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Abstract—We introduce FSTL, a Framework for Shingled
Translation Layers: a toolkit for implementing host-side block
translation layers for Shingled Magnetic Recording (SMR) drives.
It provides a Linux kernel implementation of key translation
mechanisms (write allocation, LBA translation, map persistence,
and consistent copying) while allowing translation policy (e.g.
layout, cleaning algorithms, crash recovery) to be implemented
in a user-space controller which communicates through an ioctl-
based API to the kernel data plane. Due to its use of a journaled
write format, FSTL-based translation layers are able to handle
synchronous and durable writes to random LBAs at high speed.

We describe the architecture and implementation of FSTL, and
present two FSTL-based translation layers implemented in 400
lines of Python each. Despite the simplicity of the controllers,
experiments show our rst translation layer performing 1.5x
to 10x better than a drive-managed translation layer on trace
replay experiments, with performance roughly comparable to
the drive-managed device for real le system-based benchmarks;

the second translation layer, based on a full-volume extent map,

is shown to offer signi cantly better performance than prior
work. Furthermore, we implement and evaluate three cleaning
algorithms to demonstrate how FSTL-based translation layers
may be readily modi ed, while still offering the robustness needed
for long-duration benchmarks and use.

I. INTRODUCTION

However, translation layer implementations are still challeng-
ing. Drive vendors do not provide researchers access to device
rmware, SO experimentation with on-drive rmware is not an
option. Simulation, in turn, does not allow testing with real
benchmarks and applications. Kernel-level drivers (e.g. Linux
device mapper targets) are perhaps the best option; however
although simpler than full-featured le systems, are still dif cult
to design and debug, making it dif cult to replicate research or
explore algorithm variations. To address these issues we present
FSTL, an open-souréeLinux framework for SMR translation
layer development. FSTL is (a) exible, allowing a wide variety
of translation and cleaning algorithms to be implemented
in a user-space controller, (b) fast, allowing benchmarking
and comparison of FSTL-based translation layers against real
devices, and (c) robust, to accomodate multi-terabyte tests
which may run for hours or even days.

FSTL is based on a kernel-space data plane which handles
reads and writes, coupled with a user-space control plane
responsible for map manipulation and persistence, cleaning,
and crash recovery. The data plane is implemented as a Linux
device mapper target, providing an in-kernel extent map, write
allocation and corresponding map update, and “self-journaling”
of writes for robust recovery. A separate set of services is

Shingled Magnetic Recording, or SMR, is a method gfrovided for control plane implementation, providing operations

increasing disk track density beyond the paramagnetic lilfit [to get and set entries in the translation map as well as a
by overlapping tracks, resulting in an effective track widthata plane-aware copy mechanism for implementing cleaning
smaller than the write head width. This enables highafgorithms and failure recovery. We demonstrate FSTL's power
storage densities for a given head and platter technology thawl exibility by implementing two translation layers: a basic
conventional recording, where tracks are written at the full-region (cache-based) translation layer modeled after the
width of the write head. Yet this increase in density comes ahe described in Skylight7], [3] and a fully extent-mapped
a price: random writes are no longer possible, as overwritimginslation layer, each requiring less than 400 lines of Python
a sector will also overwrite the corresponding sector in thgde. We evaluate each translation layer separately, comparing
adjacent “downstream” track. the former against a drive-managed device and the latter
The result is a device with complex constraints on whicagainst a fully page-mapped translation layer (ZDM-Device-
sectors can be written at any time without corrupting previousiapper B]); performance of the FSTL-based translation layers
written data. Although these constraints may be met by useisffound to be comparable or better (sometimes much better)
log-structured le systems, development of a high-performande almost all cases.
general-purpose le system for multicore servers representsThe contributions of this work are:
hundreds of person-years of effort; instead, most research in FSTL 4 framework for SMR translation layer implemen-
this eld [2], [3], [4], [5] has focused on block translation tation,
layers. This approach allows effort to be concentrated on the 5 E-region translation layer, TL1, implemented on top
write allocation, metadata persistence, and cleaning mechanisms of FSTL and its evaluation, demonstrating performance

speci ¢ to SMR, as well as being implemented per-spindle  comparable to that of a current drive-managed device.
(whether in the host or device) and thus avoiding many of the

issues [6] which complicate server le system design. LAvailable fromsssl.ccs.neu.edu/FSTL



