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Abstract
Solid state drives (SSDs) update data by writing a new copy,
rather than overwriting old data, causing prior copies of the same
data to be invalidated. These writes are performed in units of
pages, while space is reclaimed in units of multi-page erase blocks,
necessitating copying of any remaining valid pages in the block
before reclamation. The efficiency of this cleaning process greatly
affects performance under random workloads; in particular, in SSDs
the write bottleneck is typically internal media throughput, and write
amplification due to additional internal copying directly reduces
application throughput.

We present the first precise closed-form solution for write am-
plification under greedy cleaning for uniformly distributed random
traffic, and validate its accuracy via simulation. In addition we also
present the first models which predict performance degradation for
both LRU cleaning and greedy cleaning under simple non-uniform
traffic conditions; simulation results show the first model to be exact
and the second to be accurate within 2%. We extend the LRU model
to arbitrary combinations of random traffic, and demonstrate its use
in predicting cleaning performance for real-world workloads.

The utility of these analytic models lies in their amenability to
optimization techniques not feasible in simulation. We examine the
strategy of separating “hot” and “cold” data, showing that for our
traffic model, such separation eliminates any loss in performance
due to non-uniform traffic. We show how a system which separates
hot and cold data may shift free space from cold to hot data in order
to achieve improved performance, and how numeric methods may
be used with our model to find the optimum operating point, which
approaches a write amplification of 1.0 for increasingly skewed
traffic. We examine on-line methods for achieving this optimal
operating point, and show that a control strategy based on our model
achieves near-optimal performance for a number of real-world block
traces.

Categories and Subject Descriptors B.3.3 [Memory Structures]:
Performance Analysis and Design Aids—formal models, simulation;
D.4.2 [Storage Management]: Garbage collection

General Terms Design, Performance, Algorithms

Keywords Solid State Drives, Solid State Storage Systems, Write
Amplification, Flash Memory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SYSTOR ’12 June 4–6 2012, Haifa, Israel.
Copyright c© 2012 ACM Copyright 2012 ACM 978-1-4503-1448-0/12/06. . . $10.00

1. Introduction
Log-structured file systems (LFSs) and SSD Flash Translation
Layers (FTLs) both rely on a cleaning mechanism to consolidate
free space and make it available for subsequent modification. In
each case modifications are made in fixed-sized units (flash pages
or file system blocks), and these writes are made in an out-of-place
fashion—i.e. rather than modifying existing data, the previous data
is invalidated and a new copy written. Storage is arranged in larger
fixed-size units (flash erase blocks or LFS segments) which are
written sequentially, destroying (either by over-writing or prior
erasure) any previous data in the block. When all blocks on the
media have been filled, it is necessary to select and clean blocks
which may be used for further writes, by copying any remaining
valid data so that it is not lost.

We measure the performance of this cleaning process in terms
of the Write Amplification Factor, A: the ratio of total internal
writes (including copying due to cleaning) to externally-requested
writes. We note that this cleaning process is similar to the well-
studied problem of garbage collection in programming languages
[17]; however the constraints of fixed mutation and collection units
in cleaning, along with perfect knowledge of storage liveness, result
in a problem with substantially different solutions and behavior.

Cleaning mechanisms have been extensively studied in the con-
text of log-structured file systems [4, 22, 29] and flash translation
layers [12, 13, 21], but to date almost all work has focused on experi-
mental validation of new algorithms via trace-driven simulation, and
few analytic results have been published. We present models with
closed-form results for LRU and greedy cleaning under conditions
of uniformly-distributed random arrivals. We extend this work to ex-
amine the case of traffic with temporal locality, which has not been
addressed in the literature to date, and present analytic models with
simple numerical solutions which accurately predict degradation of
cleaning performance for both LRU and greedy cleaning in the pres-
ence of simple non-uniform traffic. This approach is then applied to
more complex traffic models, and shown to predict performance of
simple cleaning algorithms for real-world traces.

Finally, we use our analytic results to provide insight into the
well-known technique of separating “hot” and “cold” data in systems
based on block cleaning. We show that simple separation of hot and
cold data is insufficient to achieve performance gains possible in
the presence of locality, and demonstrate how cleaning strategies
informed by our models can achieve improvements of 3x or more
in the presence of locality, where naı̈ve cleaning would suffer a
degradation of 2x. We construct a cleaning strategy which is optimal
for our hot/cold traffic model, and present trace-driven simulation
results demonstrating its applicability to real-world workloads.



2. Problem Statement
We consider the case where U · Np pages of data are stored on
T · Np pages of media, in blocks of Np pages each; this would
correspond, for instance, to a flash translation layer with U logical
blocks and T physical blocks, with a block size of Np pages. A key
metric is the degree of over-provisioning, where T exceeds U , the
minimum amount of media needed to store the retained data. We
express this as the spare factor Sf = T−U

T
, or equivalently as the

over-provisioning factor α = T
U

, the ratio by which total storage
exceeds user-visible data.

At any time one block is designated as the write frontier; pages
are written sequentially into this block until it is full, after which it
is placed in the storage pool and a new frontier selected from the
free list. When the free list drops below a low watermark w � T ,
blocks are selected and cleaned until the free list has reached w
again. This is done by (1) selecting a block to clean, (2) copying any
remaining valid pages within the block (we may assume without
loss of generality that they are copied to the write frontier), and then
(3) adding the block to the free list. If the block selected for cleaning
contains NV valid pages and NI = Np − NV invalid pages, the
total gain in free pages will be NI ; the process will need to be
repeated until Np invalid pages have been reclaimed, increasing the
length of the free list by one block.

