
The Layers of Larceny’s Foreign Function Interface

Felix S Klock II
Northeastern University
pnkfelix@ccs.neu.edu

Abstract
The Foreign Function Interface (FFI) in Larceny supports interact-
ing with dynamically loaded C libraries via glue code written in
Scheme. The programmer does not need to develop any C code to
interface with C libraries. The FFI is divided into layers of Larceny
Scheme code; the lower layers implement kernel functionality, and
the higher layers support portable glue code development.

The lower level has two main features of interest. First, the FFI
supports callbacks: objects that look like simple function pointers
to foreign code but invoke Scheme closures when called. This re-
quires generating specialized machine code, and is further compli-
cated by the potential movement of the closures during garbage
collections. Second, Larceny heaps can be dumped to disk and
reloaded during a fresh runtime execution. The FFI automatically
relinks the foreign procedures in such heaps.

The higher level layers provide macros and procedures for ex-
tracting information from header files and dictating how values
translate between Scheme and foreign code. These tools ease devel-
opment of portable glue code. The upper layers have simple imple-
mentations and do not require much Larceny-specific functionality;
they may be useful for the FFIs of other Scheme systems.

1. Introduction
Scheme implementations cannot provide built-in access to all low-
level libraries, and clients cannot be expected to reimplement them
from scratch. Many Scheme implementations provide a Foreign
Function Interface (FFI) to allow the connection of Scheme pro-
grams with foreign C libraries.

An FFI has many design axes. First, an FFI that only allows
Scheme to hook into C functions that receive and produce values
of a single scheme_value type (as in [Kelsey and Sperber(2003)])
forces the client to develop (write, compile, debug, etc) glue code
written in C, rather than accessing the external library directly
via Scheme expressions. [Barzilay and Orlovsky(2004)] motivates
support for a more expressive FFI.

Second, transmitting complex objects requires bridging the gap
between the semantics of Scheme and that of C. For example, mak-
ing a Scheme closure appear to the C world as a C function pointer
requires some semantic gymnastics, as the calling convention for
invoking a closure may differ signficantly from that of a C function
pointer.

Copyright is held by the author.
Scheme Workshop ’08 20 September 2008, Victoria, British Columbia

Finally, a low-level interface to a foreign library that requires
hard coding offsets into native structures (see Figure 1), or tran-
scribing full C structure definitions from header files can lead to
glue code that works on one host but not others. Such code is
fragile in the presence of C source-compatible changes to the li-
brary’s header files, such as the addition (or reordering) of fields in
its structure definitions. Specifying an interface portably requires a
more sophisticated approach.

In Larceny, we have developed a layered FFI. The lower lay-
ers constitute the kernel of Larceny’s FFI implementation; their
description here is targeted at Scheme implementors. The upper
layers aid development of portable glue code, and illustrate ideas
worth incorporating into other Scheme systems. In particular, the
interface provided by the define-c-info special form is a simple,
structure-shy approach for portably interfacing with library frame-
works written in C.

The next section shows example uses of the FFI. Section 3 de-
scribes how the lower layers of the FFI libraries work together with
the Larceny runtime to handle value marshaling and procedure in-
vocation. Section 4 describes the middle layer, which provides the
most primitive interface we expect developers to use. Section 5 de-
scribes the higher layers that ease interfacing with foreign libraries.
Section 6 describes related work and section 7 concludes.

2. Example FFI code
This section presents code using foreign functions, starting with
low-level file-system examples and working up to GUI interactions.
The tour starts with a misuse of the Larceny FFI: a low-level
definition with a portability bug. The bug motivates our higher level
tools, which we present in the remaining examples.

Figure 1 defines a directory listing procedure. Lines 5 through
10 link the UNIX procedures for opening, traversing, and closing a
directory. It then defines dirent->name, a procedure that extracts
filenames from dirent structures1 via the low-level (and unsafe)
%peek-string procedure that constructs a Scheme string from a
zero-terminated string of bytes at the given memory address.

There is signficant machinery beneath the surface of Figure 1.
For example, unix/opendir marshals its argument Scheme string
to a zero-terminated byte array, matching the char* idiom for C
strings.

On Mac OS X (Intel), Figure 1’s list-directory misbehaves:

> (begin (for-each system ’("mkdir dtmp"
"touch dtmp/abcdef"
"touch dtmp/mnopqrst"))

(list-directory "dtmp"))
("" "" "def" "pqrst")

1 The author of Figure 1 presumably determined that the d name field is
located 11 bytes after the start of the dirent structure, perhaps by manual
inspection of the header files on a Linux distribution, or perhaps by writing
C code to reveal this information.

1 ;; The offsets in the dirent accessors
2 ;; are probably x86-Linux-specific!!
3 (require ’std-ffi)
4

5 (define unix/opendir
6 (foreign-procedure "opendir" ’(string) ’uint))
7 (define unix/readdir
8 (foreign-procedure "readdir" ’(uint) ’uint))
9 (define unix/closedir

10 (foreign-procedure "closedir" ’(uint) ’int))
11

12 ;; dirent->name : [Addressof dirent] -> String
13 (define (dirent->name ent)
14 (%peek-string (+ ent 11)))
15

16 ;; list-directory : String -> [Listof String]
17 (define (list-directory dirname)
18 (let ((dir (unix/opendir dirname)))
19 (if (zero? dir)
20 (error ’list-directory path)
21 (let loop ((files ’()))
22 (let ((ent (unix/readdir dir)))
23 (if (zero? ent)
24 (begin (unix/closedir dir)
25 (reverse files))
26 (loop (cons (dirent->name ent)
27 files))))))))

Figure 1. A [mis]use of the FFI

1 (require ’foreign-ctools)
2

3 ;; dirent->name : [Addressof dirent] -> String
4 (define (dirent->name ent)
5 (define-c-info (include<> "dirent.h")
6 (struct "dirent" (name-offs "d_name")))
7 (%peek-string (+ ent name-offs)))

Figure 2. More portable dirent->name definition

On Mac OS X, list-directory returns strict suffixes of the
actual filenames in the directory. The hard-coded offset to d_name
ties the code to one host and does not work on other systems.

Figure 2 shows a more portable definition of dirent->name. It
uses the define-c-info special form of Larceny’s foreign-ctools
library, binding the identifer name-offs to the offset appropriate to
the host. The developer did not have to provide the entire definition
for the struct dirent type (a definition that may differ between
operating systems, introducing a new portability issue). One only
indicates a source header file, via (include<> "dirent.h"), and
lists the fields of interest ("d_name") alongside identifers to bind
their offsets (name-offs).

Figure 3 defines a predicate distinguishing directories from
other nodes in the file system. It illustrates some subtle policies
in communicating with C procedures.