TL1 is based on a simple extent-mapped cache and diregtite pointers, and resetting these pointers; operations which
mapped data zone model observed in early drive-manag#m not obey the constraints (i.e. reads beyond the write pointer,
devices [7], writes not at the write pointer) will fail. Host-aware drives are a
a fully extent-mapped FSTL-based translation layer (TL2)ybrid, implementing the host-managed commands but falling
and its evaluation, demonstrated higher performance thiaack to an internal translation layer for non-SMR-conforming
the comparable ZDM-Device-Mapper, and operations.

a comparison of cleaning algorithms and other translation The SMR model of sequential-write-once, erase-before-reuse
layer parameters for TL1, demonstrating the exibility ofregions is very similar to that of NAND ash, solutions to
the FSTL framework. which have been extensively studietil], [12], [13], [14].

The remainder of this paper provides additional backgroumipwever the differing characteristics of disk media lead to
on SMR devices and interfaces, describes the architecture &fhi cant differences in solution strategies for the two media.
implementation of FSTL, and presents the two FSTL-basé&d particular, these differences include the following:
translation layers and their evaluation before surveying related Seek time: While ash performs random operations nearly

work and concluding. as fast as sequential ones, disks incur seek penalties
equivalent to 1 MB to 2 MB of transfer time for a random
Il. BACKGROUND /0
SMR behavior and interfaces:When viewed geometrically, Out-of-band data: SSDs are typically able to store some

the constraints imposed by SMR are fairly straightforward: amount of metadata (in addition to ECC) in per-page out-
when over-writing a sector, data may be lost in any sectors of-band regions, while modern disks have a xed sector
which are adjacent in the “downstream” (shingling) direction.  sjze of 4 KB [L5], with any per-sector metadata accessible
Given the complexity of sector location in modern drives, only to low-level drive rmware.

due to factors such as inter-track skew and slip spa¥hg [  RAM-to-media ratio: Although ash is roughly ten times
and variable-density formattind.(] these constraints become cheaper per gigabyte than DRAM, disk is cheaper by yet
dif cult to express in terms of LBAs. Additional complications by another factor of ten, requiring more memory-ef cient
arise due to the need to avoid adjacent track interference in  mapping strategies to be cost-effective.

the “upstream” direction due to repeated overwrites, which  Cleaning unit: The unit of cleaning is substantially

is handled in non-SMR drives by reading and re-writing the  |arger for SMR disk (256 MB zones vs. 2-16 MB erase

affected sectors. units), representing 1-2s of transfer time to write and an
These issues may be addressed by a block translation layer equivalent time to read. Cleaning operations may require

in the device rmware—much like a ash translation layer—  reading or writing a 256 MiB zone of data 3 or more

which provides a traditional rewritable block interface, resulting  times [7], potentially resulting in lengthy delays.

in what is termed alrive-managedSMR device. Although Wear leveling: Flash requires wear leveling, while disk

most SMR drives on the open market are of this type, a lifetime is not affected by the distribution of write
perceived need to allow host control over the performance- operations [16].