We note that this formulation of the problem describes what is
termed a fully page-mapped flash translation layer, as opposed to
many algorithms in use which map the majority of storage in units of
blocks, typically to conserve mapping table space in RAM. Existing
work has already provided models for performance of several of
these block-mapped translation layers [5], and such models lack
generality as they are specific to the class of algorithm modeled. In
addition, we focus on page-mapped algorithms for their efficiency,
as they have been shown experimentally [14] to hold the potential
for highest performance, and when used with greedy cleaning have
been proven [16] to be optimal for uniform random traffic.

In this work we are concerned with cleaning efficiency, which
we express as write amplification, the ratio of total storage writes
(including data copied during cleaning) to external data written to the
system. In doing so we ignore the cost of the read operation, which
is significant in a disk-based file system but less so in flash-based
ones; the modification to include read overhead is straightforward.
[26] In addition we ignore the cost of erasure in flash-based systems;
although this is expensive, typically taking 10x as long as writing
a page, in contemporary devices where Np is 64, 128, or even 256,
the amortized cost of one erasure per Np writes is not high.

Finally, we ignore the issue of wear leveling in flash-based
devices where blocks have limited write/erase limits. Static wear-
leveling algorithms used to maximize the endurance of SSDs cause
additional internal writes, thus contributing to write amplification;
an example is Ban’s randomized algorithm [2]. We note that Ban’s
algorithm, as an example, copies entire erase blocks and thus
incurs no additional fragmentation; if the destination of this copy
is substituted for the original block, the operation of a cleaning
algorithm such as LRU or Greedy will be unaffected, and the
performance impact will be limited to any copying performed by
the wear leveling algorithm itself.

3. Uniform Traffic Case
We first examine the case where traffic is uniformly distributed—i.e.
an individual write is equally likely to invalidate any one of the
NpU pages of valid data.

stale

T blocks: U=T(1-Sf) active, Sf∙T stale

external writes 
rate = 1

Copied blocks, rate = A-1

active

total rate = A

Figure 1. Model of LRU block cleaning. External writes enter at
rate 1; blocks move through the queue at rate A, and are invalidated
at a rate of 1

U
; at the end of the queue they thus remain valid with

probability
(
1− 1

U

)T/A, which must also be equal to 1
A−1

.

3.1 LRU Cleaning

The simplest policy is LRU cleaning, where the least-recently-
written block is selected for cleaning. (Since pages are only written
once, this policy might equivalently be termed FIFO cleaning, as
LRU and FIFO are identical in the absence of multiple accesses.) A
diagram of LRU cleaning may be seen in Figure 1; after a block is
fully written it enters the LRU queue, and upon reaching the end it
is selected for cleaning, with any remaining valid pages copied back
to the current write frontier.

If we assume Np = 1 and that external writes arrive with a
constant rate of 1 write per unit time, then blocks move from the
front of the queue to the end with a velocity of A due to write
amplification. While a block is on the queue the chance of it being
invalidated by a particular new write is 1/U , and since the queue is
of length T , the expected number of such writes which occur during
its journey is T

A
; the odds of it surviving are thus S = (1− 1

U
)
T
A .

The survival rate S then gives us the write amplification A = 1
1−S ,

resulting in the following equation:
1

1− (1− 1
U
)
T
A

= A (1)

If we define T in terms of the over-provisioning ratio α, T = αU
and let t = α

A
, as U →∞ this converges to:

1

1− e−t =
α

t
(2)

Simulation results show that this convergence is quite rapid; for
a volume of more than 1000 pages (i.e. 4 MiB with 4K pages) the
effect of absolute size is negligible. Equation 2 can be solved in
terms of Lambert’s W function1:

t = α+W (−αe−α) (3)

and
A =

α

t
=

α

α+W (−αe−α) (4)

which may be seen as the top line in the graph in Figure 4.
In Table 1 simulation results for LRU cleaning, using 106 pages,

are compared to analytic results from Equations 3 and 4; essentially
exact correspondence is seen. For T � 1 the effect of block sizeNp
is negligible; this has been validated in simulation2 and may be seen
by constructing an equivalent system with (T ′, U ′) = (T,U) ·Np

1 Lambert’s W function, sometimes known as ProductLog, is the inverse of
xex; i.e. W (y) = x|xex = y
2 Across a range of 0.04 ≤ Sf ≤ 0.19, with 3200000 pages, A varied by a
relative factor of 0.001 or less from Np = 1 to Np = 256.



Sf Eq. 4 simulation

0.03 16.837 16.835 ±0.0036
0.07 7.318 7.317 ±0.0020
0.11 4.725 4.725 ±0.0013
0.17 3.129 3.129 ±0.0008
0.23 2.371 2.371 ±0.0008

Table 1. Comparison of LRU cleaning performance from Equation
4 with simulated results for U = 106; 95% confidence intervals are
given. Correspondence is seen to be exact.