The definition of file-directory? uses the define-c-struct
form to bind make-stat to a stat buffer constructor and stat-mode
to a field accessor. It also binds ifdir-const to a preproces-
sor constant needed to compute with the mode. It then binds
unix/stat to the foreign function:

int stat(const char *path, struct stat *buf);

1 (require ’foreign-ctools)
2 (require ’foreign-cstructs)
3

4 (define file-directory?
5 (let ()
6 (define-c-info (include<> "sys/stat.h")
7 (const s-ifdir uint "S_IFDIR"))
8 (define-c-struct ("struct stat" make-stat
9 (include<> "sys/stat.h"))

10 ("st_mode" (stat-mode)))
11 ;; unix/stat : String Bytevector -> Int
12 (define unix/stat
13 (foreign-procedure "stat" ’(string boxed) ’int))
14 ;; file-directory? : String -> Boolean
15 (define (file-directory? filename)
16 (let* ((buf (make-stat))
17 (errcode (unix/stat filename buf)))
18 (cond ((zero? errcode)
19 (let ((mode (stat-mode buf)))
20 (not (zero? (integer-logand mode s-ifdir)))))
21 (else (error ’file-directory? filename)))))
22 file-directory?))

Figure 3. Semi-portable file-directory? definition

1 ;; void qsort(void *base, size_t nmemb, size_t size,
2 ;; int (*compar)(const void*, const void*))
3 (let* ((qsort (foreign-procedure
4 "qsort" ’(boxed uint uint
5 (-> (void* void*) int))
6 ’void))
7 (input (sint-list->bytevector
8 ’(10000 20 10001 100) ’little 4))
9 (len (bytevector-length input))

10 (output (make-nonrelocatable-bytevector len)))
11 (bytevector-copy! input 0 output 0 len)
12 (qsort output (quotient len 4) 4
13 (lambda (x y) (- (void*-word-ref x 0)
14 (void*-word-ref y 0))))
15 (list input output
16 (bytevector->sint-list output ’little 4)))

=⇒ (#vu8(16 39 0 0 20 0 0 0 17 39 0 0 100 0 0 0)
#vu8(20 0 0 0 100 0 0 0 16 39 0 0 17 39 0 0)
(20 100 10000 10001))

Figure 4. Callback example (with result on little-endian systems)

The foreign-procedure invocation linking unix/stat to
stat uses ’string to say that its first parameter is a Scheme
string to be marshaled to a zero-terminated byte array. The link-
age uses ’boxed to say the second parameter is a Scheme heap-
allocated object. The invocation of unit/stat maps the bytevector
buf (produced by make-stat) to a pointer to the memory imme-
diately after the bytevector’s header and passes that pointer to the
C stat function. stat initializes the bytevector’s contents with in-
formation about the argument path. file-directory? finally de-
termines whether the path is a directory by performing the Scheme
equivalent of the C expression: !!(st.st_mode & S_IFDIR).

The FFI also supports callbacks: marshaling closures to C func-
tion pointers. Figure 4 presents an example with the C quicksort
function, qsort. Callback invocation could cause garbage collec-
tions, which may relocate objects; therefore this code copies the
unsorted bytevector into non-relocatable (but still managed) mem-
ory. The callback itself uses void*-word-ref to access memory
via an address held in an opaque void*-rt record.

1 (require ’gtk)
2

3 (define (gtk-example)
4 (define (key-press w e)
5 (write ‘(key-press ,(gdk-event-keyval e)))
6 (newline))
7 (gtk-init)
8 (let* ((lambda-img (gtk-image-new-from-file
9 "/tmp/Lambda.png"))

10 (window (gtk-window-new ’toplevel)))
11 (gtk-window-set-title window "Example")
12 (gtk-widget-set-size-request window 400 500)
13 (g-signal-connect window "key_press_event"
14 key-press)
15 (g-signal-connect window "delete_event"
16 (lambda (w e)
17 (gtk-main-quit) #f))
18 (gtk-widget-show window)
19 (gtk-container-add window lambda-img)
20 (gtk-widget-show lambda-img)
21 (gtk-main)))

Figure 5. Example of FFI callbacks in the Gimp Toolkit (GTK+)

Marshaling Scheme closures is handled by all of the layers
working together; the lower layers provide the basic functionality
for creating and invoking C callbacks, while the middle and upper
layers ease interfacing to foreign functions with callbacks.

As a final example, figure 5 uses the Gimp toolkit to create
a window that responds to key presses by printing their charac-
ter value. This code builds upon the gtk library. Figures 6 and 7
present relevant snippets of the gtk library using high-level func-
tionality further described in section 5.

Figure 5 marshals the Scheme symbol ’toplevel to the inte-
ger value of the C enum GTK_WINDOW_TOPLEVEL. Figure 6 uses
the define-c-enum form to introduce a gtkwindowtype sym-
bolic enumeration, whch marshals ’toplevel and ’popup to and
from GTK_WINDOW_TOPLEVEL and GTK_WINDOW_POPUP. This mar-
shaling happens only in contexts expecting gtkwindowtype, such
as gtk-window-new invocations. The upper layers of the FFI im-
plement enum support; the lower layers are oblivious to C enums.

Figure 6’s invocation of establish-void*-subhierarchy!
establishes classes of C pointers extending the void*-rt type.
Foreign function invocations with arguments that do not satisfy
the encoded subtyping relation signal an error. The special form
(define-foreign (foo-bar-baz ——) ——) searches for a
foreign export named foo_bar_baz (note the underscores) and
then fooBarBaz, binding foo-bar-baz to the resulting foreign
function if found.

Figure 7 links to the GTK+ function gtk_init. To satisfy the
interface of gtk_init, it uses the combinators call-with-char**
(marshaling a vector of strings to a char**) and call-with-boxed
(taking values of C type T to T *).

After tasting the FFI programming experience, we now delve
into its implementation.

3. Lower layers of the FFI
This section describes the implementation of the FFI’s kernel func-
tionality. During the invocation of callouts and callbacks, control
flows from the MacScheme machine through the Larceny runtime
and into C code (and back again). Support for this is distributed
amongst structures allocated on the Larceny heap.

1 (require ’foreign-ctools)
2 (require ’foreign-cenums)
3 (require ’foreign-stdlib)
4 (require ’foreign-sugar)
5

6 (foreign-file "/sw/lib/libgtk-x11-2.0.dylib")
7

8 (define-c-enum gtkwindowtype
9 ((path "/sw/include/glib-2.0")

10 (path "/sw/lib/glib-2.0/include")
11 (path "/sw/lib/gtk-2.0/include")
12 (path "/sw/include/pango-1.0")
13 (path "/sw/include/gtk-2.0")
14 (include<> "gtk/gtkenums.h"))
15 (toplevel "GTK_WINDOW_TOPLEVEL")
16 (popup "GTK_WINDOW_POPUP"))
17

18 ;; (actual hierachy is much larger)
19 (establish-void*-subhierarchy!
20 ’(gtkwidget* (gtkcontainer* (gtkwindow*))
21 (gtkimage*)))
22

23 (define-foreign (gtk-window-new
24 gtkwindowtype) gtkwindow*)
25 (define-foreign (gtk-window-set-title
26 gtkwindow* string) void)
27 (define-foreign (gtk-image-new-from-file
28 string) gtkimage*)
29 (define-foreign (gtk-widget-set-size-request
30 gtkwidget* int int) void)
31 (define-foreign (gtk-widget-show
32 gtkwidget*) void)
33 (define-foreign (gtk-main) void)
34 (define-foreign (gtk-main-quit) void)
35 (define-foreign (gtk-container-add
36 gtkcontainer* gtkwidget*) void)

