

y

Remembered Set ⊇ { a, m, y }
25

So we could try to maintain a remembered set that captures all of the objects with region-xing ref’s (and maybe
others too; its allowed to be imprecise).

Problem with
Remembered Set

26

Remembered set can grow
proportional to size of heap

scan time generally not proportional to region size

27

Remembered Set holds junk
irrelevant to current GC

(still useful; still used)

Try maintaining state per-
region ?

(Garbage-First [Detlefs ’04])

(breathe)

PATTER: “Don’t have a slogan. Realized workshop deadline was approaching, so I’ll resort to just summarizing
the approach here, and later we will refine our view of the approach after the whole picture has been developed.”

Summarize as deadline approaches;
Refine after whole picture has been

developed

Summary Sets

32

a

m

n

o

p q

x

y

This summary set ⊇
{ &a[1], &a[3], &y[0] }

33
Apologies for the C notation. Its there to STRESS that we’re talking tracking locations, not objects, in the
summary sets. The paper discusses this more.
Note also that M is not in this summary set; its slot will be present in the summary set for some OTHER region

Summary Set Structure

• Summary set structure focuses attention away
from irrelevant objects

• Does it work?

- Popular objects / regions

- Space cost

34

#1: The Popularity Problem

• Many locations may point to one object

- (or group of objects co-located in same region)

• Implies LARGE summary for that region

35
This is a real-world issue; consider the symbol table for a compiler, or instances of the singleton pattern, interned
objects, ... etc

#2: The Space Problem

• Maintaining precise summary sets for every region
at all times is unrealistic

- (too much overhead in time)

• Maintain imprecise summary sets ?

- Entails unacceptable worst case space overhead

- i.e. O(N^2) where N is heap size

- Garbage-First [Detlefs ’04] had this problem

36

Insight from Lake Woebegon

[Keillor ’85]

Solving both problems:
Insight #1

• Not a! regions can be more popular than average

- Generalizes nicely via a pigeon-hole argument

• Therefore, we may be able to skip collection of
popular regions entirely!

38

Applying Popularity Insight

• Do not maintain summary sets at all times

• Instead construct afresh on “just-in-time” basis

• Wave off collection of popular regions

- i.e. those with summary set ≥ S·R

- (don’t bother finishing their summaries)

39

New problem

• Constructing one summary generally requires
scanning whole heap

• Not necessarily time between collection of region
r to construct summary for region r’

40

Insight #2

• Amortize the effort!

• Construct the summary sets for many regions at
once during one incremental scan

41

R1

R2 R3 R4 S5 S6 S7 S8 S9

F10F11F12F13F14

U15

U1

The Basic Idea
UNFILLED FILLED

READY SUMMARIZING
42

R2 R3 R4 S5 S6 S7 S8 S9

F10F11F12F13F14

U15

U2U1

The Basic Idea
UNFILLED FILLED

READY SUMMARIZING
43

R3 R4 S5 S6 S7 S8 S9

F10F11F12F13F14

U15

U3U2U1

The Basic Idea
UNFILLED FILLED

READY SUMMARIZING
44

R4 S5 S6 S7 S8 S9

F10F11F12F13F14F15

U15

U3U2U1

The Basic Idea
UNFILLED FILLED

READY SUMMARIZING
45

S5 S6 S7 S8 S9

F10F11F12F13F14F15U4

U3

U2U1

ready!

The Basic Idea
UNFILLED FILLED

READY SUMMARIZING
46

R5 R6 R7 R8R9

F10F11F12F13F14F15U4

U3

U2U1

summarize!

The Basic Idea
UNFILLED FILLED

READY SUMMARIZING
47

R5 R6 R7 R8R9 S15 S14 S12 S11 S10

F13U4

U3

U2U1

The Basic Idea
UNFILLED FILLED

READY SUMMARIZING
48

What about skipping the
popular regions?

49

The Real Picture

R1

R2 R3 R4 S5 S6 S7 S8 S9

P2P8P10F11F12F13

U13

U14U1

summarize!

ready!

UNFILLED FILLED

READY

POPULAR

SUMMARIZING

50
NOTE: You have to choose the right policy parameters here for the theorem to hold true!

Last Problem & Insight #3

• How to collect region crossing cycles?

- How to ensure amount of floating garbage
remains in O(Reachable State) ?

• Use Snapshot-at-the-Beginning (SATB) [Yuasa’90]
to refine remembered set and summary sets

- (also ensures popular regions won’t hold onto
other regions’ state forever!)

51
the paper discusses this more

a

m

n

o

p q

x

y

SATB Refinement Illustrated

a

m

n

o

p q

x

y

SATB Refinement Illustrated

what if (a) were unreachable and in a region with
popular objects?

a

MW

m

n

o

p q

x

y

Before Refinement

(not collected) (still collected)

a

MW

m

n

o

p q

x

y

After Refinement

(not collected) (still collected)

Prototype implementation
in Larceny

Evaluation:
One Difficult Benchmark

57

The Queue Benchmark
• Repeatedly:

- allocate list of one million elements

- store each list into circular buffer of size k

• List elements drawn from p popular objects

- (for p of zero, list elements are small integers)

• Regular steady-state behavior

- approximating pause time: “MaxVary”

58
MaxVary: calculated by subtracting the average time to create a million element list from the longest time to
create one of those lists. Reasonably approximates pause time under certain assumptions