critical translation and cleaning processes has led to SCS|s a result of these characteristics, translation layer strategies
and ATA extensions to expose “raw” SMR devices with thelippropriate for SMR disk differ signi cantly from those used
constraints. However rather than expose the full complexigyy ash. Due to the single disk channel and high seek time, the
of SMR constraints, and perhaps related proprietary desigiferred write allocate strategy is strictly sequential, rather than
information, iqdustry ha; converged on a strict Write—onc@g. rst free channel14). The online map should be highly
model much like the write/erase semantics of NAND ashnemory ef cient, yet avoid access to disk when at all possible.
More speci cally, the ANSI T.10 (SCSI) and T.13 (SATA)lthough out-of-place writes are not truly stable until both the
standards bodies have de ned a zoned device model, whergaia and the metadata are persisted, map updates cannot rely
zone may be written sequentially from beginning to end, aRgh out-of-band data or seeks to non-data locations after every
then “reset” back to the beginning, while reads are only allowggite |n some implementations this problem is avoided by
to sectors written since the last reset. Internally this corresporgberessive use of write caching; FSTL instead journals map data
to a set of contiguous tracks comprising each zone, separgiejace in a log-structured fashion (see Section I for more
by a “guard band” of one or more empty tracks, so that updatggtajl). Finally, the removal of the wear leveling constraint
to the last track in one zone will not affect the rst track in they|lows a wider range of cleaning algorithms, but care must be

next zone. Although in theory these zones may be of differefifken to avoid excessive performance impact due to lengthy
sizes, the devices available to date implement a xed zone sig@aning operations.

of 256 MiB; in addition, they typically support a small number

of conventional re-writable zones at the beginning of the LBA !ll. FSTL ARCHITECTURE ANDIMPLEMENTATION

space. FSTL is based on a split control plane/data plane architecture,
Two classes of device providing this interface are de nedith FSTL providing the data plane and a user-spamatroller

host-managednd host-aware Host-managed drives provideimplementing the control plane. The basic architecture is shown

additional commands for discovering zones and their currdntFigure 1. The FSTL data plane is a Lindevice mapper



A

Fig. 1: FSTL framework within 10 stack: FSTL is composed of &ig. 2: Self-Journaling: the FSTL data plane prepends and appends a
data plane that handles user application reads/writes, and an interfagader and a trailer to the incoming write for recovery purposes in
to a controller implementing a translation layer. case of any crashes.

a form of stackable block driver used to implement facilitiesontroller implements a hybrid strategy/7] where most of the
such as software RAID and volume management which remaBA space is mapped by a few large extents. FSTL allows the
or otherwise process /O requests between the le system atwhtroller to leave extents of the LBA spauamappedreads
underlying devices. The data plane receives application It® these regions will return zeros, while writes will populate
requests (e.g. from the le system) and passes them to them with data.
underlying SATA or SCSI driver, which sends them to the SMR On startup the map is empty, with I/O paused; it is the
device. The user-space controller does not intervene in l&ntroller's responsibility to initialize the map (typically from
but uses a special-purpose interface to the kernel componetadata on disk) before allowing 1/0 to commence. In addition
in order to access the translation map, perform cleaning, étcupdating the map, the controller is also able to read the
The controller also directly reads and writes metadata regionigrent map; this is used both for checkpointing (i.e. persisting
of the underlying disk, for persisting map data, reading it #te map in an ef cient form) and to locate zones for cleaning.
startup, and performing crash recovery. Map persistence:Persisting translation changes is a crucial
The FSTL framework provides support for the primargroblem for any translation layer using out-of-place write, as a
operations of a translation layer: (a) performing allocatiofuture read is not guaranteed to see a write until both the data
and out-of-place writes, (b) maintaining an online translatias written to a new location and the mapping of the LBA to
map for read operations, (c) persisting the map to ensure wiibat new location has been made persistent. This is especially
durability, and (d) atomic data movement for implementing problem for SMR disks, which lack the per-page out-of-band
cleaning operations. We describe FSTL and the solutionsdiita area or fast random write found in NAND ash. Practical
provides to SMR-speci ¢ issues in terms of the mechanisnh®st-based translation layers to date (Tancheff's ZDM-device-
and interfaces it provides for achieving these four translatienapper §] and Le Moal's dm-zoned1g], from Seagate and
layer goals. WD respectively) aggressively cache map updates in memory,
writing them to disk whenever the le system requests that the
device write cache be ushed. This is suf cient to maintain le
Write allocation: FSTL uses a simple log-structured writesystem consistency on failure, but risks signi cant data loss as
policy: writes are performed at the curremtite frontier, which well as incurring substantial seek overhead for metadata-heavy
advances until the end of a zone; the next zone is selectedvorkloads which ush write caches frequently.
order from a free list provided by the user-space controller. In contrast, FSTL uses a “self-journaling” approach, as
Translation map: Out-of-place write allocation requiresshown in Figure 2 which interleaves map updates with data
keeping track of allocated physical block addresses (PBAs)wwoites, prepending a header (indicating the extent length) and
the incomming writes (LBAS). Since a full page map (e.g. aippending a trailer (specifying the LBA at which it is mapped)
4 KB sectors) would be too large to tin memory, requiring oveto each write. Much like a le system journal, the header/trailer
2 GB for an 8 TB device, the FSTL kernel module implementstructure contains a sequence number and CRC in order to
an in-memory extent map, which is updated automatically amndentify whether a particular write completed before a crash.
consistently on write. With mean write sizes of 10 sectoBoth headers and trailers contain the physical block address
or more on modern workloads (see Section V) this reduc@BA) of the next header/trailer; in the header this is equivalent
the map size by an order of magnitude, or even more if the the length, while in the trailer it is only needed for the last

