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Larceny’s Foreign 
Function Interface
Larceny

GC, compiler research

FFI cannot constrain system design

Experience report

For implementors

. . . and curious users
2
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Experience report on design and implementation of Larceny’s FFI.
(just describing design choices; I’m pretty certain none are innovations)
(What parts worked well for us)



Foreign Function 
Interfaces: Why

Low-level facilities (. . . but but but!)

Code reuse!

3
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Access to low-level facilities via interfaces targeting other languages (e.g. C)

Do not reimplement OpenGL, GTK+, etc
Life is too short!



Goals for
Larceny FFI

Constraint: precise, copying garbage collector

FFI design cannot constrain Larceny VM design

Scheme closures as C function pointers 
(“callbacks”) as well as “callouts”

Write glue in Scheme, not C

4
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Side-benefits of 
Larceny FFI

Automatic relinking on heap reload

Header file processing

Support code oblivious to Larceny VM design

5
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Latter is not a user-visible benefit; it is solely appreciated by the Larceny developers.



 

Layered FFI
Upper:

interfacing with C
(processing header files)

Middle: 
interfacing with C

(value marshaling policies)
Lower: 

runtime support, ABI, 
callouts, callbacks 

6

6

Presentation won’t address the middle (it is discussed in the paper)
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Larceny 
Architecture
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Larceny Architecture 

Larceny

Virtual Machine (aka VM) 

Runtime (supports VM); written in mostly C

Register assignment

Calling convention

8
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Virtual Machine has own processor configuration for running compiled Scheme code.  
Larceny Runtime is mostly implemented in C and thus adheres to ABI specifications.
Register usage conventions.  (E.g. Larceny chooses all reg roles; C: registers ABI specified.)  E.g. prev 
mapped %sp to GLOBALS array
Calling conventions: all parameters are caller-save in Larceny.
Scheme code evaluated in MacScheme, but Runtime (FileSystem interaction & GC) are part of the C 
world.
Consider a change-directory operation...



Context Switches

Some functionality outside compiled Scheme

File system commands

Garbage collector interactions

Implemented by Larceny runtime

Larceny Scheme syscall procedure

9
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Control Flow between 
Scheme and C

Larceny VM
world

C / ABI
world

10

invoke the
changedir
syscall

change the
working 

directory!

(current-directory “..”) chdir(“..”)

10

Low-level operation like “chdir”: shift the processor state so runtime C code happy with invocation 
context.  Likewise, return to Scheme must shift processor back to MacScheme-compatible state.
All *already* implemented in Larceny’s syscall support.
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talking  FFI yet

10

Low-level operation like “chdir”: shift the processor state so runtime C code happy with invocation 
context.  Likewise, return to Scheme must shift processor back to MacScheme-compatible state.
All *already* implemented in Larceny’s syscall support.



Low Level 
Challenges
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Our tasks

Callout: given C function (name/address) and 
its signature, create compatible Scheme 
procedure

Callback: given Scheme closure and C function 
signature, create C function pointer that 
invokes the closure

12
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A use case
(define-gtk-enum gtkwindowtype 
  (toplevel "GTK_WINDOW_TOPLEVEL")
  (popup    "GTK_WINDOW_POPUP"))

(define gtk-window-new
  (foreign-procedure “gtk_window_new” 
                     ‘(gtkwindowtype) gtkwindow*))

(define window (gtk-window-new ‘toplevel))

(define (key-press w e) 
  (write `(key-press ,(gdk-event-keyval e)))
  (newline))

(g-signal-connect window 
                  “key_press_event” key-press)

library code

client code
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Why this is hard

Value correspondence (“Symbol?  Pair?”)

Value formats differ (fixnum bitwidth, tags) 

VM mismatch

No apply in C

C function pointers are only code; Scheme 
closures are code plus environment

14

Scheme values are tagged; C’s are not.
VM invocation is not a C invocation; and must establish proper processor context
C does not have a way to apply function to a *package* holding its arguments



Some solutions. . .
Problem Solution

Value domains and 
formats differ

Map to/from primitive 
domains, strip/add tags

VM mismatch Reuse runtime context 
switch from syscalls

No apply in C ?