Figure 6. Some definitions from gtk library

1 ;; void gtk_init(int *argc, char ***argv)
2 (define gtk-init
3 (let ()
4 (define-foreign (gtk-init void* void*) void)
5 (lambda arg-strings
6 (let ((string-vec
7 (list->vector
8 (cons "larceny" arg-strings))))
9 (call-with-char**

10 string-vec
11 (lambda (argv)
12 (call-with-boxed
13 argv
14 (lambda (&argv)
15 (call-with-boxed
16 (vector-length string-vec)
17 (lambda (&argc)
18 (gtk-init &argc &argv)))))))))))

Figure 7. Definition of gtk-init from gtk library

Figure 8. Control flow of a callout (solid lines for main invocation; dashed for return)

Figure 9. Control flow of a callback (solid lines for main invocation; dashed for return)

3.1 Control flow of FFI invocations
Scheme code in Larceny is compiled and run in the environment
of an abstract MacScheme machine, with its own stack and heap
representations and conventions for using registers.

The abstract MacScheme machine is supported by the Larceny
runtime, implemented in C. System calls shift control from the
MacScheme machine model to the runtime; during such shifts,
MacScheme state is copied into C-accessible memory and the pro-
cessor is reconfigured to follow the machine model expected by the
runtime’s compiled C code.

Foreign libraries expect to be invoked using the C machine
model. It would be nice for FFI invocations to reuse the shift of
machine model implemented to support Larceny system calls. That
is, we desire an FFI callout that jumps into the Larceny runtime
and then directly to the target foreign function. We would also like
a callback to be a pointer to a Larceny runtime function that shifts
into the MacScheme machine when invoked.

Unfortunately, we cannot implement this approach directly.

3.1.1 Customized machine code is necessary
The foreign target of an FFI callout expects its parameters to be
set up according to the calling convention of the application binary
interface (ABI). We do not want to code a separate system call for
each possible argument combination. Also, an FFI callback must
appear to be a C function pointer that consumes some number of
parameters that depends on what function type the callback is em-
ulating and somehow knows which Scheme closure it is associated
with; no fixed function implemented in the runtime would suffice
for this purpose.

Instead of having the Larceny runtime directly interact with
foreign functions, a fragment of dynamically generated machine

code sits between the Larceny runtime and the world of foreign
functions. We call each such fragment an FFI trampoline.

3.1.2 Control flow of a callout
The FFI trampoline generated for calling out to a foreign function
f declared to have type T can be thought of as implementing a
“scatter arguments for T and invoke f ” operation, illustrated in
figure 8.

The trampoline code has a fixed input interface where it receives
a set of arguments (packaged as an array in memory). It is respon-
sible for distributing the arguments from the packaged array into
the ABI-specified format expected by the compiled C code for a
function of type T. The trampoline code must then invoke f accord-
ing to the calling convention. The trampoline code copies the value
returned from f into a receiving area established by the runtime,
and then returns control to the runtime. The runtime marshals the
returned value back to the MacScheme machine. Section 3.2.3 has
more details on this structure.

3.1.3 Control flow of a callback
The trampoline code generated for a callback to a Scheme proce-
dure p and emulating a foreign function of type T can be thought of
as implementing a “gather arguments of T and invoke p” operation,
illustrated in figure 9.

The machine code receives its arguments according to the call-
back’s type T and the ABI. The code packages pointers to its argu-
ments (copying from positions specified by the calling convention
into a C stack allocated array when necessary), and then directly
invokes the ffi_convert_and_call Larceny runtime function to
perform the remaining work: set up the MacScheme machine, un-
package the arguments according to the MacScheme calling con-

vention, and invoke p. If the invocation returns, then the runtime
marshals the returned value according to T and returns control to
the trampoline code. The trampoline code puts the marshaled value
into the appropriate place according to the ABI calling convention
and finally returns to the foreign code. Section 3.2.4 documents this
structure further.

Both callout and callback trampolines use only the C calling
convention. The complexity of shifting the machine’s register state
from MacScheme mode to the C runtime’s state and back again is
isolated from the machine code associated with the trampolines.
This simplifies porting the FFI to other ABIs; one can start by
inspecting the object code for a hand-constructed C program.

Separating the trampoline’s calling convention from that of
MacScheme was a crucial design decision. When an FFI for the
Intel x86 architecture was first added, only Petit Larceny ran on
x86 processors. Years after that addition, the project introduced a
native Larceny implementation that compiles x86 code on the fly.
Even after this dramatic change (and significant experimentation
with its native calling convention), the FFI worked unchanged, be-
cause it only depends on the ABI calling convention, not that of
MacScheme!

3.2 Structures supporting the FFI
Larceny Scheme source code is responsible for constructing the ma-
chine code that lies between the runtime and the foreign functions.
Larceny FFI’s lower layers are factored into three components: the
Larceny runtime itself, ABI-dependent Scheme source providing
a small interface for constructing FFI trampolines for each target
architecture and operating system, and ABI-independent Scheme
source implementing the remainder of the low-level FFI.

This section describes the different structures allocated from
Scheme code to support the FFI. We illustrate them using heap dia-
grams in figures 10 and 11. In the diagrams, circles denote objects
scanned by the garbage collector (e.g. closures, vectors), rectan-
gles denote unscanned objects (e.g. bytevectors), solid arrows de-
note object references traced by the collector (tagged pointers), and
dashed arrows are untraced memory references (integer addresses).

Here are three invariants that the diagrams must observe to
reflect a sound heap structure:

1. Solid arrows originate at circles
2. Dashed arrows cannot point into relocatable memory
3. No solid arrows point into the unmanaged C runtime state

These invariants motivate constructions introduced in this section.

3.2.1 Anatomy of a trampoline
The core of each FFI trampoline object is a list of bytevectors
(called an ilist for “instruction list”), where each bytevector
holds ABI-dependent machine code to accomplish a task, such as
copying a double word argument packaged by the runtime into the
appropriate location according to the calling convention, or per-
forming the actual foreign invocation invocation. New bytevectors
can be added to this list via the mutation procedures tr-at-end
and tr-at-beginning.

After the necessary bytevectors have been added to a trampo-
line, the tr-pasteup allocates a nonrelocatable bytevector and
copies all of the machine code fragments to it. This bytevector is the
code for the trampoline; it is the intermediary between the runtime
and the foreign function. The trampoline also clears the processor
instruction cache if necessary.

Each callout trampoline must support a change-fptr oper-
ation, which takes an integer address of a foreign function as
an additional argument. This operation modifies the ilist so
that the invocation code targets the new foreign function. After
change-fptr is invoked, tr-pasteup regenerates the code for

Figure 10. Callout heap structure; diagrammatic conventions are
listed in section 3.2.

the trampoline. The change-fptr operation supports relinking
foreign functions during heap loads; see section 3.3.3.

