
FSTL: A F ramework to Design and Explore Shingled Magnetic Recording
Translation Layers

Mohammad Hossein Hajkazemi?, Mania Abdiy, Mansour Shafaei?, Peter Desnoyersy

Department of Electrical and Computer Engineering?, College of Computer and Information Sciencey

Northeastern University
hajkazemi@ece.neu.edu,abdi.ma@husky.neu.edu,shafaei@ece.neu.edu,pjd@ccs.neu.edu

Abstract—We introduce FSTL, a Framework for Shingled
Translation Layers: a toolkit for implementing host-side block
translation layers for Shingled Magnetic Recording (SMR) drives.
It provides a Linux kernel implementation of key translation
mechanisms (write allocation, LBA translation, map persistence,
and consistent copying) while allowing translation policy (e.g.
layout, cleaning algorithms, crash recovery) to be implemented
in a user-space controller which communicates through an ioctl-
based API to the kernel data plane. Due to its use of a journaled
write format, FSTL-based translation layers are able to handle
synchronous and durable writes to random LBAs at high speed.

We describe the architecture and implementation of FSTL, and
present two FSTL-based translation layers implemented in 400
lines of Python each. Despite the simplicity of the controllers,
experiments show our �rst translation layer performing 1.5x
to 10x better than a drive-managed translation layer on trace
replay experiments, with performance roughly comparable to
the drive-managed device for real �le system-based benchmarks;
the second translation layer, based on a full-volume extent map,
is shown to offer signi�cantly better performance than prior
work. Furthermore, we implement and evaluate three cleaning
algorithms to demonstrate how FSTL-based translation layers
may be readily modi�ed, while still offering the robustness needed
for long-duration benchmarks and use.

I. I NTRODUCTION

Shingled Magnetic Recording, or SMR, is a method of
increasing disk track density beyond the paramagnetic limit [1]
by overlapping tracks, resulting in an effective track width
smaller than the write head width. This enables higher
storage densities for a given head and platter technology than
conventional recording, where tracks are written at the full
width of the write head. Yet this increase in density comes at
a price: random writes are no longer possible, as overwriting
a sector will also overwrite the corresponding sector in the
adjacent “downstream” track.

The result is a device with complex constraints on which
sectors can be written at any time without corrupting previously
written data. Although these constraints may be met by use of
log-structured �le systems, development of a high-performance
general-purpose �le system for multicore servers represents
hundreds of person-years of effort; instead, most research in
this �eld [2], [3], [4], [5] has focused on block translation
layers. This approach allows effort to be concentrated on the
write allocation, metadata persistence, and cleaning mechanisms
speci�c to SMR, as well as being implemented per-spindle
(whether in the host or device) and thus avoiding many of the
issues [6] which complicate server �le system design.

However, translation layer implementations are still challeng-
ing. Drive vendors do not provide researchers access to device
�rmware, so experimentation with on-drive �rmware is not an
option. Simulation, in turn, does not allow testing with real
benchmarks and applications. Kernel-level drivers (e.g. Linux
device mapper targets) are perhaps the best option; however
although simpler than full-featured �le systems, are still dif�cult
to design and debug, making it dif�cult to replicate research or
explore algorithm variations. To address these issues we present
FSTL, an open-source1 Linux framework for SMR translation
layer development. FSTL is (a) �exible, allowing a wide variety
of translation and cleaning algorithms to be implemented
in a user-space controller, (b) fast, allowing benchmarking
and comparison of FSTL-based translation layers against real
devices, and (c) robust, to accomodate multi-terabyte tests
which may run for hours or even days.

FSTL is based on a kernel-space data plane which handles
reads and writes, coupled with a user-space control plane
responsible for map manipulation and persistence, cleaning,
and crash recovery. The data plane is implemented as a Linux
device mapper target, providing an in-kernel extent map, write
allocation and corresponding map update, and “self-journaling”
of writes for robust recovery. A separate set of services is
provided for control plane implementation, providing operations
to get and set entries in the translation map as well as a
data plane-aware copy mechanism for implementing cleaning
algorithms and failure recovery. We demonstrate FSTL's power
and �exibility by implementing two translation layers: a basic
E-region (cache-based) translation layer modeled after the
one described in Skylight [7], [3] and a fully extent-mapped
translation layer, each requiring less than 400 lines of Python
code. We evaluate each translation layer separately, comparing
the former against a drive-managed device and the latter
against a fully page-mapped translation layer (ZDM-Device-
Mapper [8]); performance of the FSTL-based translation layers
is found to be comparable or better (sometimes much better)
in almost all cases.

The contributions of this work are:
� FSTL, a framework for SMR translation layer implemen-

tation,
� an E-region translation layer, TL1, implemented on top

of FSTL and its evaluation, demonstrating performance
comparable to that of a current drive-managed device.