A. Data plane



entry in a zone, as otherwise it points to the immediatepace is reclaimed by the cleaner. This requires coordination
following PBA. between the controller and the data plane, as writes must be
To preserve 4KB alignment, headers and trailers are 2 Kfalled in the kernel, while it is the user-space controller which
each, adding a negligible 20-46 of transfer time to eachis aware of how quickly cleaning progresses. If writes are
write. The resulting space overhead for large 1/Os is small: fotocked only when the kernel component nishes lling its last
maximume-sized writes (limited on our system to 500 KiB bjree zone, and unblocked again when a new zone is provided
the underlying Linux AHCI driver) the throughput degradatiofvy the controller, then many 1/Os will be blocked for an entire
(and space overhead) due to 4KiB of overhead per 500 Kifzaning cycle, possibly taking many seconds.
is about 0.8%, which we consider quite acceptable. AlthoughTo avoid this, the FSTL data plane allows the controller
space overhead for small writes is considerable, it is mitigatéal specify a low-water mark within the last zone, and will
by two factors: (a) the header is not copied during cleanirgall writes after this point is reached. By gradually moving
and (b) no one expects to be able to Il a multi-terabyte drivéhis limit while cleaning progresses, the controller can allow

using small I/Os, anyway write operations to be interleaved with the cleaning process,
achieving the same long-term throttling of I/O rate but with
B. Control plane far lower peak latencies [19].

As mentioned above, FSTL is not a complete translatic&] Implementation

layer—it handles read and write requests, but rather than } o )
implementing more complex functions such as cleaning and! he FSTL device mapper target is implemented in about
crash recovery, it provides interfaces to user-space conttéf0 lines of C code. It registers a custom character device,
plane, allowing those functions to be implemented in the us@fd is controlled from user space via ioctl system calls directed
space. In this subsection we explain how this interface alloif this device. This interface is in theory language-agnostic;
implementation of (a) consistent checkpointing and (b) garbaﬁgntrollers to date have been written in Python, with a wrapper
collection orcleaning around the C structgre—based |n'Ferfaces.

Consistent checkpointing:In order to reliably checkpoint 1he €xtent map is currently implemented as a red-black
the translation map, the controller periodically and also at{®€ requiring 64 bytes per entry on a 64-bit architecture. This
clean shut down (1) queries the data plane for the current valjguld for example allow 2 million extents (i.e. a mean extent
of the write frontier, and then (2) retrieves the latest exteffz€ Of 4MB for an 8TB drive) to be mapped in 128 MB
map. These form a checkpoint of the current state, and can@jekernel memory. Future use of an optimized B+-tree-like
written to a reserved region of the disk or to another device, $fructure will reduce memory usage by a factor of nearly 4;
no writes occur after the write frontier value is retrieved, th@OWever to allow a ner-grained extent map (with reasonable
checkpointed map will be identical to the in-memory extefP€MOry usage) we are implementing a mechanism for faulting
map. If additional writes occur after the last checkpoint (i.e. t{82P misses to the controller allowing map data to be faulted