Np-1 NpNp-2

Cleaner

external
writes

full blocks
enter here

X0

minimally-utilized 
blocks are collected 

here

Figure 2. Markov model for a single block with greedy cleaning:
block state is the number of remaining valid pages.

and N ′p = 1, which will function identically except in the case of
writes to the last block in the original system, which occur at the
negligible rate of 1/T .

We note that Equations 3 and 4 are independent of the block
size Np. This independence has been validated in simulation, and
may be shown more formally (for the case where U, T � 1) by
comparing a system with block size Np to an equivalent one with
N ′p = 1 and (T ′, U ′) = (T,U) · Np. In each system the order in
which pages are written and recycled is fixed; the only difference
between the two is that in the first system a block of Np pages is
recycled at once, at the same point where the first of the Np pages
would be reclaimed in the N ′p = 1 system. In the N ′p = 1 system
these remaining pages would be subject to invalidation for up to
Np additional steps; the rate at which such invalidations occur is no
more than 1/T , or negligible by our assumptions.

For validating this and other models in this paper we have
constructed a high-speed simulator 3, consisting of approximately
1000 lines of C and Python code. This simulator ignores page
contents, but is designed to be highly configurable and to enabled
detailed instrumentation of behavior such as block occupancy. In
the simplest case (LRU cleaning, write amplification statistics only)
we are able to simulate the equivalent of a 256 GiB SSD at a rate of
3 million simulated writes per second, while for greedy cleaning a
128 GiB SSD may be simulated at 0.5 million simulated writes per
second.

3.2 Greedy Cleaning

The greedy cleaning algorithm reclaims the block with the most
invalid pages, thus minimizing the copying necessary; for uniform
random traffic this has been shown to be optimal (see Hu [16]). In
Figure 2 we see a simple Markov model for the behavior of a single
block under greedy cleaning, numbering states by the number of

3 Available under an open-source license from www.ccs.neu.edu/

˜pjd/ftlsim
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Figure 3. Greedy cleaning: distribution of block states (i.e. number
of valid pages) overall and when selected for cleaning. Simulation
parameters: Sf = 0.089, Np = 64, U = 5× 104

valid pages in the block, 0 · · ·Np. If we again define the arrival rate
as 1 page per unit time, then blocks arrive at state Np with rate 1

Np
,

and as writes to a block arrive at a rate proportional to the remaining
valid pages, the transition rate from state i to i− 1 is i

UNp
.

The distribution of states seen during simulation, as well as that
of blocks selected for cleaning, is shown in Figure 3. We note that
there is a minimal state X0 below which occupancy is negligible;
once a block in stateX0 is written to, it enters a small pool of blocks
eligible for greedy cleaning; the odds are small that it will receive a
second write before being selected.

LettingX0 denote the lowest-numbered state with non-negligible
occupancy (53 in the figure above) we solve the balance equations
as follows. First, for states i = X0 · · ·Np we have transitions only
from state i to i− 1, with rate proportional to the number of valid
pages i; letting fi be the fraction of blocks in state i, we have

i · fi = k (5)

for some constant k. If we sum i · fi across all blocks we have the
mean fraction of valid pages per block, Sf :

Np∑
i=X0

i · fi =
Np∑
i=X0

k = (1− Sf ) (6)

and thus

k =
Np(1− Sf )

Np − (X0 − 1)
(7)

The sum of all state probabilities is 1:

Np∑
i=X0

fi =

Np∑
i=X0

k

i
= 1 (8)

which we approximate as an integral with continuity correction:

∫ Np+
1
2

i=X0− 1
2

k

i
di = 1 (9)

and thus

k =
1

log(2Np + 1)− log(2X0 − 1)
(10)

From Equations 7 and 10 we derive the equilibrium value of X0:



Sf A(Sf ) A(simulated)

0.03 13.624 13.631±0.002
0.05 8.872 8.870±0.001
0.07 6.623 6.625±0.001
0.11 4.430 4.432±0.001
0.17 3.002 3.002± <0.0005

Table 2. Analytic (A(Sf )) vs. simulated values for write amplifi-
cation with greedy cleaning. Np = 64, U = 100000, simulation
results given with 95% confidence intervals. Correspondence is
exact to 3 decimal places for values of Sf greater than 0.17.
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X0 =
1

2
− 2Np

α
W

(
−(1 + 1

2Np
)αe
−(1+ 1

2Np
α
)

(11)

and noting that reclaimed blocks have X0 − 1 pages active out of
Np, we obtain the write amplification:

A =
Np

Np − (X0 − 1)
(12)

In Table 2 we see simulation results compared to Equations 11
and 12 for Np = 64. We note that for very small values of Sf , the
number of blocks reserved for the free list becomes large enough
in relation to the number of spare blocks that it affects the results
slightly, even for realistically-sized volumes. As an example, the
simulation results in Table 2 are from a system equivalent to a 25
or 50 GiB SSD, depending on page size; without correction for free
list size, the predicted write amplification for Sf = 0.03 drops from
13.624 to 13.393.

Unlike LRU, the efficiency of greedy cleaning is dependent on
Np, decreasing as the block size increases. In Figure 4 we see
performance for values of Np ranging from 16, the erase block
size in early flash devices, to 256, the largest erase block size in
production today. (typical values are 64 for SLC and 128 for MLC)
As Np increases, we see performance converge to that of LRU
cleaning, with a more rapid convergence for higher values of Sf .