3.2.2 Descriptors for primitive type signatures
At this lower level of the FFI, the argument list for a callout is
made up of only fixnums or objects allocated on the Scheme heap.
This argument list does not indicate on its own whether a given
argument should be marshaled as a pointer, a signed 32-bit integer,
or an unsigned 64-bit integer, etc. Invocations of c-ffi-apply
pass along an encoding of the argument signature for the target
function; we use a bytevector based encoding, where the ith byte
indicates a primitive type.

byte primitive type scheme types accepted
0 signed32 exact integer in [−231, 231)
1 unsigned32 exact integer in [0, 232)
2 ieee32 (“float”) flonum
3 ieee64 (“double”) flonum
4 pointer bytevector, vector, pair
5 signed64 exact integer in [−263, 263)
6 unsigned64 exact integer in [0, 264)

Likewise, for return types we encode the primitive types signed32,
unsigned32, ieee32, ieee64, signed64, unsigned64, as well
as void. pointer is not a primitive return type; the FFI design
assumes that if a foreign function is returning a pointer, it is a
pointer into the C heap, could not be sensibly treated as a pointer
into the Scheme heap, and thus should be marshaled as an integer,
not pointer.

The current FFI does not support direct struct parameters or
return types; only pointers to structures.

3.2.3 Anatomy of a callout
Figure 10 shows the heap structure for a callout: a closure that in-
vokes a foreign procedure. The callout’s lexical environment car-
ries three key components: an FFI trampoline, a bytevector describ-
ing the argument signature for the foreign function, and an integer

Figure 11. Callback heap structure; diagrammatic conventions are
listed in section 3.2.

describing the type of the return value it expects from the foreign
function.

The invocation of a callout first extracts the code associated
with its trampoline. It then invokes the c-ffi-apply runtime
system call, passing the trampoline’s code object, the signature
bytevector, the return code integer, and the list of arguments for
the invocation. The system call first marshals the arguments into
an args array according to the signature bytevector and sets up a
location on the stack for the trampoline code to write the result
value returned by the foreign invocation. The system call then
invokes the trampoline code, passing the args array and the result
location along as arguments. When that returns, the c-ffi-apply
system call proceeds to convert the result held in the return location
into a Scheme value and returns it to the MacScheme machine.

3.2.4 Anatomy of a callback
Each callback is associated with a Scheme closure targeted for in-
vocation. The garbage collector may move the target closure. The
callback’s code is just a bytevector of machine code; if the closure’s
address were directly encoded in the bytevector, the garbage col-
lector would not update that address (because the garbage collector
does not modify the contents of bytevectors), and the callback’s
encoded reference to the closure would become invalid.

We resolve the problem of closures moving during garbage col-
lections by introducing a level of indirection. Instead of putting a
direct reference to the targeted closure in the callback code bytevec-
tor, we create a nonrelocatable handle for every callback The han-
dle points to the closure, and the callback’s machine code holds an
untraced reference to the handle.

Also, the callback and its target closure need to live as long as
the foreign library could invoke it. Since the garbage collector is
not going to scan foreign memory, we keep extra references to the
callback and its handles in a manually managed list.

Figure 11 illustrates the resulting structure of a callback. From
the Scheme side, a callback is an FFI trampoline coupled with two

nonrelocatable handles: one that points to the target Scheme clo-
sure and another that points to a bytevector holding the argument
descriptors. From the C side, a callback is the address of the tram-
poline’s code. When foreign code invokes the trampoline, it first
ensures that the arguments are all stack-allocated, and then invokes
the runtime function ffi_convert_and_call, passing along the
handles for the closure and the bytevector of argument descriptors,
as well as an array of argument addresses, and a descriptor and
receiving location for the result when the callback returns. The im-
plementation of ffi_convert_and_call is careful not to deref-
erence the handles until after it has finished allocating state on the
heap, so that potential garbage collections will not invalidate the
dereferenced values.

3.3 Source code factoring of the lower layers
3.3.1 Runtime system calls supporting the FFI
The runtime provides a small set of system calls to support the FFI.
We limit the runtime code supporting the FFI, moving functionality
into Scheme when possible.

• c-ffi-dlopen takes a path to a file holding a foreign library;
it delegates to dlopen on UNIX (LoadLibrary on Win32) and
returns a library handle (or 0 for errors).

• c-ffi-dlsym takes a library handle and an symbol name; it
delegates to dlsym on UNIX (GetProcAddress on Win32)
and returns the associated address (or 0 for errors).

• c-ffi-apply is described in section 3.2.3.
• ffi-getaddr extracts functions within the runtime. its used to

get the ffi_convert_and_call function (see section 3.2.4).
• make-nonrelocatable takes a size and a type tag; it allocates

(and initializes) an object that the collector cannot move.

There are also system calls for low-level memory interac-
tions: object->address produces the address for an object on
the Scheme heap, while peek-bytes, and poke-bytes provide
unchecked functionality to read and write C runtime memory.

3.3.2 Construction of callouts and callbacks
Callouts and callbacks have ABI-independent interfaces. From the
viewpoint of a client of the FFI, a callout can be specified by just
the name of the function being invoked, the library exporting the
function, and the primitive types of the function’s arguments and
return type (see section 3.2.2). Likewise, a callback can be specified
by just the target closure along with the primitive types of the
function’s arguments and its return type (from the viewpoint of C
code).

Every callout and callback is associated with a trampoline struc-
ture. The construction of the trampoline requires the injection of
ABI-dependent machine code. The injected machine code is pro-
cessor dependent as well as calling-convention dependent.

The Larceny code base separates the ABI-independent interface
from the ABI-dependent implementation using an object-oriented
style of implementation. Each target supported by the FFI provides
a callout-abi object that implements methods for constructing call-
out trampolines, and likewise a callback-abi object for constructing
callback trampolines. This object-oriented style eases code reuse of
details (such as instruction encodings) between different hosts.

3.3.3 Relink on load
The lower layer of the FFI provides the kernel interface for con-
structing callouts. The last part of this layer maintains a table of
the foreign functions that it has linked. If the heap is dumped and
subsequently reloaded, FFI attempts to reload and relink all of the
libraries and foreign procedures that were linked at the time the
heap was dumped.

Two operations act together to support this. First, the trampo-
line object provides a change-fptr operation, which allows one to
change the function address associated with a trampoline. To sup-
port this, a foreign callout does not directly reference the trampo-
line’s machine code, but rather pulls the code out of the trampoline
on demand (see figure 10).

Second, Larceny provides a primitive, add-init-procedure!,
which registers a Scheme procedure as an initialization routine.
When the heap is dumped and later loaded, all of the initialization
routines for that heap are invoked. The FFI maintains a list of for-
eign objects and registers an initialization procedure that will relink
them during a heap reload.

4. Middle layer of the FFI
The lower layer of the FFI offers all of the basic primitives required
to dynamically load a foreign library and hook into symbols ex-
ported by the foreign library. However, the interface provided by
the lower layer is baroque.

The remaining middle and upper layers of the FFI are built
upon the lower layer. The middle layer provides procedures for
loading libraries and linking foreign functions. Part of the linkage
functionality is an extensible domain specific language (DSL) for
defining the interface to foreign functions. The upper layers build
upon this interface by adding common patterns and automating
some of the work of extracting information from header files for
C source code.