system crashes before clean shutdown), they may be discovdfeg? disk.
on startup by following the chain of extent headers starting
at the write frontier in order to recover mapping information ] ) )
for those additional writes. We note that in the worst case this W€ use FSTL to implement two translation layers; a simple
process should take no longer than writing the data in the rBersistent cache-based translation layer, TL1, modeled on the
place; thus recovery time is bounded by the interval betwedSt-9eneration Seagate algorithm described by Aghaygy [
checkpoints. and a fully log-structured translation layer, TL2, modeled after
Cleaning: Cleaning is performed by the controller, whicH-FS [20].
retrieves the extent map in order to select a zone or zones for
cleaning. The data plane provides a safe copy command for . _ _
implementing cleaning: it freezes writes to the affected LBAS, In Tu the ‘_j'Sk is divided |n_t0 a smaber5|s'Fent cachéor
reads the source data by LBA (to account for writes receiv&fCEPtoN regionoften abbreviated as “E-region” ) antata
since the map was retrieved by the controller), and updafe¥es LBAs are mapped to xed locations (*home locations”)
the in-memory extent map after writing to the destinatiolf! (€ data zones much the same way as they are mapped
Cleaning writes are not journaled; instead after cleaning"%lconve,”t'onal drlveg. Updates ( exceptlonsj') are written to
zone the controller should checkpoint the updated map befdfle Persistent cache in a Iog-stxu_ctur_ed fashion. We note that
resetting (i.e. erasing) the zone and passing it back to the daiiough it is termed as “cache”, it might be better described

plane. Note that failure before the checkpoint completes witf 2109, as it is used to persist updates in sequential order.
leave the pre-cleaning state unchanged. When the cache lls, a cleaning process evicts extents from

During periods of heavy cleaning it is necessary to stdffe cache by merging them back to their corresponding data

write operations, as they cannot be performed faster than fEUIes: , ) ) ,
As described in Algorithm 1, the cleaning process (a) reads

2At 100 IOPS, lling an 8 TB conventional drive with 4 KB writes would d?'ta from t.he cache, (b) reads the data zone it is to be merged
take nearly 8 months. with, (c) writes a copy of the merged zone to a scratch location,

IV. FSTL-BASED TRANSLATION LAYERS

E-region translation layer: TL1



Algorithm 1: TL1 controller

A A 1 Function TL1Controller()is
2 activeThrshld = zoneSpace
3 idleThrshld = maxZoneSpace
- -TTT 4 while True do
5 emptySpace  CalcEmptySpace()
\ I\ ) 6 if emptySpace < activeThrshld or (Isldle() and
Y Y emptySpace < idleThrshld) then

7 Clean() ;
8 Checkpoint() ;

Fig. 3: TL1 On-disk data structure: two checkpoint zones, a smal end

number of cache zones, a temporary zone and a large number of gatal end

zones. 11 end

12 Function cleanfolicy) is
13 if policy == FIFO then
and then (d) overwrites the data zone. The additional write in | cacheZnToClean  FindOldestDirtyZ() ;
(c) is needed due to the destructive nature of SMR writegs—| else ifpolicy == MinData then
without this step, if power was lost during step (d) then som@ | cacheZnToClean  FindZwithMinData()
. 17 else if policy == MinAssocthen
amount of data aheaq of the write head could be Io§t._ 18 | cacheznToClean  FindZwithMinAsso() :
The controller periodically polls data plane statistics tg
determine when to begin cleaning; background cleaningzis | for extent in cacheZnToClean do
triggered when disk goes to the idle mode and it continues &l homeZone  FindZDataHome( extent)
the cache is nearly empty unless disk becomes active aggin endReadModﬁyWnte( homeZone)
while foreground qleanlng (i.e. during active I/O) will not b.(gf1 AddToFreeZonelist(
done unless there is less than a zone's worth of space remainingng
in cache. The controller then reads the current map and sele¢tBunction checkpoint()is
a cache zone to clean; each extent cached in that zone is #ierj map  GetMap() ;
merged back to its “home” location in a read-modify-writg® | W _ GetWF() ;
. 29 freeZones  GetFreeZones()
process. When cleaning an extent from some zopall cached chkpt  CreateChkpt( map, wf, freeZones) ;
extents from that zone will be read from cache and mergeg, WriteHeader() —;
The data copy process is performed using the FSTL caopy | WriteCheckpoint(  chkpt) ;
operation, which identi es source extents by LBA and de¥ | WriteTrailer() ;
tinations by physical block address. If an address has bétgnd
overwritten (and thus moved physical location) between when
the cleaner reads the map and when it issues the copy command,
this ensures that the correct data values are still copied; in strategy chooses the cache zone with the fewest data zones
either case, after the LBA has been moved, the physical block represented among its cached extents. (similar strategies
address which the controllehoughtit was moving it from have been used for ash—e.g. see Cho's K-Associative
will be empty. Sector Translation [21].)