3.3 Windowed Greedy

Prior work by Hu [16] has examined the windowed greedy cleaning
algorithm, a hybrid of LRU and Greedy where the search for a block
with minimal valid pages is restricted to a greedy window of the w
oldest blocks in the LRU queue, in order to reduce computational
cost. We question the benefit of this algorithm, as it appears to give
the write amplification of LRU cleaning with the computational
complexity of Greedy cleaning.

Sf LRU Windowed Greedy

0.04 12.6712 12.469 ±0.0042
0.06 8.5070 8.396 ±0.0027
0.08 6.4261 6.356 ±0.0027
0.11 4.7254 4.682 ±0.0017
0.14 3.7554 3.727 ±0.0019

Table 3. LRU vs. Windowed Greedy performance for U=50000,
Np=64, w=500. With a window of 1% of the device size, we see a
relative performance improvement of approximately 1%.

Fraction of LBA space
mds 0 prxy 0 rsrch 0 rsrch 2

Fraction 70% 4.20% 5.60% 13.1% 59.2%
of 50% 0.70% 0.30% 1.20% 32.0%

Traffic 20% 0.00% 0.12% 0.01% 0.30%
10% 0.00% 0.06% 0.00% 0.00%

Table 4. Locality in sample traces from Microsoft Research [23].
E.g. in the prxy 0 trace, 50% of the traffic was written to 0.3% of
the LBA space.

Using the same argument used previously to show that LRU
cleaning costs are independent of Np, we note that given equivalent
systems with LRU and Windowed Greedy cleaning, the only differ-
ences in operation between the two will be when invalidations occur
in any of the w blocks in the greedy window. The rate at which
these invalidations occur will be negligible unless w = O(T ); this
may be seen in Table 3, where LRU is compared in simulation to
Windowed Greedy with U = 50000, Np = 64 (the lowest value
seen in current devices), and w = 500.

The advantage of Windowed Greedy in computational cost is
marginal, as well, as may be seen in the algorithm used in our
simulator. Since the number of valid pages in a block can only range
over 0 · · ·Np, it is straightforward to keep Np + 1 bins of block
references; on write an O(1) operation moves a reference from bin
i to bin i− 1, while finding the minimal non-empty bin to select a
block for cleaning is in the worst case O(Np), and typically O(1).

4. Non-Uniform Traffic Case
Unlike the uniformly distributed workload assumed above, real
storage workloads typically display significant amounts of both
temporal and spatial locality. As an illustration, in Table 4 we see
statistics on write operations in several of the widely used Microsoft
Research storage traces [23]; in many cases 50% or more of the
writes are destined to one percent or fewer of the storage. In this
section we present the first analytic examination of the effect of
non-uniform write distribution on cleaning performance, deriving
an accurate analytic model for LRU cleaning and an approximate
model for Greedy.

Temporal locality refers to the correlation between observance
(or non-observance) of an address during an interval and the ex-
pected time until that address is next seen. The simplest model of
temporal locality ignores any variations over time, and is thus equiv-
alent to a non-uniform random distribution of operations over the
volume address space. We examine this case, using Rosenblum’s
hot/cold data model [26] as shown in Figure 5. Some fraction f of
the address space is “hot”; a fraction r of the overall arrival rate is
distributed uniformly and randomly across these pages. Conversely,
the remaining 1 − f of data is “cold”, and fraction 1 − r of the
incoming writes are uniformly distributed across this space.
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Figure 5. Hot/Cold data model used for analysis. The fraction of
the total write rate destined for “hot” pages is r; these hot pages
represent a fraction f of the overall address space—e.g. 80% of
writes destined to 20% of the address space..

Figure 6. Limiting behavior for hot/cold traffic with LRU cleaning:
f → 0 (i.e. one hot page) and r → 1 (no writes to cold pages).

We note that this is implicitly a “closed-world” model, comprised
of UNp data pages which are repeatedly over-written at various
rates. As such this model directly applies to block device FTLs but
is less applicable to log-structured file system cleaning, where data
is frequently deleted rather than over-written. Extensions to this
model for such transient data are under investigation.

4.1 LRU Cleaning

LRU cleaning is known to suffer degradation in performance when
there is significant temporal locality [27, 30]. We can gain some
insight by considering the limiting case where a single page is
repeatedly re-written—i.e. f ' 0 and r = 1, as seen in Figure 6.
In this case we see that recycled blocks contain Np(1− Sf ) cold
pages; this is in fact the population average, and thus no better than
if blocks had been selected randomly. Because LRU cleaning forces
all blocks to be cleaned at the same age, hot data must wait too long
to be cleaned (in this case it is invalidated and thus ready to reclaim
almost immediately) while cold data does not wait long enough–in
this limiting case it should in fact never need cleaning.

In Figure 7 we see the balance equations for LRU cleaning with
hot/cold traffic depicted graphically. The total rate at which pages
enter the top of the queue is A, giving:

A = H ′ + r + (1− r) + C′ (13)

Using α = T
U

as before, we have:

A = 1 +
r

e
r
f
α
A

+
1− r

e
(1−r)
(1−f)

α
A − 1

(14)

λC=
(1−r )
(1− f )

1
U

λH=
r
f

1
U

r 1-r

C '=(C '+(1−r))e
−λC

T
A

Time in list:
T
A

H' C'

H '=(H '+r )e
−λH

T
A

Hot data Cold data

Invalidation
rate:

Rate A

Figure 7. Balance equations for LRU cleaning with hot/cold traffic.
At each step (i.e. external write) the odds of a hot page being
invalidated are r

fU
; during a block’s passage through the list the

number of external writes is T
A
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Sf = 0.15 (lower one). As r → 1 and f → 0, write amplification
increases from 5.2 to 8.4 and from 3.5 to 5.9, respectively.