Comparison against: Larceny,
other Schemes, and JVM

59

queue 160 MB
System Elapsed GC Time GC Pause MaxVary MaxRSIZE

Larceny R 192 sec 170 sec 0.07 sec 0.60 sec 386 MB
Gambit 63 sec 44 sec 0.52 sec 493 MB
Ypsilon 265 sec ≥53 sec 0.64 sec (?) 711 MB

SunJVM G 175 sec ? 0.78 sec 333 MB
Larceny G 109 sec 88 sec 0.80 sec 0.88 sec 555 MB
SunJVM P 275 sec ? 0.91 sec 511 MB
Larceny S 76 sec 55 sec 0.90 sec 0.94 sec 518 MB
Chicken 87 sec 36 sec 1. sec 490 MB

PLT 227 sec 211 sec 1. sec 617 MB
Ikarus 264 sec 242 sec 2.25 sec 1055 MB

SunJVM I 409 sec ? 3.41 sec 530 MB
60

Gambit: Stop&Copy; Ypsilon: MostlyConcurrent; Chicken: Cheney-on-the-MTA; PLT: Generatational; Ikarus:
Generational. Suffixes legend:: Regional, Generational, Parallel, Stopandcopy, IncrementalMarkSweep

queue 800 MB
System Elapsed GC Time GC Pause Max Vary MaxRSIZE

Larceny R 212 sec 187 sec 0.11 sec 0.7 sec 1808 MB
Ypsilon 24971 sec ≥24818 s 2.4 sec (?) 2067 MB
Gambit 68 sec 47 sec 2.5 sec 2363 MB
Chicken 118 sec 62 sec 4. sec 1955 MB

SunJVM P 311 sec ? 4.2 sec 1973 MB
Larceny G 149 sec 128 sec 4.2 sec 4.3 sec 2073 MB
Larceny S 119 sec 95 sec 4.5 sec 4.5 sec 2058 MB
SunJVM G 212 sec ? 4.9 sec 1497 MB

PLT 286 sec 273 sec 5. sec 2109 MB
Ikarus 419 sec 371 sec 11.6 sec 2575 MB

SunJVM I 457 sec ? 15.8 sec 2083 MB
61

Gambit: Stop&Copy; Ypsilon: MostlyConcurrent; Chicken: Cheney-on-the-MTA; PLT: Generatational; Ikarus:
Generational. Suffixes legend:: Regional, Generational, Parallel, Stopandcopy, IncrementalMarkSweep

queue 800 MB + 50 pop. obj.’s
System Elapsed GC Time GC Pause Max Vary MaxRSIZE

Larceny R 618 sec 592 sec 0.35 sec 2.9 sec 1865 MB
Gambit 72 sec 51 sec 2.7 sec 2363 MB
Ypsilon 28366 sec ≥28212 s 2.89 sec (?) 1772 MB

SunJVM P 314 sec ? 4.1 sec 1918 MB
Larceny G 162 sec 141 sec 4.5 sec 4.6 sec 2064 MB
Larceny S 120 sec 96 sec 4.8 sec 4.8 sec 2060 MB
Chicken 127 sec 69 sec 5. sec 1955 MB

SunJVM G 216 sec ? 5.0 sec 1497 MB
PLT 339 sec 320 sec 5. sec 2089 MB

Ikarus 427 sec 409 sec 10.7 sec 2588 MB
SunJVM I 479 sec ? 18.1 sec 2083 MB

62
Gambit: Stop&Copy; Ypsilon: MostlyConcurrent; Chicken: Cheney-on-the-MTA; PLT: Generatational; Ikarus:
Generational. Suffixes legend:: Regional, Generational, Parallel, Stopandcopy, IncrementalMarkSweep

be
tte

r
Observed MMU, 160 MB live

63

0 %

7.5 %

15.0 %

22.5 %

30.0 %

0 ms 2,500 ms 5,000 ms 7,500 ms 10,000 ms

Regional Generational Stop and Copy

Point out that the blur of triangles is a bunch of entries for the Regional Collector!

be
tte

r
Observed MMU, 800 MB live

64

0 %

7.5 %

15.0 %

22.5 %

30.0 %

0 ms 2,500 ms 5,000 ms 7,500 ms 10,000 ms

Regional Generational Stop and Copy

Related Work (lots)

65

• “Windows” of MarkCopy [Sachindran & Moss ’03]

• Parallel Incremental Compaction
[Ben-Yitzhak et al ’02]

• Older-First GC [Stefanovic et al. ’02]
[Hansen and Clinger ’02]

• Metronome [Bacon et al 2003]

Windows are much like our Summary Sets; Parallel Incr Compaction also had something much like our Summary
Set Structure. (The specific goals of those systems differed from our own.)
For OLDER FIRST, the connection is that our round robin selection of regions to collect is very much like an older-
first stategy.
For METRONOME, they do provide guarantees on MMU and SPACE USAGE, but only when given a priori models of
the particular mutator behavior (!). We have an explicit goal of not requiring such knowledge in the collector.

Future Work

• SATB Marking and Summarization could be
performed concurrently with the mutator

• Regional copying GC could itself be parallelized

• More thorough description of the implementation
technologies (“what fun hacks did Felix need?”)

66

Conclusion

• Described and prototyped a regional collector

- novel, elegant solutions for popularity and float

• Proved that regional collector is scalable

• Compared performance for near worst case
benchmark

67

Thanks

68

Summarize as deadline approaches;
Refine after whole picture has been

developed

(a slide I did not think to include at actual
workshop, but WISH I HAD, as it completes the
“slogan story” appropriately at the end of the
design presentation)

ˬ incrementally

˄ snapshot

(a slide I did not include at the end of presentation at actual workshop, but wish I
had.)