C function pointers are not 
Scheme closures ?
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C does not have 
apply ...

C alone can only approximate apply (poorly) 
via fixed size dispatch table

Plus, types matter

float not same as int

One long long not same as two long’s

4 types, 10 args : 1,048,576 entries

16

16



f

... so make an apply 
elsewhere

Given address & signature of foreign function f

Construct machine code for “C function” g

g takes array holding arguments to f

g places arguments according to ABI calling 
convention, and then invokes f 

(more like specialized apply  than apply)

17

17



...and one more thing
Callout/callback glue generation is 
implemented as Scheme code 

Machine code held in heap-allocated 
bytevectors!

garbage collectable

(but nonrelocatable)

Do not be fooled: g expects to run in C context 

18

See paper for details.
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(alternatives, but ...)

apply not expressible in C, but g = apply 

Could generate C code for g, compile, and 
dynamically link into running Larceny system

But that requires users to have C compiler 
available

Plus: dynamic code generation solves callback 
problem (encode closure address in g-code) 

19

f
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Problems, Solutions
Problem Solution

Value domains and 
formats differ

Map to/from primitive 
domains, strip/add tags

VM mismatch Reuse runtime context 
switch from syscalls

No apply in C Generate callout 
g-code from signature

C function pointers are not 
Scheme closures

Generate callback
g-code from signature 

20

Scheme values are tagged; C’s are not.



> (define unix/opendir
     (foreign-procedure "opendir" '(string) 'uint))
#<PROCEDURE>

Callout Creation, 
Usage

> (unix/opendir “/tmp”)
1050560

Constructs glue (as in g-code) for C opendir function

Invocation of unix/opendir passes g and marshaled arg list 
to Runtime syscall ffi callout; returns dir_ent* (aka “uint”)

21



Callout Control Flow

Larceny VM
world

C / ABI
world

invoke
ffi callout
syscall, 

passing
g and arglist 
= (a1 a2 ...)

massage 
arglist into 
argarr and 

invoke 
g(argarr)

distribute 
argarr, 
calling 

f(a1, a2, ...)

(whatever 
f

does)

(for foreign function f)

22
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Callout/Callback glue 
follows C ABI

Ten years ago there was no x86 native Larceny 
VM (only C backend)

We recently implemented x86 native

FFI continued working

23

Tell story of: 
1. Lars dev’d x86 FFI atop Petit Larceny
2. Felix dev’d native x86 Larceny 
3. Lars’ x86 FFI worked transparently, orthogonal to transition!



Why again?

Heap dump/reload (with library reloading); 
see paper

Glue uses ABI call convention, not Larceny VM 
call convention (robust to VM design changes)

FFI does not constrain Larceny VM design

Drawback: generating machine code for g 
ourselves (instead of using e.g. libffi)

24
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We’ve adopted this control/heap structure for a number of reasons; the tramp objects allow us to 
relink foreign objects during a heap load.  (See paper for more details.)
I cannot stress enough the idea of separating the MacScheme calling convention from the C calling 
convention.  (It took me a long time to understand, and longer to appeciate.)
On the drawback: there is significant initial development (and also maintenance) overhead for our 
FFI design.  E.g. we still do not have a PowerPC port of the FFI.



High Level
Interfacing 
Problems

25

Now that I’ve shown you the low level details of the kernel of the Larceny FFI, lets talk about a higher 
level problem and the solution we adopted.



How to hack with C?

Many libraries have implementation (shared 
object code) and interface (C header file)

Would be nice if interface were not encoded as 
a C header file

(see FFIGEN Manifesto [Hansen,1996])

We accept standard operating procedure and 
treat the header file as the expected interface

26
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Two kinds of libraries

C libraries with all functionality exported via 
functions over “simple” types

C libraries assuming that clients can/will use 
constants and type definitions of header files

27
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Very simple FFI’s suffice for the former category.
Unfortunately, vast majority of libraries fall into latter category



Example: 
The UNIX Filesystem

A tale from the Larceny source tree

Larceny does not have a list-directory 
primitive operation or syscall

But FFI-based implementation was available

28
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Felix decided to see if the code for list-directory worked
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> (list-directory ".")
("." ".." "122.jpg" "DCP_104.JPG"
 "jackson.jpg" "SOUNDAV2.JPG")

Linux (Intel x86)

29

Felix tried the code on Linux.  Lo and behold, it worked!