Sf r f A (computed) A (simulated

0.03 0.90 0.05 19.064 19.065 ± 0.002
0.07 0.8 0.2 7.682 7.681 ± 0.001
0.07 0.90 0.05 9.240 9.240 ± 0.0007
0.11 0.8 0.2 5.083 5.083 ± 0.0008
0.11 0.90 0.05 6.409 6.409 ± 0.0005
0.20 0.8 0.2 3.035 3.034 ± 0.0006
0.20 0.90 0.05 3.973 3.972 ± 0.002

Table 5. Analytic (A(Sf )) vs. simulated values for write amplifi-
cation with LRU cleaning with 3 × 106 pages; simulation results
given with 95% confidence intervals.

This equation is easily and efficiently solved numerically4; in
Table 5 we see computed values compared to simulation results for
several values of Sf , r, and f , with essentially exact correspondence.
To give a better picture of cleaning behavior as locality increases, in
Figure 8 we see A plotted against values of r and f for Sf = 0.1

4 MATLAB code for these and other numeric computations in this paper
is available under an open-source license at www.ccs.neu.edu/˜pjd/
ftlsim
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Sf Np r f Eq. 16 A (sim.) rel. error

0.03 32 0.9 0.05 13.199 13.433 1.77%
0.07 64 0.9 0.05 8.461 8.608 1.74%
0.07 128 0.8 0.20 7.302 7.325 0.31%
0.11 64 0.9 0.05 6.058 6.112 0.89%
0.11 32 0.8 0.20 4.509 4.537 0.62%
0.20 64 0.9 0.05 3.845 3.826 -0.49%
0.20 128 0.8 0.20 2.984 2.992 0.27%

Table 6. Analytic (A(Sf )) vs. simulated values for write amplifica-
tion with Greedy cleaning and 105 blocks, showing relative accuracy
of< 1% in all except extreme cases. All simulation 95% confidence
intervals are < 0.0025.

and Sf = 0.15 (i.e. α = 1.111 and α = 1.177). We only consider
cases where the hot pages are in fact hot—i.e. r ≥ f—and thus
the values plotted begin at the diagonal r = f , or no locality, and
approach the corner where r = 1 and f = 0. As we approach the
corner of the graph performance degrades; the increase in write
amplification is fairly linear in r, but is relatively unaffected for
most values of f , rising sharply as f nears zero. Although only two
values of Sf are shown here, behavior relative to the uniform case
is similar for other values of Sf .

4.2 Greedy Cleaning

Performance for greedy cleaning with hot/cold traffic may be
approximated very closely by noting that Equations 11 and 12 are
equivalent to:

A =
ALRU (α

′)

1 + 1
2Np

(15)

where α′ = (1 + 1
2Np

)α and ALRU (α) is the LRU cleaning
throughput for a given over-provisioning ratio from Equation 14.

Based on this result we approximate Greedy performance with
hot/cold data using the same adjustment toALRU (α, r, f), the write
amplification for LRU cleaning under the same conditions:

AGreedy(α, r, f) =
ALRU ((1 +

1
2Np

)α, r, f)

1 + 1
2Np

(16)

In Figure 9 we see Equation 16 compared with simulation results
for a single configuration, with Sf = 0.10 and Np = 64. In Table 6
we see a sampling of cases for different values of Sf and Np; again
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lines show uniform traffic write amplification for comparison.

agreement is close but not exact, with error increasing slightly for
small values of Np and high degrees of locality.

4.3 Real-World Traffic

Equation 14 may be generalized for the case of k traffic classes,
each with rate ri1 ≤ i ≤ k and occupying fraction fi of the LBA
space, where

∑
ri =

∑
fi = 1:

Ri = (Ri + ri) e
− ri
fi

α
A (17)

=
e
− ri
fi

α
A

1− e−
ri
fi

α
A

ri (18)

and
1 +

∑
Ri = A (19)

In applying this model to real-world traffic, we first note that
the page-mapped LRU and greedy algorithms analyzed in this work
are unaffected by spatial locality—there is no dependency in the
algorithm on the actual values of the logical addresses. In addition,
LRU cleaning appears to be fairly insensitive to temporal correlation:
for instance, randomizing the order of writes in the traces examined
causes in only small changes in LRU write amplification, indicating
that results are primarily determined by the frequency of arrivals for
each address. We may therefore estimate cleaning performance by
measuring workload statistics and using Equations 18 and 19.

In Figure 10 we see predicted and simulated performance for
LRU cleaning and three block traces: the fin1 OLTP trace from
the UMass Trace Repository [28] and the mds0 and rsrch0 traces
from Microsoft Research [23]. In each case per-page access frequen-
cies were grouped by quintile (i.e. those addresses responsible for
the top 20% of accesses, then the next 20%, etc.) and used to con-
struct a 5-part model for Equations 18 and 19. Prediction accuracy
is seen to be quite close in almost all cases.