At its core, the middle layer provides the following procedures:

• (foreign-file lib) opens the dynamic library specified by
lib and registers it on a list of of loaded libraries.

• (foreign-procedure name param-types ret-type) searches
the loaded libraries for an export of name and generates a
callout invoking the function at the exported address.

• (foreign-procedure-pointer addr param-types ret-type)
generates a callout invoking the function at addr.2

Above, param-types and ret-type are s-expressions of the mid-
dle layer’s interface DSL. These arguments guide the marshaling of
parameters from Scheme to C and unmarshaling of values passed
from C to Scheme. For the remainder of this section we focus on
the interface DSL used for param-types and ret-type.

4.1 FFI attribute entries
The lowest layer of the FFI expresses all data in terms of a fixed set
of primitive types like “unsigned 32-bit word” and “64-bit floating
point number.” Foreign libraries are often written in terms of C
types like char or int. Therefore, the interface DSL introduces
symbolic names such as ’char or ’int with intuitive mappings
to foreign values, richer names such as ’string or ’bool, and
complex symbolic expressions like ’(-> (string) int). The
middle layer translates these specifications into the primitive types
of the lower layer.

We call these symbolic type expressions FFI attributes, or just
attributes.

Each attribute can be thought of as describing a domain of high-
level Scheme values, a domain of low-level Scheme values (that
trivially correspond to foreign values) and the functions necessary
to map elements of the Scheme domain into and out of the foreign
domain. The middle layer associates every attribute s-expression
with three components: a low-level primitive type descriptor, a
Scheme procedure that marshals values from the high-level domain

2 Unlike functions linked via foreign-procedure, foreign function point-
ers will not be automatically reestablished by the lower layer.

to the low-level domain, and a Scheme procedure that unmarshals
values from the low-level domain to the high-level domain.

There are two kinds of attributes: a core attribute is a Scheme
symbol registered in a table maintained by the middle layer; this ta-
ble stores the association between such symbols and their low level
descriptor and mapping functions. A constructed attribute is a non-
atomic s-expression which the middle layer maps to appropriate
attribute components.

4.2 Core (symbolic) attribute entries
There are a number of predefined core attributes. The simplest,
’byte, ’short, ’int, ’long, ’unsigned, ’uint, ’ushort, and
’ulong, all map to one of the descriptors for primitive integers,
with marshaling that performs a range check but is otherwise
the identity. Likewise ’float maps to the primitive ieee32 and
’double maps to the primitive ieee64.

The ’char and ’uchar attributes map to 32-bit integers, with
marshaling that identifies characters with corresponding ASCII val-
ues. Both attributes do not handle characters that fall outside the ex-
pected range of ASCII characters gracefully.3 The ’bool attribute
maps to the signed32 domain, marshals non-false Scheme values
to 1 (#f to 0) and unmarshals 0 to #f (other integers to #t).

The more interesting built-in core attributes are those that rep-
resent objects with more state than fixed-width integers. There are
three of these: ’boxed, ’string, and ’void*.

The ’boxed attribute maps to the ’pointer low-level de-
scriptor, and marshals heap-allocated objects (pairs, vector-likes,
bytevector-likes, and procedures) to themselves and #f to the for-
eign null pointer. There is no unmarshaling function; it is an error
for a callout to indicate that it returns a ’boxed. The main val-
ues used with ’boxed are bytevectors; other heap allocated objects
hold Scheme formatted words that foreign libraries do not gener-
ally process.

The ’string attribute maps to the ’pointer low-level descrip-
tor. Marshaling and unmarshaling of ’string allocates a fresh ob-
ject on the Scheme heap and copies character data into it.

Finally, the ’void* attribute is used to encode pointers to mem-
ory unmanaged by the Scheme runtime system.

4.2.1 The ’void* FFI attribute and void*-rt

Using the ’void* attribute wraps addresses up in a Larceny record,
so that standard numeric operations cannot be directly applied
by accident. Larceny’s record system is similar to that proposed
for ERR5RS [Clinger(2008)]. The FFI uses two properties of the
record system: the record type descriptor is a first class value with
an inspectable name, and record types are extensible via single-
inheritance.

The FFI provides void*-rt, a record type descriptor with a
single field (a wrapped address). The FFI provides a family of
functions for dereferencing the pointer within a void*-rt.

The ’void* attribute maps to the unsigned32 low-level de-
scriptor. Marshaling checks that its input is an instance of the
void*-rt record type and then extracts its wrapped address. Its
unmarshaling function constructs an instance of void*-rt.

4.2.2 Extending the set of core FFI attributes
The public interface to many foreign libraries is written in terms of
types defined within that foreign library. One can introduce new
types to the Larceny FFI by extending the core attribute entry
table. The ffi-add-attribute-core-entry! procedure con-
sumes four parameters: a symbol (the high-level attribute), a low-

3 The majority of the middle and lower layers of the FFI was developed
ten years ago when Larceny did not have Unicode support; adding Unicode
support to the FFI is future work.

level type descriptor symbol, a marshaling function, and a unmar-
shaling function; it extends the internal table with the new entry.
This extensbility is crucial; one can add new domains that corre-
spond to the abstractions provided by particular foreign library. The
upper layers of the FFI assist with common extensions.

4.3 Constructured FFI attribute entries
Core attributes suffice for linking to simple functions. Construc-
tured FFI attributes express more complex marshaling protocols

A structured FFI attribute of the form (-> (s1 . . . sn) sr)
allows passing functions from Scheme to C and back again. The
low-level descriptor for such a form is a pointer to non-relocatable
(and possibly unmanaged) memory; an unsigned32 on 32-bit ar-
chitectures.

To marshal a closure p of arity n, the (-> (s1 . . . sn) sr)
attribute:

1. wraps p in another closure p′ that unmarshals the foreign argu-
ments of p′ according to {s1. . .sn}, feeds the results to p, and
then marshals the value returned by invoking f according to sr .
Note that p′ is itself not acceptable by the lower layers.

2. Next the marshaling procedure for (-> ——) constructs a call-
back trampoline, p′′, from p′, using the callback construction
procedure provided by the FFI’s lower layer.

3. Finally the marshaling extracts the code bytevector from p′′,
passing the address of the trampoline machine code as the
unsigned32 received by the foreign code.

The unmarshaling of a (-> (s1 . . . sn) sr) FFI attribute ac-
cepts an address (the function pointer to be invoked), and constructs
a callout to that machine code, using [s1. . .sn] as the callout’s pa-
rameter attributes and sr as its return type, as one would expect.

These two mappings naturally generalize to arbitrary nesting of
-> FFI attributes, so one can create callbacks that consume callouts,
return callouts that consume callbacks, and so on.

Other structured attribute entries encode common marshaling
patterns. The structured attribute (maybe t) captures the pattern
of passing NULL in C and #f in Scheme to represent the absence of
information. The low-level descriptor of (maybe t) is the same as
that of t; it marshals #f to the foreign null pointer, and otherwise
applies the marshaling of t. Likewise, it unmarshals the foreign null
pointer to #f and otherwise applies the unmarshaling of t.