30

> (list-directory ".")
("" "" ".jpg" "_104.JPG"
 "kson.jpg" "NDAV2.JPG")

Mac OS X (Intel x86)

30

Encouraged, Felix tried the code on Mac OS X.  Here’s the result.



;; list-directory : String -> [Listof String]
(define (list-directory dirname)
  (let ((dir (unix/opendir dirname)))
    (if (zero? dir)

      (error 'list-directory path)
      (let loop ((files '()))
         (let ((ent (unix/readdir dir)))
            (if (zero? ent)

              (begin (unix/closedir dir)
                    (reverse files))

              (loop (cons (dirent->name ent) 
                            files))))))))

31

The Investigation

31

So Felix started looking at the code.
list-directory is a pretty standard function.  (Easy to port from C for loop in example code.)
It just opens the directory, iterates through its entries (building up a list of names from each), and 
closes the directory.



;; list-directory : String -> [Listof String]
(define (list-directory dirname)
  (let ((dir (unix/opendir dirname)))
    (if (zero? dir)

      (error 'list-directory path)
      (let loop ((files '()))
         (let ((ent (unix/readdir dir)))
            (if (zero? ent)

              (begin (unix/closedir dir)
                    (reverse files))

              (loop (cons (dirent->name ent) 
                            files))))))))
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The Investigation

32

If somethings wrong, it seems like it would be something in unix/opendir, unix/readdir, unix/
closedir, or 
dirent->name



;; The offsets in the dirent accessors 
;; are probably x86-Linux-specific!!

(define unix/opendir
  (foreign-procedure "opendir" '(string) 'uint))
(define unix/readdir  
  (foreign-procedure "readdir" '(uint) 'uint))
(define unix/closedir 
  (foreign-procedure "closedir" '(uint) 'int))

(define (dirent->name ent)
  (%peek-string (+ ent 11)))

33

The Culprit

33

So Felix inspects the definitions of those functions, elsewhere in the file.
And there we find the problem (pointed out directly in Lars’s comments).

The uints are dirent memory addresses; the int is an error return code.
(To learn more about the interface to foreign-procedure, see the paper.)



;; The offsets in the dirent accessors 
;; are probably x86-Linux-specific!!

(define unix/opendir
  (foreign-procedure "opendir" '(string) 'uint))
(define unix/readdir  
  (foreign-procedure "readdir" '(uint) 'uint))
(define unix/closedir 
  (foreign-procedure "closedir" '(uint) 'int))

(define (dirent->name ent)
  (%peek-string (+ ent 11)))

34

The Culprit

34

%peek-string is an (unsafe) memory accessor in Larceny.
Here’s we’re just calculating the memory address of the entry’s name by adding 11 to the entry’s 
start. 



“Portable” code

Referring to field names is portable, but not 
field offsets

On UNIX, “struct dirent” must have a 
“d_name” field holding filename characters

On our Linux system, “d_name” is at offset 11

But not on Mac OS X

35
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“Portable” code

One solution: 

1. Transcribe desired structure definition into 
Scheme special forms

2. Macro-expand forms to offsets according to 
target’s ABI

36
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“Portable” code

Library developers (often) have freedom to 
extend structure definitions with new fields

 E.g. “struct dirent” definitions differ

Transcribed structure definitions are not 
portable

38
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“Portable” code

Portability requires extracting information 
from the header file

Did not want to write a C parser

Insight: generating C programs that extract 
info (e.g. field offsets) is much easier task

Procedural macros allow one to generate, 
compile, and execute such a program statically!