5. Hot/Cold Data Separation
It is well known that separating hot and cold data can increase flash
translation layer performance [9, 15, 20]. To examine this, we begin
by separating the problem of identifying hot data from handling it,
and assume that the FTL has perfect knowledge of which data pages
are hot and which are cold. Simulation results have shown that for
all tested values of Sf , r, and f , with our simple hot/cold traffic
model, separating hot and cold data into separate blocks and using
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Figure 11. Write amplification with hot/cold separation and opti-
mal division of free space, greedy garbage collection, Np = 64.

Sf Np r f A (computed) A (simulated

0.07 64 0.90 0.05 2.325 2.335
0.07 128 0.80 0.20 4.693 4.823
0.11 32 0.80 0.20 2.919 2.991
0.11 64 0.90 0.05 1.760 1.762
0.20 64 0.90 0.05 1.311 1.312
0.20 128 0.80 0.20 1.966 2.008

Table 7. Optimal greedy cleaning for hot/cold data—computed vs.
simulated performance.

global greedy cleaning results in performance that is statistically
identical to that for uniformly distributed traffic. In effect, the hot
and cold blocks form essentially two independent flash translation
layers, as hot pages are written to blocks going into one pool, and
cold pages go into a separate pool. Due to greedy cleaning, hot and
cold blocks will be selected for cleaning with the same number of
invalid pages, thus incurring the same write amplification. Since
write amplification is a monotonic function of Sf , they will each
have the same spare fraction, which must then be the same as the
total spare fraction T−U

T
, resulting in performance equal to that of

the uniformly-distributed traffic case.
We can do better, however, by reserving a higher share of free

space for the hot traffic, decreasing write amplification for hot blocks
while increasing it for cold blocks. Since there are more writes to hot
pages, the reduction in write amplification for these pages will more
than compensate for any increase in amplification suffered by cold
writes. Again the limiting case of f ' 0 and r ' 1 is illustrative;
given several blocks reserved for hot traffic, the single hot page may
be re-written repeatedly with no additional copying of either hot or
cold data.

We can frame this as a simple optimization problem: if A(α) is
the write amplification for uniform traffic with over-provisioning
factor α, then we want to minimize:

Atotal = r ·A(αh) + (1− r) ·A(αc) (20)

where αh and αc are the over-provisioning factors for hot and cold
data resulting from some unequal division of free space. In particular,
assume that of the entire free space T − U we assign some fraction
p to the hot traffic, giving

αh =
p(α− 1) + f

f
(21)

αc =
(1− p)(α− 1) + (1− f)

(1− f) (22)

Using the performance function for greedy cleaning from Equa-
tion 12 and optimizing numerically, we obtain results shown in
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Figure 12. Write amplification with hot/cold separation and CAT
metric for block selection (using log2(age)) compared with naı̈ve
greedy collection, Np = 64, Sf = 0.1.

Figure 11. As hot/cold disparity (i.e. spatial locality) increases, write
amplification decreases towards 1. For example, for Sf = 0.1 and
Np = 64, with uniform arrivals A = 4.82; if 90% of the traffic is
restricted to 5% of the address space, naı̈ve greedy cleaning gives
A = 6.24 while hot/cold separation with an optimal division of free
space yields A = 1.86. Given a desired assignment of free space
between hot and cold blocks, we may construct a cleaner which
greedily chooses either a cold block or a hot block so as to main-
tain the specified free space division. We have simulated this, using
knowledge of the synthetic workload to divide hot and cold pages
perfectly, and specifying the free space assignment determined by
our optimization; sample results are shown in Table 7 and shown to
correspond to our analytic results.

In each case the optimal assignment results in a lower write
amplification for hot data than for cold, meaning that cold blocks
selected for cleaning will have few free pages than hot blocks
selected. (In the case above where Sf = 0.1 and Np = 64, hot
blocks will have about 14 valid pages when cleaned, while cold
blocks will be selected when 55 blocks are still valid and only 9
are free.) A number of heuristic methods have been proposed to
optimally select the next block for cleaning; one of the earliest and
most well-known of these is the Cost/Age/Times (CAT) metric due
to Chiang [10].

CAT selects the block which minimizes the function
u

1− u
1

f(age)
t (23)

where u is the block utilization, t is the number of times the block
has been erased, and f(age) is a non-decreasing function of the
time since the block was written. (It was not given explicitly in
the original CAT paper, but has been approximated by some as
f(age) = log2(age) in more recent work. [8] Without hot/cold
separation CAT is unlikely to provide significant advantage unless
hot and cold arrivals are highly correlated; however we examine a
modification we term CAThc where hot and cold data blocks are
written to separate write frontiers, and a variant of the CAT rule is
used to choose whether to select the next block for cleaning from
the hot or cold pool.