4.4 Accessing foreign memory
If all foreign libraries provided a complete set of procedures for
every kind of operation provided by the library, then the FFI might
not need more than the foreign-procedure function. However,
most C libraries are designed with the assumption that they will be
used from C code that directly accesses and modifies the fields of
structures in memory.

To support operations like extracting an integer field from a
C structure, the middle layer provides a family of functions for
reading and writing arbitrary addresses in memory. Such functions
introduce a measure of unsafety to Larceny, since uncontrolled
invocations could corrupt the internal state of the MacScheme
machine.

On top of the two system calls peek-bytes and poke-bytes,
the middle layer provides two large families of functions for ob-
serving and modifying low-level memory. One family is orga-
nized around exact bitwidths (e.g. %peek8, %peek16u, %poke32);
the other family is organized around primitive C types (e.g.
%peek-short, %peek-ulong, %poke-pointer).

5. Upper layer of the FFI
The upper layer of the FFI consists of various libraries that add
syntactic sugar, capture common programming patterns, and aid in
making code more abstract and portable.

5.1 foreign-ctools
The foreign-ctools library provides a special form, define-c-info,
that binds Scheme identifiers to values computed from the contents
of C header files.

The interesting thing about define-c-info is its implementa-
tion (section 5.1.1); here we describe its specification.

Figure 12 presents the grammar of the define-c-info spe-
cial form. The 〈c-decl〉 clauses of define-c-info control how
header files are processed. The compiler clause selects between
cc (the default UNIX system compiler) and cl (the compiler in-
cluded with Microsoft’s Windows SDK). The path clause adds a
directory to search when looking for header files. The include and
include<> clauses indicate header files to include when executing
the 〈c-defn〉 clauses; the two variants correspond to the quoted and
bracketed forms of the C preprocessor’s #include directive.

The 〈c-defn〉 clauses bind identifiers.4 A (const x t "ae")
clause binds x to the integer value of ae according to the C lan-
guage; ae can be any C arithmetic expression that evaluates to a
value of type t. (The expected usage is for e to be an expression
that the C preprocessor expands to an arithmetic expression.)

The remaining clauses provide similar functionality:

• (sizeof x "te") binds x to the size occupied by values of
type te , where te is any C type expression.

• (struct "cn" · · · (x "cf " y) · · ·) binds x to the offset
from the start of a structure of type struct cn to its cf field,
and binds y, if present, to the field’s size. A fields clause
is similar, but it applies to structures of type cn rather than
struct cn .

• (ifdefconst x t "cn") clause binds x to the value of cn
if cn is defined; x is otherwise bound to Larceny’s unspecified
value.

5.1.1 The implementation of define-c-info
Header files are usually written with the assumption that they will
first be passed through a C preprocessor and then a C parser. Even
after preprocessing, C is a tricky language to parse, due in part to its
context-sensitivity. Furthermore, the contents of included system
header files are sometimes written in a non-standard dialect of C,
further complicating direct attempts to parse header files.

The foreign-ctools library resolves these problems by using
a (perhaps surprising) “standard library”: the system’s C compiler
itself.

The philosophy behind the foreign-ctools library is: “A
C program generator is easier to write than a C parser.” That
claim, combined with the common Scheme system procedure,
procedural Scheme macros, and C pointer arithmetic, leads to the
define-c-info design.

The define-c-info form is a procedural macro that:

1. generates a C program (in a temporary file),
2. compiles the program,
3. executes the program, printing results to another temporary file,
4. reads the output of the execution (usually numeric data), and,
5. expands to a Scheme expression binding the read values.

4 This is binding in the sense of the define special form; at the top-level
define-c-info introduces global definitions, and in internal definition
contexts it introduces local definitions.

〈exp〉 ::= (define-c-info 〈c-decl〉 · · ·
〈c-defn〉 · · ·)

〈c-decl〉 ::= (compiler 〈cc-spec〉)
| (path 〈include-path〉)
| (include 〈header〉)
| (include<> 〈header〉)

〈cc-spec〉 ::= cc | cl
〈c-defn〉 ::= (const 〈id〉 〈c-type〉 〈c-expr〉)

| (sizeof 〈id〉 〈c-type-expr〉)
| (struct 〈c-name〉 〈field-clause〉 · · ·)
| (fields 〈c-name〉 〈field-clause〉 · · ·)
| (ifdefconst 〈id〉 〈c-type〉 〈c-name〉)

〈c-type〉 ::= int | uint | long | ulong
〈include-path〉 ::= 〈string-literal〉

〈header〉 ::= 〈string-literal〉
〈field-clause〉 ::= (〈offset-id〉 〈c-field〉)

| (〈offset-id〉 〈c-field〉 〈size-id〉)
〈c-expr〉 ::= 〈string-literal〉

〈c-type-expr〉 ::= 〈string-literal〉
〈c-name〉 ::= 〈string-literal〉
〈c-field〉 ::= 〈string-literal〉

Figure 12. Grammar for define-c-info form

Figure 13. Expansion of define-c-info form

All of these steps occur during macro expansion; the evaluation
of the expanded code does not invoke the C compiler. This enables
distribution of compiled Scheme code that uses define-c-info
to end-users who do not have a C compiler or the necessary header
files.

Figure 13 provides a concrete example of define-c-info. The
thin arrows are actions of the procedural macro; they commute with
the thick arrow representing macro expansion.

The functionality provided by foreign-ctools is useful
but incomplete; there are desirable pieces of information that
a specialized tool could extract from the header files but the
foreign-ctools library cannot. Examples include: the bodies
of parameterized C macros, the names of all of fields of an enum or
struct type, and the equivalences established by typedef.

Despite such shortcomings, the foreign-ctools library has
been a useful way to develop code abstracted from system-specific
values when programming to a foreign interface. In particular, one
can write code to access fields of a structure without knowing the
entire set of fields or their ordering.

〈exp〉 ::= (define-c-struct
(〈struct-type〉 〈ctor -id〉 〈c-decl〉 · · ·)
〈field-clause〉 · · ·)

〈field-clause〉 ::= (〈c-field〉 〈getter〉)
| (〈c-field〉 〈getter〉 〈setter〉)

〈getter〉 ::= (〈id〉) | (〈id〉 〈unmarshal〉)
〈setter〉 ::= (〈id〉) | (〈id〉 〈marshal〉)

〈marshal〉 ::= 〈ffi-attr -symbol〉 | 〈marshal -proc-exp〉
〈unmarshal〉 ::= 〈ffi-attr -symbol〉 | 〈unmarshal -proc-exp〉
〈struct-type〉 ::= 〈string-literal〉

Figure 14. Grammar for define-c-struct form

〈exp〉 ::= (define-c-enum 〈enum-id〉 (〈c-decl〉 · · ·)
(〈id〉 〈c-name〉) · · ·)

〈exp〉 ::= (define-c-enum-set 〈enum-id〉 (〈c-decl〉 · · ·)
(〈id〉 〈c-name〉) · · ·)

〈enum-id〉 ::= 〈id〉

Figure 15. Grammar for foreign-cenums forms

5.2 foreign-cstructs
The foreign-cstructs library provides a more direct interface to
C structures. Figure 14 presents the grammar of its define-c-struct
form. This form is layered on top of define-c-info; the latter
provides the structure field offsets and sizes used to generate con-
structors5 and field accessors. The define-c-struct form com-
bines them with the marshaling and unmarshaling procedures from
the middle layer’s DSL to provide high-level access to a structure.