1Available fromsssl.ccs.neu.edu/FSTL

TL1 is based on a simple extent-mapped cache and direct-
mapped data zone model observed in early drive-managed
devices [7],

� a fully extent-mapped FSTL-based translation layer (TL2)
and its evaluation, demonstrated higher performance than
the comparable ZDM-Device-Mapper, and

� a comparison of cleaning algorithms and other translation
layer parameters for TL1, demonstrating the �exibility of
the FSTL framework.

The remainder of this paper provides additional background
on SMR devices and interfaces, describes the architecture and
implementation of FSTL, and presents the two FSTL-based
translation layers and their evaluation before surveying related
work and concluding.

II. BACKGROUND

SMR behavior and interfaces:When viewed geometrically,
the constraints imposed by SMR are fairly straightforward:
when over-writing a sector, data may be lost in any sectors
which are adjacent in the “downstream” (shingling) direction.
Given the complexity of sector location in modern drives,
due to factors such as inter-track skew and slip sparing [9]
and variable-density formatting [10] these constraints become
dif�cult to express in terms of LBAs. Additional complications
arise due to the need to avoid adjacent track interference in
the “upstream” direction due to repeated overwrites, which
is handled in non-SMR drives by reading and re-writing the
affected sectors.

These issues may be addressed by a block translation layer
in the device �rmware—much like a �ash translation layer—
which provides a traditional rewritable block interface, resulting
in what is termed adrive-managedSMR device. Although
most SMR drives on the open market are of this type, a
perceived need to allow host control over the performance-
critical translation and cleaning processes has led to SCSI
and ATA extensions to expose “raw” SMR devices with their
constraints. However rather than expose the full complexity
of SMR constraints, and perhaps related proprietary design
information, industry has converged on a strict write-once
model much like the write/erase semantics of NAND �ash.
More speci�cally, the ANSI T.10 (SCSI) and T.13 (SATA)
standards bodies have de�ned a zoned device model, where a
zone may be written sequentially from beginning to end, and
then “reset” back to the beginning, while reads are only allowed
to sectors written since the last reset. Internally this corresponds
to a set of contiguous tracks comprising each zone, separated
by a “guard band” of one or more empty tracks, so that updates
to the last track in one zone will not affect the �rst track in the
next zone. Although in theory these zones may be of different
sizes, the devices available to date implement a �xed zone size
of 256 MiB; in addition, they typically support a small number
of conventional re-writable zones at the beginning of the LBA
space.

Two classes of device providing this interface are de�ned:
host-managedandhost-aware. Host-managed drives provide
additional commands for discovering zones and their current

write pointers, and resetting these pointers; operations which
do not obey the constraints (i.e. reads beyond the write pointer,
writes not at the write pointer) will fail. Host-aware drives are a
hybrid, implementing the host-managed commands but falling
back to an internal translation layer for non-SMR-conforming
operations.

The SMR model of sequential-write-once, erase-before-reuse
regions is very similar to that of NAND �ash, solutions to
which have been extensively studied [11], [12], [13], [14].
However the differing characteristics of disk media lead to
signi�cant differences in solution strategies for the two media.
In particular, these differences include the following:

� Seek time: While �ash performs random operations nearly
as fast as sequential ones, disks incur seek penalties
equivalent to 1 MB to 2 MB of transfer time for a random
I/O.

� Out-of-band data: SSDs are typically able to store some
amount of metadata (in addition to ECC) in per-page out-
of-band regions, while modern disks have a �xed sector
size of 4 KB [15], with any per-sector metadata accessible
only to low-level drive �rmware.

� RAM-to-media ratio: Although �ash is roughly ten times
cheaper per gigabyte than DRAM, disk is cheaper by yet
by another factor of ten, requiring more memory-ef�cient
mapping strategies to be cost-effective.

� Cleaning unit: The unit of cleaning is substantially
larger for SMR disk (256 MB zones vs. 2-16 MB erase
units), representing 1-2s of transfer time to write and an
equivalent time to read. Cleaning operations may require
reading or writing a 256 MiB zone of data 3 or more
times [7], potentially resulting in lengthy delays.

� Wear leveling: Flash requires wear leveling, while disk
lifetime is not affected by the distribution of write
operations [16].

As a result of these characteristics, translation layer strategies
appropriate for SMR disk differ signi�cantly from those used
for �ash. Due to the single disk channel and high seek time, the
preferred write allocate strategy is strictly sequential, rather than
e.g. �rst free channel [14]. The online map should be highly
memory ef�cient, yet avoid access to disk when at all possible.
Although out-of-place writes are not truly stable until both the
data and the metadata are persisted, map updates cannot rely
on out-of-band data or seeks to non-data locations after every
write. In some implementations this problem is avoided by
agressive use of write caching; FSTL instead journals map data
in-place in a log-structured fashion (see Section III for more
detail). Finally, the removal of the wear leveling constraint
allows a wider range of cleaning algorithms, but care must be
taken to avoid excessive performance impact due to lengthy
cleaning operations.