If this merge were performed in memory and written back to The TL1 controller is implemented in 400 lines of Python,
the data zone, it would result in a window of vulnerability fronplus a 230-line Python wrapper for translating the C-based
when the data zone was “erased” (i.e. the write pointer resgfjuctures used in the kernel interface. The translation layer
to when the zone was completely rewritten; a crash during this stable under long-term testing using the ext4 le system,

window could result in signi cant data loss. To prevent thisithough further testing would be needed to prove its suitability
the merged zone is rst saved to a temporary location befofgr production deployment.

over-writing the data zone itself.
We implement and evaluate three different zone selectiBn Full extent-mapped translation layer: TL2

algorithms for this cleaning process (see algorithm 1 for more TL2 maintains a set oflata zonescomprising almost all

details): of the disk as shown in Figure 4. It is analogous to a fully
fo: Cache zones are used and cleaned in strict roupdge-mapped FTL, such as DFTL: LBAs have no pre-de ned
robin order. This is the algorithm used by the devickome locations, but instead stay where they are written until
analyzed in SkylightT]; it is simple but may not be as the disk lls up and the zone is cleaned to make room for
ef cient as other strategies. new writes. Until an LBA is written it has no location, either;
min_valid: This is the classic Greedy algorithm fromupon initialization all LBAs in a TL2 volume are un-mapped,
the FTL literature, where the cache zone with the fewelgaving the entire disk as free space to be allocated for writes.
remaining valid sectors is chosen. As described in Algorithm 2, the cleaning process (a) reads
min_assoc:Since cleaning time for this translation layer iglata from one or a few data zones, (b) merges them, (c) writes
dominated by the time to read and re-write data zones, thiack the merged data to the log head.

cachezZnToClean)




Algorithm 2: TL2 controller Algorithm 3: Startup - FSTL controller deamon

1 Function TL2Controller() is 1 Function startup() is

2 while True do 2 ReadSuperBlock() ;

3 emptySpace  CalcEmptySpace() ; 3 ChaseDownLastCheckpoint() ;

4 if emptySpace < threshold then 4 wf, map, freeZones = ReadChkpoint() ;

5 Clean() ; 5 ReplayJournalRetrieveMap( wf) ;

6 Checkpoint() ; 6 FeedTargetWfFreeZones() ;

7 end 7 UnblocklOPassthrough() ; IlAllows 10 to pass

8 end through the FSTL device mapper

9 end 8 end

10 Function clean()is

11 dataZonesToClean  FindDirtyZones() ;

12 ReadLiveData( dataZonesToClean) ;

13 WriteBackDataToLogHead() locating the most recent checkpoint. If only sequential-write
14 dAddTOFreeZOHGHSt( dataZonesToClean) ; zones are available on a drive, then this checkpoint region
15 en