5.3 foreign-cenums
The foreign-cenums library provides forms to associate the
identifiers of a C enum type declaration with the integer values
they denote. The foreign-cenums library is layered above the
foreign-ctools library.

The two forms introduced by the library are define-c-enum
and define-c-enum-set (Figure 15). The define-c-enum form
describes enums encoding a discriminated sum; define-c-enum-set
describes bitmasks, mapping them to R6RS enum-sets in Scheme.

Both forms expand into uses of the define-c-info form to ex-
tract integer values associated with the 〈c-name〉’s. Both also in-
voke ffi-add-attribute-core-entry!, extending the attribute
table with bindings for 〈enum-id〉.

The (define-c-enum en (——) (xi "cni") . . .) form
adds the ’en FFI attribute. The attribute marshals each symbol
’xi to the integer value that cni denotes in C; unmarshaling does
the inverse translation.

The (define-c-enum-set ens (——) (xi "cni") . . .)
form binds ens to an R6RS enum-set constructor with universe re-
sulting from (make-enumeration ’(xi . . .)); it also adds the
’ens FFI attribute. The attribute marshals an enum-set s con-
structed by ens to the corresponding bitmask in C (that is, the
integer one would get by logically or’ing all cnj such that xj is in
s). Unmarshaling attempts to do the inverse translation.6

Unlike constructs derived from unguided automated processing
of C header files, define-c-enum works on any set of integer

5 The constructors produce appropriately sized bytevectors, not record in-
stances.
6 The inverse uniquely exists when the high-to-low mapping is a bijection,
which depends on the denotations of {cni . . .} assigned by the header files.

valued identifiers. It can capture discriminated tags that are not
explicitly defined as C enums.x

5.4 foreign-stdlib
The (ffi-install-void*-subtype sub-rtd) procedure is the
heart of the foreign-stdlib library. It extends the FFI attribute
entry table with a new primitive entry for (rtd-name sub-rtd),
where sub-rtd must extend void*-rt. The resulting record rep-
resents a tagged wrapped C pointer, allowing one to encode type
hierarchies.

This procedure is then used to establish the FFI attributes
’char*, ’int*, ’double*, ’float*, and ’char**. For each such
attribute ’T , there is a record type T -rt and a combinator function
call-with-T that allocates (deallocates) an appropriately mar-
shaled array on entry (exit) to a procedure parameterized over an
instance of the corresponding record type.

For example, (call-with-char** strings proc) consumes an
vector of strings and a procedure that consumes a char**-rt. It
first allocates a array on the C heap, marshaling each argument
string to a C string in the newly allocated array. Then it invokes proc
on char**-rt wrapped address of the array. When proc returns,
it deallocates the array. The call-with-boxed procedure uses a
similar pattern to allocate a memory cell to hold any instance of
void*-rt.

Finally, (establish-void*-subhierarchy! symbol-tree)
is a convenience function for constructing large object hierarchies,
such as that found in GTK+. It descends the symbol-tree, creates a
record type descriptor for each symbol (where the root of the tree
has the parent void*-rt), and invokes ffi-install-void*-subtype
on all of the introduced types.

5.5 foreign-sugar
The (define-foreign (name arg-type . . .) ret-type) form is
the heart of the foreign-sugar library.

This form is simple when name directly corresponds to a foreign
function; then its expansion is:

(define name
(foreign-procedure (symbol->string ’name)

’(arg-type . . .) ’ret-type))

The interesting case is when name is not a foreign export.
Then the define-foreign form performs a search, applying a se-
quence of name generators to name until it finds an export from
some foreign library. Each name generator maps a string to an-
other string (or false when inapplicable). The library itself pro-
vides the sample name generators foo-bar-baz->foo_bar_baz
and foo-bar-baz->fooBarBaz, which perform transformations
capturing some common naming conventions found in C libraries.

The library also provides procedures to extend the set of name
generators, changing the search strategy to deal with other naming
conventions. One can devise “natural” mappings of foreign func-
tion names to Scheme procedure names. (However, there are phase
issues when extending the set of name generators; one must ensure
that the appropriate name generators are installed before perform-
ing the expansion of define-foreign.)

When this library was developed, Larceny’s reader case-folded
by default, and many C identifiers did not directly correspond
to Scheme identifiers. Automatically mapping Scheme-compatible
names to their C counterparts was preferable to linking them by
hand. With Larceny’s new case-sensitive reader, such name map-
ping is unnecessary and this library is less relevant.

6. Related Work
Almost every Lisp and Scheme implementation has some sort of
foreign function interface; we cannot address all of them. Here

we review some published treatments of interfacing to foreign
libraries.

6.1 Interfacing high-level languages with foreign libraries
[Fisher et al.(2000)Fisher, Pucella, and Reppy] argue that a foreign
interface should not copy a foreign structure into corresponding
structures in the target system, but rather should manipulate the
raw memory directly. We support either approach: a developer
can indicate that a foreign value should be copied and provide
the corresponding marshaling procedure via our middle layer, or
can use a void*-rt record to pass around a pointer into memory
managed by the C runtime. Much of their paper is devoted to how
types are translated from C to Moby; we mostly sidestep the issue,
allowing the introduction of unsafe operations but also providing
some high-level interfaces to structures and enums so that users are
not always forced into to low-level interactions.

[Blume(2001)] presents an FFI between SML/NJ and C based
on data-level interoperability. It encodes much of the C type system
directly into complex ML types. Their system supports preserva-
tion of foreign functions during a heap export in a manner analo-
gous to how we support them during a heap dump. Their FFI avoids
much of the complexity that we show in our lower layer because it
does not support callbacks.

[Huelsbergen(1995)] presents an FFI between SML/NJ and C
that employs a copying policy for marshaling (as opposed to a pol-
icy of data-level interoperability). It works by generating C code
that one compiles and links into the SML runtime (they state replac-
ing this static linkage with a dynamic one based on dynamically
linked libraries is straightforward). Their system supports callouts
and callbacks; they deal with migration of callback target closures
by registering the closure’s address in the callback as a root with
the collector. We instead introduce a level of indirection between
the machine code bytevector and the target closure.

[Urban(2004)] provides a broad (though incomplete) survey of
FFI systems and implementations. The current draft ends with the
suggestion that that values should be passed only by value (not by
reference), to avoid any use of foreign pointers,7 which appears at
odds with a policy of data-level interoperability. It is interesting that
even as late as 2004 there is not an obviously “right” choice for this
design axis.

6.2 FFI’s for Scheme
[Rose and Muller(1992)] present a Scheme system centered around
integrated development with C. All C types are mapped into some
class of data on the Scheme side, allowing seamless transfer of data
between the two sides. This design goal led to a number of design
constraints, such as using a “hyperconservative” garbage collector
and a calling convention for Scheme compatible with that of C. In
constrast, we layered an FFI on top of a high-performance Scheme
runtime: we extended the runtime with new primitives, but the FFI
does not compromise the main design goals of Larceny. Larceny
has precise garbage collectors and a specialized calling convention
for the MacScheme machine.