III. FSTL A RCHITECTURE AND IMPLEMENTATION

FSTL is based on a split control plane/data plane architecture,
with FSTL providing the data plane and a user-spacecontroller
implementing the control plane. The basic architecture is shown
in Figure 1. The FSTL data plane is a Linuxdevice mapper,

�� �� �� ���� 	
� � �

 � �� �� �
� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� � � !" #$ % &"

 �'() 	
	 * �	� �

+,- ./0- 12 33- 45

� '(6� �
�� � * �	 ��

� � ' �) �� 7 ��

89: � 79 � : ; <

=

>

?

�

@

�

�

�

A

�

?

�

�

B

>

�

�

C

C

�

@

D

�

E

�� � � !" #$ % &"

F � G " HI J !" K � !" #$ % &"

L

M

N

O

P

Q

R

S

T

U

R

Q

S

V

W

T

X

S

R

Y

W

Z

[

T

\ � J !] % % ^ " _

\ � J !̀a% #" _

b � c" !� � % G d� J e

Fig. 1: FSTL framework within IO stack: FSTL is composed of a
data plane that handles user application reads/writes, and an interface
to a controller implementing a translation layer.

a form of stackable block driver used to implement facilities
such as software RAID and volume management which remap
or otherwise process I/O requests between the �le system and
underlying devices. The data plane receives application I/O
requests (e.g. from the �le system) and passes them to the
underlying SATA or SCSI driver, which sends them to the SMR
device. The user-space controller does not intervene in I/O,
but uses a special-purpose interface to the kernel component
in order to access the translation map, perform cleaning, etc.
The controller also directly reads and writes metadata regions
of the underlying disk, for persisting map data, reading it at
startup, and performing crash recovery.

The FSTL framework provides support for the primary
operations of a translation layer: (a) performing allocation
and out-of-place writes, (b) maintaining an online translation
map for read operations, (c) persisting the map to ensure write
durability, and (d) atomic data movement for implementing
cleaning operations. We describe FSTL and the solutions it
provides to SMR-speci�c issues in terms of the mechanisms
and interfaces it provides for achieving these four translation
layer goals.

A. Data plane

Write allocation: FSTL uses a simple log-structured write
policy: writes are performed at the currentwrite frontier, which
advances until the end of a zone; the next zone is selected in
order from a free list provided by the user-space controller.

Translation map: Out-of-place write allocation requires
keeping track of allocated physical block addresses (PBAs) to
the incomming writes (LBAs). Since a full page map (e.g. of
4 KB sectors) would be too large to �t in memory, requiring over
2 GB for an 8 TB device, the FSTL kernel module implements
an in-memory extent map, which is updated automatically and
consistently on write. With mean write sizes of 10 sectors
or more on modern workloads (see Section V) this reduces
the map size by an order of magnitude, or even more if the

f g h g

f g h g ijf g h g ikf g h g il

f g h g il f gh g ik f g h g ij

mno pqr ns tur h v mw

x

y

z

{

|

}

~

•

€

}

•

‚

ƒ

ƒ

}

„

…

†

‡

ˆ

}

‰

Š

„

}

~

Š

…

‹

Œ

}

•

Ž

Š

…

‹

{

…

‹

•

•

•

{

}

‘

’

Ž

“

” v g • v u – — ugr ˜ v u

x

•

™

}

y

š

ˆ

Ž

}

›

…

™

œ

€

•

|

}

~

•

€

}

ž

Ÿ

¡

¢

£

¤

¥

¦

§

¨

¦

©

Fig. 2: Self-Journaling: the FSTL data plane prepends and appends a
header and a trailer to the incoming write for recovery purposes in
case of any crashes.

controller implements a hybrid strategy [17] where most of the
LBA space is mapped by a few large extents. FSTL allows the
controller to leave extents of the LBA spaceunmapped; reads
to these regions will return zeros, while writes will populate
them with data.

On startup the map is empty, with I/O paused; it is the
controller's responsibility to initialize the map (typically from
metadata on disk) before allowing I/O to commence. In addition
to updating the map, the controller is also able to read the
current map; this is used both for checkpointing (i.e. persisting
the map in an ef�cient form) and to locate zones for cleaning.