In the simple hot/cold data model, if we let L be the number of
blocks in the hot or cold pool:

Lh = Up(α− 1) + Uf (24)
Lc = U(1− p)(α− 1) + U(1− f) (25)

the approximate age at which a block is reclaimed is L
A

, and since
1

1−u = A − 1 and t ∝ rAh (or (1 − r)Ac), using log2(age) and
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Figure 13. Calculated write amplification: CAThc cleaning with
logarithmic age function, compared to naı̈ve greedy cleaning, Np =
64, Sf = 0.1.
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Figure 14. Calculated write amplification: CAThc cleaning with
linear age function, as ratio to optimal, Np = 64, Sf = 0.1.

factoring out U the decision to select a hot or cold block is based on
which of the following is less:

(Ah − 1)Ah
log2(f + p(α− 1))− log2(Ah)

· r (26)

or
(Ac − 1)Ac

log2((1− f) + p(α− 1))− log2(Ac)
· (1− r) (27)

In equilibrium the two will be equal, allowing us to solve numeri-
cally for p. The result may be seen in Figure 14, compared to greedy
collection without any hot/cold data separation. We note that as
f → 0 and r → 1 it achieves significant improvements, but for
certain traffic mixes it actually degrades performance.

A straightforward modification is to use age directly rather
than transforming it: i.e. f(a) = a. This gives us the following
expressions which will be equal in equilibrium:

(Ah − 1)Ah
p(α− 1) + f

· rAh

(Ac − 1)Ac
p(α− 1) + (1− f) · (1− r)Ac (28)

The result is quite close to optimal; in Figure 14 we see the
ratio of write amplification for this version of CAThc to optimal
for Sf = 0.1, Np = 64. In the worst case linear CAThc results in
about 9% higher write amplification, for a write amplification of
1.59 (vs. 1.46) for r = 0.98, f = 0.08.
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Figure 15. Write amplification for write-only storage traces using
global greedy, greedy with hot/cold separation, linear CAT metric
hot/cold separation, and optimal cleaning; Np = 64, Sf = 0.07.

5.1 Optimal Online Hot/Cold Cleaning

We can do better, however, by examining the marginal effect on
write amplification of removing a block from either the hot or cold
pool. If we let ω = W (−αeα) for brevity, the derivative of the
greedy performance function is:

dA =
α(ω + α)(Np)

2

(1 + ω)(α+ ωNp + αNp)2
dα (29)

If we let L be the number of blocks in a pool (hot or cold) and f be
the number of free (i.e. invalid) pages in that pool, then we have:

α =
LNp

LNp − f

dα = − Np
LNp + f

(30)

Each time a block is to be selected for cleaning, we may then select
it from the hot or cold pool according to which is less: rαhdαh or
(1− r)αcdαc. Given perfect knowledge of hot vs. cold pages, it is
clear that this will result in the optimal division of free space that
minimizes Equation 20; we show below that even with probabilistic
identification of access frequency it can converge in many cases to
near-optimal performance.

6. Experimental Results
We have modified the simulator used in prior sections to incorporate
a simple recency-based hot/cold data separation algorithm. Write
sequence numbers are used rather than actual timestamps, and
an exponentially weighted moving average R of recency (i.e. the
number of writes since a page was last overwritten by an external
write) is kept. If cold pages receive two writes in a row with inter-
arrival times less than a cutoff (arbitrarily chosen as 0.7R) they
are considered hot; if a hot page is cleaned and has not been
overwritten in 1.4R they are demoted to cold. At startup all pages
are considered cold, and the first write to any page is ignored as
no recency information is available. Performance of this classifier
on synthetic hot/cold workloads is almost perfect; in cases where
hot and cold arrival rates are sufficiently close enough to “confuse”
the classifier, the degree of spatial locality is small enough that the
effect on write amplification is negligible.

Traces were quantized into aligned 4K page accesses, and simu-
lated device size was determined by the largest LBA referenced in a
trace. The first 106 accesses from a trace were simulated to “warm
up” the FTL algorithm, ensuring some degree of fragmentation;



statistics collection began after the end of the warmup period. Two
OLTP traces from the UMass Trace Repository [28] were used (fin1
and fin2) as well as a number of more general-purpose computing
traces from Microsoft Research [23]: home (rsrch 0) and project
(proj 2) directories, a source code control server (src1 1) and a web
proxy (prxy 0).

In Figure 15 we see results for these traces, simulated with
Sf = 0.07 and NP = 64. The algorithms simulated are:

• Greedy: the naı̈ve greedy cleaning algorithm, with no hot/cold
separation.
• Hot/cold separation: separation of hot and cold pages into two

pools, with global greedy cleaning.
• CAThc: hot/cold separation with cleaning decisions based on

Equation 28.
• Optimal: hot/cold separation, cleaning based on Equation 30.

On the general-computing workloads, optimal cleaning is seen
to result in a write amplification of less than 2, even with this small
spare factor, with naı̈ve greedy cleaning between 2× and 4× worse.
The OLTP traces have significantly less spatial locality, resulting
in poorer performance, although still a factor of 2 better than naı̈ve
greedy.

7. Prior Work
Several researchers, starting with Rosenblum [26], have examined
the performance of block cleaning in the context of log-structured
file systems. Robinson, in a 1996 paper [25], derives results equiv-
alent to Equation 4 as an approximation to greedy cleaning per-
formance; for typical LFS values of Np, which may be 1000 or
more, the approximation is very close. Unfortunately Robinson’s
paper appears to be unknown to the FTL research community, and
is not cited by any of the works below, despite describing a closer
approximation to greedy cleaning than all but one of them.