[Kelsey and Sperber(2003)] propose an interface for writing
glue code in C. It provides a “lowest common demoninator” ap-
proach to interfacing with foreign libraries: you can hook into ar-
bitrary libraries, but you have to develop C code to do it.

[Barzilay and Orlovsky(2004)] present the FFI for PLT Scheme.
Their philosophy of “stay in the fun world” agrees with our own;
we have taken that philosophy further by using Scheme to generate
our callout and callback trampolines. The PLT Scheme FFI uses

7 Urban’s conclusion is based in part on his view that lisp code for interact-
ing with foreign memory is even less readable than C code; perhaps tools
such as those provided by our upper layers would address this concern.

a GNU library, libffi [Green(2008)], to support callouts and
callbacks; they point out that the libffi generated structures are
allocated via malloc to circumvent the garbage collector, but do
not provide further detail on how movement of callback targets is
handled. It would be interesting to see if Larceny could also use
libffi to avoid the need to develop ABI-specific code in the FFI
lower layer; but the effort of hooking into libffi may exceed
the effort of maintaining our construction of callout and callback
trampolines. The PLT Scheme FFI has a sophisticated extensible
syntax for generating wrapper code; we hope to adopt some of their
ideas in a future revision of the middle layer of the Larceny FFI.8

6.3 Extracting information from header files
[Rose and Muller(1992)] describes an interface extractor tool to
scan header files and store information in Unix object files that
their Scheme system can later load. They extract a large amount
of data from the headers, converting definitions of macros with
arguments into dynamic functions and definitions of types into first
class Scheme values. We are much more limited in what we can
extract, because we do not parse the header files directly.

[Hansen(1996)] claims that header files do not provide reason-
able definitions of library interfaces, and argues that converting a C
header into a rational intermediate form should be separated from
generating an FFI specification. His FFIGEN system has a front-
end derived from a portable ANSI C compiler and a sample back-
end for Chez Scheme. We agree that one cannot generally derive
all necessary interface information from a C header file alone. Thus
we require a user to specify more specific policy information to our
FFI’s middle layer. Like FFIGEN, we attempt to isolate the pol-
icy writer from the pain of parsing C header files; our approach
in foreign-ctools of invoking the system’s C compiler directly
avoids porting a C compiler. We cannot automatically extract as
much as FFIGEN, because we did not develop a separate C header
file parser.

[Beazley(1996)] is a popular tool for generating C and C++
header files into scripts for hooking to foreign libraries. SWIG pro-
cesses interface files written using a large subset of C and C++ syn-
tax, and generates code to interface to one of a number of scripting
languages. Our system, like that of [Barzilay and Orlovsky(2004)],
stays in the Scheme world. The user must write interface code
in Scheme, rather than automatically extracting the interface from
header files, but even SWIG cannot automatically extract interfaces
from arbitrary header file code, and if one is to be forced to write
code, we prefer to do it using Scheme syntax.

[Reppy and Song(2006)] presents a tool for generating foreign
interfaces by combining header files with a declarative script. Their
typemap four tuples seem analogous to the FFI attributes that we
employ in our middle layer. Their work uses a combination of a
declarative DSL and term-rewriting to derive interfaces to foreign
libraries, which they claim is simpler than expressions in a full
programming language as is done in FFIGEN and in our higher
layer libraries.

7. Conclusion and Future Work
We have presented the layers of the Larceny FFI, from the low level
details of callouts and callbacks and up to the high level syntactic
forms used to write abstract interfaces.

Our FFI supports advanced features such as relinking foreign
functions on heap reload. The FFI design is robust: we dynamically
generate ABI-specific machine code in our trampolines, but that

8 The interface of the PLT FFI is not directly portable to Larceny; in
particular, their strategy for extensibility requires procedural macros to be
able to expand subexpressions and inspect the results in a local manner,
which Larceny does not currently support.

code is completely independent from the the MacScheme machine
model used for compiled Scheme code.

Our higher layer libraries provide define-c-info, a tool that
extracts information from C header files without reinventing the
wheel of a C parser. This special form provides the basis for a high-
level portable interface to C struct and enum types.

Future work includes improving Unicode interface support,
adding the ability to marshal structure parameters between the mid-
dle and lower layers, and adopting a more expressive interface DSL
along the lines of [Barzilay and Orlovsky(2004)]. We also want to
acquire experience interfacing to other foreign libraries, such as
OpenGL.

References
[Barzilay and Orlovsky(2004)] Eli Barzilay and Dmitry Orlovsky. Foreign

interface for PLT Scheme. In 2004 Scheme Workshop, September
2004.

[Beazley(1996)] David M. Beazley. SWIG: an easy to use tool for
integrating scripting languages with C and C++. In TCLTK’96:
Proceedings of the 4th conference on USENIX Tcl/Tk Workshop,
1996, pages 15–15, Berkeley, CA, USA, 1996. USENIX Association.

[Blume(2001)] Matthias Blume. No-longer-foreign: Teaching an ML
compiler to speak C “natively”. Electronic Notes in Theoretical
Computer Science, 59(1), 2001.

[Clinger(2008)] Will Clinger. SRFI 99: ERR5RS records, 2008. URL
http://srfi.schemers.org/srfi-99/srfi-99.html.

[Fisher et al.(2000)Fisher, Pucella, and Reppy] Kathleen Fisher, Riccardo
Pucella, and John Reppy. Data-level interoperability. Technical
memorandum, Bell Laboratories, April 2000.

[Green(2008)] Anthony Green. The libffi home page, 2008. URL
http://sources.redhat.com/libffi/.

[Hansen(1996)] Lars Thomas Hansen. FFIGEN manifesto and overview,
1996. URL http://www.ccs.neu.edu/home/lth/ffigen/manifesto.html.

[Huelsbergen(1995)] L. Huelsbergen. A portable C interface for Standard
ML of New Jersey. Technical report, November 1995.

[Kelsey and Sperber(2003)] Richard Kelsey and Michael Sperber. SRFI
50: Mixing Scheme and C, 2003. URL http://srfi.schemers.org/srfi-50/srfi-50.html.

[Reppy and Song(2006)] John Reppy and Chunyan Song. Application-
specific foreign-interface generation. In GPCE ’06: Proceed-
ings of the 5th international conference on Generative pro-
gramming and component engineering, pages 49–58, New
York, NY, USA, 2006. ACM. ISBN 1-59593-237-2. doi:
http://doi.acm.org/10.1145/1173706.1173714.

[Rose and Muller(1992)] John R. Rose and Hans Muller. Integrating the
scheme and c languages. In LFP ’92: Proceedings of the 1992 ACM
conference on LISP and functional programming, pages 247–259,
New York, NY, USA, 1992. ACM. ISBN 0-89791-481-3. doi:
http://doi.acm.org/10.1145/141471.141559.

[Urban(2004)] Reini Urban. Design issues for foreign function interfaces,
2004. URL http://autocad.xarch.at/lisp/ffis.html.