Map persistence:Persisting translation changes is a crucial
problem for any translation layer using out-of-place write, as a
future read is not guaranteed to see a write until both the data
is written to a new location and the mapping of the LBA to
that new location has been made persistent. This is especially
a problem for SMR disks, which lack the per-page out-of-band
data area or fast random write found in NAND �ash. Practical
host-based translation layers to date (Tancheff's ZDM-device-
mapper [8] and Le Moal's dm-zoned [18], from Seagate and
WD respectively) aggressively cache map updates in memory,
writing them to disk whenever the �le system requests that the
device write cache be �ushed. This is suf�cient to maintain �le
system consistency on failure, but risks signi�cant data loss as
well as incurring substantial seek overhead for metadata-heavy
workloads which �ush write caches frequently.

In contrast, FSTL uses a “self-journaling” approach, as
shown in Figure 2 which interleaves map updates with data
writes, prepending a header (indicating the extent length) and
appending a trailer (specifying the LBA at which it is mapped)
to each write. Much like a �le system journal, the header/trailer
structure contains a sequence number and CRC in order to
identify whether a particular write completed before a crash.
Both headers and trailers contain the physical block address
(PBA) of the next header/trailer; in the header this is equivalent
to the length, while in the trailer it is only needed for the last

entry in a zone, as otherwise it points to the immediately
following PBA.

To preserve 4 KB alignment, headers and trailers are 2 KB
each, adding a negligible 20-40� s of transfer time to each
write. The resulting space overhead for large I/Os is small: for
maximum-sized writes (limited on our system to 500 KiB by
the underlying Linux AHCI driver) the throughput degradation
(and space overhead) due to 4 KiB of overhead per 500 KiB
is about 0.8%, which we consider quite acceptable. Although
space overhead for small writes is considerable, it is mitigated
by two factors: (a) the header is not copied during cleaning,
and (b) no one expects to be able to �ll a multi-terabyte drive
using small I/Os, anyway2.

B. Control plane

As mentioned above, FSTL is not a complete translation
layer—it handles read and write requests, but rather than
implementing more complex functions such as cleaning and
crash recovery, it provides interfaces to user-space control
plane, allowing those functions to be implemented in the user-
space. In this subsection we explain how this interface allows
implementation of (a) consistent checkpointing and (b) garbage
collection orcleaning.

Consistent checkpointing:In order to reliably checkpoint
the translation map, the controller periodically and also at a
clean shut down (1) queries the data plane for the current value
of the write frontier, and then (2) retrieves the latest extent
map. These form a checkpoint of the current state, and can be
written to a reserved region of the disk or to another device. If
no writes occur after the write frontier value is retrieved, the
checkpointed map will be identical to the in-memory extent
map. If additional writes occur after the last checkpoint (i.e. the
system crashes before clean shutdown), they may be discovered
on startup by following the chain of extent headers starting
at the write frontier in order to recover mapping information
for those additional writes. We note that in the worst case this
process should take no longer than writing the data in the �rst
place; thus recovery time is bounded by the interval between
checkpoints.

Cleaning: Cleaning is performed by the controller, which
retrieves the extent map in order to select a zone or zones for
cleaning. The data plane provides a safe copy command for
implementing cleaning: it freezes writes to the affected LBAs,
reads the source data by LBA (to account for writes received
since the map was retrieved by the controller), and updates
the in-memory extent map after writing to the destination.
Cleaning writes are not journaled; instead after cleaning a
zone the controller should checkpoint the updated map before
resetting (i.e. erasing) the zone and passing it back to the data
plane. Note that failure before the checkpoint completes will
leave the pre-cleaning state unchanged.

During periods of heavy cleaning it is necessary to stall
write operations, as they cannot be performed faster than free

2At 100 IOPS, �lling an 8 TB conventional drive with 4 KB writes would
take nearly 8 months.

space is reclaimed by the cleaner. This requires coordination
between the controller and the data plane, as writes must be
stalled in the kernel, while it is the user-space controller which
is aware of how quickly cleaning progresses. If writes are
blocked only when the kernel component �nishes �lling its last
free zone, and unblocked again when a new zone is provided
by the controller, then many I/Os will be blocked for an entire
cleaning cycle, possibly taking many seconds.

To avoid this, the FSTL data plane allows the controller
to specify a low-water mark within the last zone, and will
stall writes after this point is reached. By gradually moving
this limit while cleaning progresses, the controller can allow
write operations to be interleaved with the cleaning process,
achieving the same long-term throttling of I/O rate but with
far lower peak latencies [19].

C. Implementation

The FSTL device mapper target is implemented in about
1100 lines of C code. It registers a custom character device,
and is controlled from user space via ioctl system calls directed
to this device. This interface is in theory language-agnostic;
controllers to date have been written in Python, with a wrapper
around the C structure-based interfaces.