39
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Mention that the trick is also used by Haskell FFI.
(and GNU configure set a precedent for generating small C pgms to reflect on the host system.)
BUT we’re doing it as a macro!



define-c-info form

40

(define-c-info (include “pair.h”)
  (struct “pair” (x-offs “x”) (y-offs “y”)))

40

I will now illustrate the idea behind the define-c-info syntax by showing how its expansion works in 
one case.
Here we interface to a C pair struct, and we want access to two of its fields.



define-c-info form

41

(define-c-info (include “pair.h”)
  (struct “pair” (x-offs “x”) (y-offs “y”)))

;; pair.h
struct pair {
  int id; 
  int x; 
  char c; 
  int y; 
};

(begin
  (define x-offs 4)
  (define y-offs 12))

41

I will now illustrate the idea behind the define-c-info syntax by showing how its expansion works in 
one case.
Here we interface to a C pair struct, and we want access to two of its fields.



define-c-info form
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(define-c-info (include “pair.h”)
  (struct “pair” (x-offs “x”) (y-offs “y”)))
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I will now illustrate the idea behind the define-c-info syntax by showing how its expansion works in 
one case.
Here we interface to a C pair struct, and we want access to two of its fields.



(define-c-info (include “pair.h”)
  (struct “pair” (x-offs “x”) (y-offs “y”)))

define-c-info form
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(define-c-info (include “pair.h”)
  (struct “pair” (x-offs “x”) (y-offs “y”)))

define-c-info form

43

#include “pair.h”
#include <stdio.h>
int main() { 
 printf(“\n(\n”);
 { struct pair s; 
   printf(“%ld ”,((long)((char*)&s.x-
                         (char*)&s))); }
 { struct pair s; 
   printf(“%ld ”,((long)((char*)&s.y-
                         (char*)&s))); }
 printf(“\n)\n”); return 0;
}

1. generate C code

43
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define-c-info form
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#include “pair.h”
#include <stdio.h>
int main() { 
 printf(“\n(\n”);
 { struct pair s; 
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   printf(“%ld ”,((long)((char*)&s.y-
                         (char*)&s))); }
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}

2. compile to a.out

a.out
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a.out
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a.out
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(define-c-info (include “pair.h”)
  (struct “pair” (x-offs “x”) (y-offs “y”)))

define-c-info form

45

3. run a.out, piping results to temp file

a.out
(
 4 12
)

45
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(define-c-info (include “pair.h”)
  (struct “pair” (x-offs “x”) (y-offs “y”)))

define-c-info form
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(
 4 12
)
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(define-c-info (include “pair.h”)
  (struct “pair” (x-offs “x”) (y-offs “y”)))

define-c-info form

46

4. read temp file and generate binding form

(
 4 12
)

(begin
  (define x-offs 4)
  (define y-offs 12))
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(begin
  (define x-offs 4)
  (define y-offs 12))

46



(define-c-info (include “pair.h”)
  (struct “pair” (x-offs “x”) (y-offs “y”)))

define-c-info form
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(begin
  (define x-offs 4)
  (define y-offs 12))

;; pair.h
struct pair {
  int id; 
  int x; 
  char c; 
  int y; 
};
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(define-c-info (include “pair.h”)
  (struct “pair” (x-offs “x”) (y-offs “y”)))

define-c-info form

47

(begin
  (define x-offs 4)
  (define y-offs 12))

(Actual 
numbers depend 

on contents of 
“pair.h”)

;; pair.h
struct pair {
  int id; 
  int x; 
  char c; 
  int y; 
};

47



Fixed/Portable UNIX 
Filesystem Interface 

48

(define (dirent->name ent)
  (%peek-string (+ ent 11)))

(define (dirent->name ent)
  (define-c-info (include<> “dirent.h”)
     (struct “dirent” (name-offs “d_name”)))
  (%peek-string (+ ent name-offs)))

This version works on Linux, Mac OS X, Solaris

Windows: same idea, but different API

48



More High Level 
Interface Syntax 

define-c-info has proven to be a useful 
core construct, though low-level

Foundation for other syntax

define-c-struct

define-c-enum, define-c-enum-set

49

49

see paper for details on the other macros



Related Work: 
FFI’s for Scheme

(vast amount of Lisp FFI material)

esh [Rose and Muller, 1992]: tight integration, 
tight constraints

SRFI-50 [Kelsey and Sperber, 2003]: client 
writes glue in C

PLT Scheme [Barzilay and Orlovsky, 2004]: 
“stay in the fun world”

50
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I only begin to skim the surface of interfacing Lisp/C in the related work section.