must be two zones long in order to avoid the potential for
catastrophic loss when resetting the write pointer to reuse a
zone, as zone data is not accessible after write pointer reset. If
Since large disk drives are commonly used for archival eindom-write zones are available, however, then the checkpoint
backup purposes where les are added but never deleted, tligion may be a single zone or less.
means that over the lifespan of the drive the total volume TL1 and TL2 use the same header and trailer for checkpoints
of write traf c may be only fractionally larger than the diskas used by the data plane, allowing them to readily locate
itself, accounting for repeated overwrites of metadata. In thise most recently persisted checkpoint. Map checkpoints are
scenario cleaning will not begin until the drive is nearly fullprotected by a CRC, much like write headers and trailers. As
and the total amount of cleaning required over the lifespanresult checkpoint writes are atomic; if a crash occurs while
of the drive may be only a fraction of its capacity. (This isriting a checkpoint then the incomplete record will be ignored,

in contrast to SSDs, where the expectation is that they wilhd recovery will begin from the previous checkpoint.
support a lifetime write volume many times greater than their

size, with cleaning adding a workload-dependent overhead to V. EVALUATION
nearly all write traf c.)

As the size of the extent-map can grow over time, large T0 demonstrate that FSTL can perform fast enough as a
memory requirement would be an issue for TL2; even witliamework to implement translation layers for SMR drives, we
planned improvements in map memory ef ciency (16 byte@valuate the performance of TL1 and TL2 translation layers
per extent instead of 64) the kernel memory usage for a f@ind compare them with the equvalent indusrial ones. To this
10 TB volume would be excessive. This does not prevent ggd we use the following set of experiments.
evaluation, however; as shown in Table | even the longestTrace-based replay using thefio I/O testing tool R3], re-
traces available to u2p] have less than half a million entriesplaying several of the well-known MSR Cambridge trac2d [
as well as traces provided by an industrial partner. In all cases
direct /0O mode was used.

TL1 and TL2 share the same logic for checkpointing the Filebench [24], a le system-level benchmark which in-
extent map and recovering it on startup. Algorithm 3 showgudes a large number of con gurations emulating different
the operations done at startup. A region at the beginning of tgstem behaviors. The following Filebench workload con gu-
disk is reserved for map checkpoints; each checkpoint includegions were tested:
the write frontier, a full extent map, and a sequence number fr%rndomwrite

C. Checkpointing and Recovery

. creates a single large le prior to measure-
ment, then makes 8K random writes to the le from a
single thread.

singlestreamwrite . creates a single large le prior to
I_L\ i measurement, and then performs 1MB sequential over-

- writes to this le from a single thread.
%
D TABLE I: Map size required in TL2 implementation for a number
of MSR Cambridge and our industrial partner traces.
{ J wrkld extent count | wrkld extent count
! srcl 2 18143 SW1-R6Dv1 124253
src2 2 349483 Hadoopl-R6Lvl 92974
wdev_1 1174 Backup2-R6Dvl 62317
Fig. 4: TL2 on-disk data structure: two checkpoint zones and a large  proj_ 0 79815 Hadoop1-R6Dv1 72790
number of data zones. usr_0 29817 DB1-R6Lv1 6645



















work, SMART

[34] proposes using track-based dynamigi3]

mapping. Shafaei et. al propose Virtual Gua#] g track-based
static translation layer in which unlike the traditional STLs
the cache space is used for keeping the data at risk insteagi@f N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse,
updates. This makes the cache usage on the drive a function of and R. Panigrahy, “Design tradeoffs for ssd performanceUSENIX
write footprints rather than the number of writes and therefopg.
avoids cleaning for all available real world traces tested. A
both SMART and Virtual Guard are track-based and do not
perform out-of-place writes, they cannot be implemented Wi{ ]
the current version of FSTL. Lin et. aB}] reduce the cleaning
overheads by hot and cold data segregation; Jones eBG |
propose using the write history (frequency) of data blocks

reduce the data movements due to compaction or cleaning.

Both of these translation layers may be implemented in FSTL.

[19]
VII. CONCLUSION

. . . 20]
FSTL provides a exible and high performance framewor{<
for translation layer research. Our work demonstrates that it may

be used to create simple but robust translation layers which ri?{]
the performance of existing drive-managed algorithms, whi

e

supporting mechanisms to allow more powerful translation

layers to be created. We have made it available under an o
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