The earliest general performance model of FTL garbage collec-
tion known to the author is Ben-Aroya and Toledo’s 2006 work,
which proved hard analytic bounds for a simplified case [3]. Despite
the significance of this result, however, the assumptions used in their
proof prevent their model from being used to predict performance
in typical configurations. In particular, they assume that free space
(T − U in the above analysis) is a single block, causing severe
performance degradation.

Subsequent to this, Baek et al. [1] identified free space (“utiliza-
tion”) as a key performance parameter, providing analytic results
for block cleaning performance. However, the other main parameter
of their model (“uniformity”) is a measure of system state, itself
the result of workload and cleaning algorithm. The problem has
thus been transformed from one of predicting performance of an
algorithm to one of predicting the device state resulting from that
algorithm, but no solution is given for the transformed problem.

Boboila and Desnoyers have published mathematic models
[5] for performance of several hybrid page/block-mapped FTLs;
however this work does not extend to fully page-mapped FTLs. Hu’s
2009 paper [16] provides a compute-intensive procedure (typically
taking more CPU time than accurate simulations) for numerically
approximating the performance of the Greedy algorithm, with
fairly good correspondence between predicted and simulated results
for Sf > 0.2. Hu begins by using Windowed Greedy as an
approximation of Greedy; we argue in Section 3.3 above that
this approximation is unfounded, as for uniform traffic Windowed
Greedy in fact performs identically to LRU.

Hu’s approximation has large errors for values of Sf below
0.2, however; this range includes virtually all consumer SSDs,
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Figure 16. Hu’s approximation and Robinson’s LRU model com-
pared to Greedy cleaning simulation and analytic results (Equation
12), Np = 64.

which tend to have free space ratios from under 7% (e.g. the Intel
device examined above, with Sf = 0.069) to about 13% (e.g.
U = 60 × 109 for a drive with 64 GiB of raw capacity gives
Sf = 12.7%). In Figure 16 we see Hu’s approximation evaluated
for lower Sf values and Np = 64, compared with Equation 12,
results from simulation, as well as LRU cleaning performance from
Robinson’s model. We see that Hu’s approximation is not only less
precise than our greedy cleaning model, but is in fact significantly
less accurate than Robinson’s LRU cleaning results; however we
have not determined which step in Hu’s derivation introduces this
inaccuracy.

Bux has described a Markov model of greedy cleaning perfor-
mance [6] for very small devices; the complexity of this model
makes it unfeasible for realistic systems. Most recently, Bux and
Iliadis [7] describe results which appear similar to our model for
Greedy cleaning, with very similar results; however no closed-form
solution is described and it is unclear if their approach may be ex-
tended to non-uniform and realistic workloads. In particular, we
note that our optimal controller relies on the differentiability of the
close-form performance function, an extension which is not possible
with the Bux and Iliadis solution.

Efforts to identify and exploit spatial locality in cleaning again
begin with log-structured file systems, including work by Rosen-
blum [27] using the simple two-parameter hot/cold traffic model
used in this work, and proposing separation of hot and cold data at
cleaning time and a cost/benefit calculation for cleaning decisions as
an improvement over greedy cleaning. Chiang in turn proposed the
Cost/Age/Times metric [11] as well as a multiple-pool method for
separating hot and cold data [10]. We note that the cost/age/times
metric examined in this work differs from Chiang’s in two ways:
first, in the use of a linear time function, and secondly by using
greedy selection within the hot and cold pools, so that CAT is only
used to compare one hot and one cold block. Chang proposed a
dual-pool algorithm [9] for separating hot and cold data, similar to
Chiang’s multiple pools; however later versions of the dual-pool
algorithm [8] emphasize wear leveling rather than FTL performance,
and the pools are used group physical blocks (rather than logical
addresses) according to their write/erase cycle counts.

These methods have all used cleaning-time decisions between
one of two write frontiers to implicitly group hot and cold data.
Kim and Lee [19] assume that the identity of hot and cold data is
known exactly by the file system, while Jung [18] uses OS process
information to inform hot/cold data separation. Hsieh [15] uses
counting Bloom filters to track access frequency of data pages,
while Park and Du [24] use rotating Bloom filters to track recency
instead of frequency.



We believe that our optimal cleaning strategy is relatively inde-
pendent of the mechanism used to track hot and cold pages; Park
and Du’s Bloom filter-based recency estimator is likely to be a good
substitute for our resource-intensive algorithm, and other tracking
mechanisms may work as well. Finally, and most significantly, un-
like prior work, our work provides models for predicting the effect
of spatial locality on performance, and for parameterizing an FTL
to achieve optimal performance in the presence of locality.

8. Conclusions
In this work we have presented an exact, close-form model for
block cleaning performance of the greedy collection algorithm under
uniformly distributed traffic, and of LRU cleaning with a simple
hot/cold data mix as well as more complex workloads; in addition
we provide a highly accurate approximation for greedy cleaning with
hot and cold data. We validate the prediations of these models in
simulation, on both synthetic data and (in the case of LRU cleaning)
real workloads. In addition we use these models to derive new insight
into the behavior of cleaning algorithms when data is segregated by
update frequency (“hot/cold data separation”), providing a control
algorithm which is optimal for simple traffic mixes and demonstrates
high performance for real-world workloads. We believe this work
represents a new approach to the issue of Flash Translation Layer
performance, based on a fundamental understanding of how actual
and achievable performance is determined by workload statistics.
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