Related Work: 
interface extraction
esh [Rose and Muller, 1992]: maps headers to 
UNIX object files

SWIG [Beazley, 1996]: processes subset of C and 
C++ into scripting language

FIG [Reppy and Song, 2006]: process header 
files via a declarative DSL

51

51

esh: C macros become Scheme functions!
SWIG: you have you write your interface in a C-like language; it won’t handle arbitrary headers 
directly
FIG: combines declarative DSL and term-rewriting to derive interfaces to foreign libraries



Conclusion

Larceny’s low-level FFI structure

largely orthogonal to Larceny VM design

not simple; but much complexity is kept in 
Scheme code, not C code

Larceny’s high-level FFI functionality: simple 
macros that process header files

52
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thanks!

53
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Low Level
Heap Structure

(how to satisfy the garbage collector)

55

I’ve shown control flow details so far; now I’m going to show how the objects implementing that 
control are distributed throughout the heap.  
But first I need to explain the diagram conventions.



Ovals:   GC traced objects

Rectangles: untraced objects/memory / code

Heap Diagram legend

56

56

Ovals are e.g. closures, pairs.  Rectangles are e.g. machine code, C runtime fcns, Scheme string 
contents
“Foreign State” in lower right corner is a fuzzy abstraction of the C memory state



Heap Diagram legend

Solid arrows: GC traced references

Dashed arrows: untraced (encoded) addresses

57
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Scheme managed   versus   foreign memory

non-moving   vs relocatable memory

Heap Diagram legend

58
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Heap Diagram rules

Solid arrows only originate at ovals

Dashed arrows cannot point to relocatable

Solid arrows cannot point to C runtime state59

59



Heap Structure: 
Callouts

CALLOUT CONTROL FLOW

60

60

We start off with the Runtime functions and Foreign Target; 
we get to create the MacScheme stuff.
(keep in mind that final control flow is going to follow the “Z”)
... get to start by creating a Trampoline object
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Heap Structure: 
Callouts

61

I’m a call 
instruction!

I’m a 
function pointer!

61

Q: What are these dashed arrows?
... this Tramp Object just represents the target; its *not* what Scheme client code directly invokes.
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Heap Structure: 
Callouts

62

I’m the entry 
point your 

Scheme code 
invokes!

62

This is the closure that client code invokes.  It extracts the ARG ENCODING and TRAMP GLUE, and 
passes them along to the runtime callout.
(... but there’s one last detail: C function invocations push return addresses onto the C stack...)
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Heap Structure: 
Callouts

63
I’m the C stack

63

So to properly represent the references from the foreign memory, we add these dashed arrows.
and with this, we have an accurate diagram that also satisfies all of the rules.
Q: to ponder: does it actually matter that a reference into the Trampoline Glue is on the C stack?
When/how could the GC be invoked while its on the stack?
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Heap Structure:
Callbacks

CALLBACK CONTROL FLOW

64

64

Distributing control amongst heap objects.  
Remember: we start at the foreign invocation, go through trampoline, then runtime, 
and finally hit the target closure (the “Z” in reverse).
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I’m the goal!
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Here, we will start with the target closure, and the goal is to come up
with the right glue to make the foreign invocation work from C.
The machine code of the closure is not enough; we need its environment as well.
Somewhere in the glue code we need to get our hands on that closure object.
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interface to the target

66

When we construct a callback, we create a trampoline object that creates the machine code as well 
as a description of the argument encoding.
Both the target closure and the arg encoding need to be passed into the runtime glue code.  
Can we put references from the trampoline glue to these objects?  (Why not direct?  Why not 
indirect?)
How can we do this without violating our heap structure invariants?
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relocatable objects
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We solve the problem by introducing a level of indirection.
These handles are allocated as non-relocatable, so the trampoline glue can encode indirect 
references to them, while they themselves can have direct references to the relocatable part of the 
Scheme heap.
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Finally, to complete the picture, when we pass a callback into the foreign world, the foreign state will 
have a reference to the trampoline glue (that, as far as C is concerned, is just some C function 
pointer).
(This is the most complex picture; it is explained in the paper as well.)
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