The extent map is currently implemented as a red-black
tree requiring 64 bytes per entry on a 64-bit architecture. This
would for example allow 2 million extents (i.e. a mean extent
size of 4 MB for an 8 TB drive) to be mapped in 128 MB
of kernel memory. Future use of an optimized B+-tree-like
structure will reduce memory usage by a factor of nearly 4;
however to allow a �ner-grained extent map (with reasonable
memory usage) we are implementing a mechanism for faulting
map misses to the controller allowing map data to be faulted
from disk.

IV. FSTL-BASED TRANSLATION LAYERS

We use FSTL to implement two translation layers; a simple
persistent cache-based translation layer, TL1, modeled on the
�rst-generation Seagate algorithm described by Aghayev [7],
and a fully log-structured translation layer, TL2, modeled after
LFS [20].

A. E-region translation layer: TL1

In TL1 the disk is divided into a smallpersistent cache(or
exception region, often abbreviated as “E-region”) anddata
zones. LBAs are mapped to �xed locations (“home locations”)
in the data zones much the same way as they are mapped
in conventional drives. Updates (“exceptions”) are written to
the persistent cache in a log-structured fashion. We note that
although it is termed as “cache”, it might be better described
as alog, as it is used to persist updates in sequential order.
When the cache �lls, a cleaning process evicts extents from
the cache by merging them back to their corresponding data
zones.

As described in Algorithm 1, the cleaning process (a) reads
data from the cache, (b) reads the data zone it is to be merged
with, (c) writes a copy of the merged zone to a scratch location,

���������	
���������	

�������������	 ���������

Fig. 3: TL1 On-disk data structure: two checkpoint zones, a small
number of cache zones, a temporary zone and a large number of data
zones.

and then (d) overwrites the data zone. The additional write in
(c) is needed due to the destructive nature of SMR writes—
without this step, if power was lost during step (d) then some
amount of data ahead of the write head could be lost.

The controller periodically polls data plane statistics to
determine when to begin cleaning; background cleaning is
triggered when disk goes to the idle mode and it continues till
the cache is nearly empty unless disk becomes active again,
while foreground cleaning (i.e. during active I/O) will not be
done unless there is less than a zone's worth of space remaining
in cache. The controller then reads the current map and selects
a cache zone to clean; each extent cached in that zone is then
merged back to its “home” location in a read-modify-write
process. When cleaning an extent from some zoneZ , all cached
extents from that zone will be read from cache and merged.

The data copy process is performed using the FSTL copy
operation, which identi�es source extents by LBA and des-
tinations by physical block address. If an address has been
overwritten (and thus moved physical location) between when
the cleaner reads the map and when it issues the copy command,
this ensures that the correct data values are still copied; in
either case, after the LBA has been moved, the physical block
address which the controllerthought it was moving it from
will be empty.

If this merge were performed in memory and written back to
the data zone, it would result in a window of vulnerability from
when the data zone was “erased” (i.e. the write pointer reset)
to when the zone was completely rewritten; a crash during this
window could result in signi�cant data loss. To prevent this,
the merged zone is �rst saved to a temporary location before
over-writing the data zone itself.

We implement and evaluate three different zone selection
algorithms for this cleaning process (see algorithm 1 for more
details):

� �fo: Cache zones are used and cleaned in strict round-
robin order. This is the algorithm used by the device
analyzed in Skylight [7]; it is simple but may not be as
ef�cient as other strategies.

� min valid: This is the classic Greedy algorithm from
the FTL literature, where the cache zone with the fewest
remaining valid sectors is chosen.

� min assoc:Since cleaning time for this translation layer is
dominated by the time to read and re-write data zones, this

Algorithm 1: TL1 controller
1 Function TL1Controller() is
2 activeThrshld = zoneSpace
3 idleThrshld = maxZoneSpace
4 while True do
5 emptySpace CalcEmptySpace()
6 if emptySpace < activeThrshld or (IsIdle() and

emptySpace < idleThrshld) then
7 Clean() ;
8 Checkpoint() ;
9 end

10 end
11 end
12 Function clean(policy) is
13 if policy == FIFO then
14 cacheZnToClean FindOldestDirtyZ() ;
15 else if policy == MinData then
16 cacheZnToClean FindZwithMinData() ;
17 else if policy == MinAssoc then
18 cacheZnToClean FindZwithMinAsso() ;
19

20 for extent in cacheZnToClean do
21 homeZone FindZDataHome(extent)
22 ReadModifyWrite(homeZone)
23 end
24 AddToFreeZonelist(cacheZnToClean)
25 end
26 Function checkpoint()is
27 map GetMap() ;
28 wf GetWF() ;
29 freeZones GetFreeZones() ;
30 chkpt CreateChkpt(map, wf, freeZones) ;
31 WriteHeader() ;
32 WriteCheckpoint(chkpt) ;
33 WriteTrailer() ;
34 end

strategy chooses the cache zone with the fewest data zones
represented among its cached extents. (similar strategies
have been used for �ash—e.g. see Cho's K-Associative
Sector Translation [21].)

The TL1 controller is implemented in 400 lines of Python,
plus a 230-line Python wrapper for translating the C-based
structures used in the kernel interface. The translation layer
is stable under long-term testing using the ext4 �le system,
although further testing would be needed to prove its suitability
for production deployment.

B. Full extent-mapped translation layer: TL2

TL2 maintains a set ofdata zones, comprising almost all
of the disk as shown in Figure 4. It is analogous to a fully
page-mapped FTL, such as DFTL: LBAs have no pre-de�ned
home locations, but instead stay where they are written until
the disk �lls up and the zone is cleaned to make room for
new writes. Until an LBA is written it has no location, either;
upon initialization all LBAs in a TL2 volume are un-mapped,
leaving the entire disk as free space to be allocated for writes.
As described in Algorithm 2, the cleaning process (a) reads
data from one or a few data zones, (b) merges them, (c) writes
back the merged data to the log head.

Algorithm 2: TL2 controller
1 Function TL2Controller() is
2 while True do
3 emptySpace CalcEmptySpace() ;
4 if emptySpace < threshold then
5 Clean() ;
6 Checkpoint() ;
7 end
8 end
9 end

10 Function clean() is
11 dataZonesToClean FindDirtyZones() ;
12 ReadLiveData(dataZonesToClean) ;
13 WriteBackDataToLogHead() ;
14 AddToFreeZonelist(dataZonesToClean) ;
15 end

Since large disk drives are commonly used for archival or
backup purposes where �les are added but never deleted, this
means that over the lifespan of the drive the total volume
of write traf�c may be only fractionally larger than the disk
itself, accounting for repeated overwrites of metadata. In this
scenario cleaning will not begin until the drive is nearly full,
and the total amount of cleaning required over the lifespan
of the drive may be only a fraction of its capacity. (This is
in contrast to SSDs, where the expectation is that they will
support a lifetime write volume many times greater than their
size, with cleaning adding a workload-dependent overhead to
nearly all write traf�c.)

As the size of the extent-map can grow over time, large
memory requirement would be an issue for TL2; even with
planned improvements in map memory ef�ciency (16 bytes
per extent instead of 64) the kernel memory usage for a full
10 TB volume would be excessive. This does not prevent its
evaluation, however; as shown in Table I even the longest
traces available to us [22] have less than half a million entries.

C. Checkpointing and Recovery

TL1 and TL2 share the same logic for checkpointing the
extent map and recovering it on startup. Algorithm 3 shows
the operations done at startup. A region at the beginning of the
disk is reserved for map checkpoints; each checkpoint includes
the write frontier, a full extent map, and a sequence number for

��������	
���	� ��
�����	
���

��
����	��

���
����	�

����	���	�

Fig. 4: TL2 on-disk data structure: two checkpoint zones and a large
number of data zones.

Algorithm 3: Startup - FSTL controller deamon
1 Function startup() is
2 ReadSuperBlock() ;
3 ChaseDownLastCheckpoint() ;
4 wf, map, freeZones ReadChkpoint() ;
5 ReplayJournalRetrieveMap(wf) ;
6 FeedTargetWfFreeZones() ;
7 UnblockIOPassthrough() ; //Allows IO to pass

through the FSTL device mapper
8 end

locating the most recent checkpoint. If only sequential-write
zones are available on a drive, then this checkpoint region
must be two zones long in order to avoid the potential for
catastrophic loss when resetting the write pointer to reuse a
zone, as zone data is not accessible after write pointer reset. If
random-write zones are available, however, then the checkpoint
region may be a single zone or less.

TL1 and TL2 use the same header and trailer for checkpoints
as used by the data plane, allowing them to readily locate
the most recently persisted checkpoint. Map checkpoints are
protected by a CRC, much like write headers and trailers. As
a result checkpoint writes are atomic; if a crash occurs while
writing a checkpoint then the incomplete record will be ignored,
and recovery will begin from the previous checkpoint.

V. EVALUATION

To demonstrate that FSTL can perform fast enough as a
framework to implement translation layers for SMR drives, we
evaluate the performance of TL1 and TL2 translation layers
and compare them with the equvalent indusrial ones. To this
end we use the following set of experiments.

Trace-based replay, using thefio I/O testing tool [23], re-
playing several of the well-known MSR Cambridge traces [22]
as well as traces provided by an industrial partner. In all cases
direct I/O mode was used.

Filebench [24], a �le system-level benchmark which in-
cludes a large number of con�gurations emulating different
system behaviors. The following Filebench workload con�gu-
rations were tested:

randomwrite : creates a single large �le prior to measure-
ment, then makes 8K random writes to the �le from a
single thread.

singlestreamwrite : creates a single large �le prior to
measurement, and then performs 1MB sequential over-
writes to this �le from a single thread.

TABLE I: Map size required in TL2 implementation for a number
of MSR Cambridge and our industrial partner traces.

wrkld extent count wrkld extent count
src1 2 18143 SW1-R6Dv1 124253
src2 2 349483 Hadoop1-R6Lv1 92974
wdev 1 1174 Backup2-R6Dv1 62317
proj 0 79815 Hadoop1-R6Dv1 72790
usr 0 29817 DB1-R6Lv1 6645

work, SMART [34] proposes using track-based dynamic
mapping. Shafaei et. al propose Virtual Guard [5] a track-based
static translation layer in which unlike the traditional STLs
the cache space is used for keeping the data at risk instead of
updates. This makes the cache usage on the drive a function of
write footprints rather than the number of writes and therefore
avoids cleaning for all available real world traces tested. As
both SMART and Virtual Guard are track-based and do not
perform out-of-place writes, they cannot be implemented with
the current version of FSTL. Lin et. al [35] reduce the cleaning
overheads by hot and cold data segregation; Jones et. al [36]
propose using the write history (frequency) of data blocks to
reduce the data movements due to compaction or cleaning.
Both of these translation layers may be implemented in FSTL.

VII. C ONCLUSION

FSTL provides a �exible and high performance framework
for translation layer research. Our work demonstrates that it may
be used to create simple but robust translation layers which rival
the performance of existing drive-managed algorithms, while
supporting mechanisms to allow more powerful translation
layers to be created. We have made it available under an open
source license, and hope that it stimulates additional research
in this area.

REFERENCES

[1] S. N. Piramanayagam, “Perpendicular recording media for hard disk
drives,” Journal of Applied Physics, vol. 102, no. 1, p. 011301, Jul. 2007.

[2] S. Tan, W. Xi, Z. Ching, C. Jin, and C. Lim, “Simulation for a Shingled
Magnetic Recording Disk,”IEEE Transactions on Magnetics, vol. 49,
no. 6, pp. 2677–2681, Jun. 2013.

[3] Y. Cassuto, M. A. A. Sanvido, C. Guyot, D. R. Hall, and Z. Z. Bandic,
“Indirection systems for shingled-recording disk drives,” inProceedings
of the 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), ser. MSST '10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 1–14.

[4] D. Hall, J. Marcos, and J. Coker, “Data Handling Algorithms For
Autonomous Shingled Magnetic Recording HDDs,”IEEE Transactions
on Magnetics, vol. 48, no. 5, pp. 1777–1781, May 2012.

[5] M. Shafaei and P. Desnoyers, “Virtual guard: A track-based translation
layer for shingled disks,” in9th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 17). Santa Clara, CA: USENIX
Association, 2017.

[6] C. Min, S. Kashyap, S. Maass, and T. Kim, “Understanding Manycore
Scalability of File Systems,” in2016 USENIX Annual Technical Confer-
ence (USENIX ATC 16). Denver, CO: USENIX Association, 2016, pp.
71–85.

[7] A. Aghayev, M. Shafaei, and P. Desnoyers, “Skylight—a window on
shingled disk operation,”ACM Transactions on Storage, vol. 11, no. 4,
pp. 16:1–16:28, Oct. 2015.

[8] S. Tancheff, “Seagate zdm device mapper,”https://github.com/Seagate/
ZDM-Device-Mapper.

[9] B. Jacob, S. Ng, and D. Wang,Memory Systems: Cache, DRAM, Disk.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[10] E. Krevat, J. Tucek, and G. R. Ganger, “Disks are like snow�akes: no
two are alike,” inProceedings of the 13th USENIX conference on Hot
topics in operating systems. USENIX Association, 2011, pp. 14–14.

[11] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam, “Lever-
aging value locality in optimizing nand �ash-based ssds.” inFAST, 2011,
pp. 91–103.

[12] T. Kgil, D. Roberts, and T. Mudge, “Improving nand �ash based disk
caches,” inComputer Architecture, 2008. ISCA'08. 35th International
Symposium on. IEEE, 2008, pp. 327–338.

[13] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
ampli�cation analysis in �ash-based solid state drives,” inProceedings
of SYSTOR 2009: The Israeli Experimental Systems Conference. ACM,
2009, p. 10.

[14] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse,
and R. Panigrahy, “Design tradeoffs for ssd performance.” inUSENIX
Annual Technical Conference, vol. 8, 2008, pp. 57–70.

[15] “Advanced format technology brief,” HGST, Technical Report, Mar. 2014.
[16] G. Tyndall, “Why Specify Workload?” Western Digital Technologies,

Inc, Technical Report 2579-772003-A00, Jun. 2013. [Online]. Available:
http://www.wdc.com/wdproducts/library/other/2579-772003.pdf

[17] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho, “A space-ef�cient
�ash translation layer for CompactFlash systems,”IEEE Transactions
on Consumer Electronics, vol. 48, no. 2, pp. 366–375, 2002.

[18] D. Le Moal, Z. Bandic, and C. Guyot, “Shingled �le system host-
side management of shingled magnetic recording disks,” inConsumer
Electronics (ICCE), 2012 IEEE International Conference on. IEEE,
2012, pp. 425–426.

[19] M. Shafaei, M. H. Hajkazemi, P. Desnoyers, and A. Aghayev, “Modeling
Drive-Managed SMR Performance,”ACM Trans. Storage, vol. 13, no. 4,
pp. 38:1–38:22, Dec. 2017.

[20] M. Rosenblum and J. K. Ousterhout, “The design and implementation
of a log-structured �le system,” in13th ACM symposium on Operating
systems principles. Paci�c Grove, California, United States: ACM,
1991, pp. 1–15.

[21] H. Cho, D. Shin, and Y. I. Eom, “KAST: K-associative sector translation
for NAND �ash memory in real-time systems,” inDesign, Automation
& Test in Europe Conference & Exhibition, 2009. DATE '09., 2009, pp.
507–512.

[22] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
practical power management for enterprise storage,” inProceedings
of the 6th USENIX Conference on File and Storage Technologies. San
Jose, California: USENIX Association, 2008, pp. 1–15.

[23] J. Axboe, “�o,” https://github.com/axboe/�o.
[24] S. Shepler, E. Kustarz, and A. Wilson, “Filebench,” San Jose, California,

Feb. 2008.
[25] C. Mason, “Compilebench,”http://oss.oracle.com/� mason/compilebench.
[26] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a �ash translation

layer employing demand-based selective caching of page-level address
mappings,” in Proceeding of the 14th international conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS). Washington, DC, USA: ACM, 2009, pp. 229–
240.

[27] M. Shafaei, M. H. Hajkazemi, P. Desnoyers, and A. Aghayev, “Modeling
smr drive performance,” inProceedings of the 2016 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Science, ser. SIGMETRICS '16. New York, NY, USA: ACM, 2016,
pp. 389–390.

[28] J. Niu, J. Xu, and L. Xie, “Analytical modeling of smr drive under
different workload environments,” in2017 13th IEEE International
Conference on Control Automation (ICCA), July 2017, pp. 1113–1118.

[29] C. Jin, W.-Y. Xi, Z.-Y. Ching, F. Huo, and C.-T. Lim, “HiSMRfs: A
high performance �le system for shingled storage array,” in2014 30th
Symposium on Mass Storage Systems and Technologies (MSST), Jun.
2014, pp. 1–6.

[30] A. Aghayev, T. Ts'o, G. Gibson, and P. Desnoyers, “Evolving ext4
for shingled disks,” in15th USENIX Conference on File and Storage
Technologies (FAST 17). Santa Clara, CA: USENIX Association, 2017,
pp. 105–120.

[31] P. Macko, X. Ge, J. John Haskins, J. Kelley, D. Slik, K. A. Smith, and
M. G. Smith, “Smore: A cold data object store for smr drives,” in2017
33rd Symposium on Mass Storage Systems and Technologies (MSST),
2017.

[32] R. Pitchumani, J. Hughes, and E. L. Miller, “Smrdb: Key-value data
store for shingled magnetic recording disks,” inProceedings of the 8th
ACM International Systems and Storage Conference, ser. SYSTOR '15.
New York, NY, USA: ACM, 2015, pp. 18:1–18:11.

[33] W. He and D. H. Du, “Novel address mappings for shingled write disks,”
in Proceedings of the 6th USENIX conference on Hot Topics in Storage
and File Systems. USENIX Association, 2014, pp. 5–5.

[34] ——, “Smart: An approach to shingled magnetic recording translation,”
in 15th USENIX Conference on File and Storage Technologies (FAST 17).
Santa Clara, CA: USENIX Association, 2017, pp. 121–134. [Online].

Available: https://www.usenix.org/conference/fast17/technical-sessions/
presentation/he

[35] C.-I. Lin, D. Park, W. He, and D. Du, “H-SWD: Incorporating Hot
Data Identi�cation into Shingled Write Disks,” in2012 IEEE 20th
International Symposium on Modeling, Analysis Simulation of Computer
and Telecommunication Systems (MASCOTS), 2012, pp. 321–330.

[36] S. N. Jones, A. Amer, E. L. Miller, D. D. Long, R. Pitchumani, and C. R.
Strong, “Classifying data to reduce long term data movement in shingled
write disks,” in Mass Storage Systems and Technologies (MSST), 2015
31st Symposium on. IEEE, 2015, pp. 1–9.

