
Teaching Operating Systems as How Computers Work

Peter Desnoyers
Northeastern University

360 Huntington Ave.
Boston, MA 02115

pjd@ccs.neu.edu

ABSTRACT
The “Computer Systems” course at Northeastern University
is an MS-level core course which attempts to teach students
how computers work, through a behavioral approach to the
concepts involved in operating systems and their interface
to the hardware. As an operating system is typically the
first reactive system which students encounter in their stud-
ies, the goal of the class is to develop an understanding of
the tools and reasoning which are involved in understanding
and working with the internals of such a system, whether
it be a conventional operating system or (as is more com-
monly found in industry) a consumer product, networking
device, or other embedded system. This course is currently
in its third year with enthusiastic responses from students,
especially those who have been able to apply its lessons in
co-operative work assignments, and an undergraduate class
teaching substantially the same material is currently under-
way.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education; D.4.7 [Operating Systems]:
Organization and Design

General Terms
Design, Experimentation, Human Factors

Keywords
operating systems, computer science education

1. INTRODUCTION
CS5600, Computer Systems, begins with a simple demon-

stration — a ridiculously simple one, in fact. The projector
displays the console of a computer which has been booted
into Linux in text mode; the instructor types the keystrokes
’l’, ’s’, and return. At the beginning of the semester virtu-
ally every student can describe what this is doing—listing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03 ...$10.00.

the files in a directory. By the end of the class, the goal of
this class is that these students learn how this happened—
e.g. the operation of the keyboard driver and scheduler to
deliver input to the shell, the virtual memory operations
needed to demand page the ls executable, and the file sys-
tem layout, implementation, and actions necessary to locate
and enumerate a particular directory.

In effect the goal of this class is to teach students how
computers work. For a simple enough computer, this un-
derstanding might be obtained through an understanding
of the hardware. For any general-purpose computer today,
however, most of its working parts are virtual and reside as
software components within the operating system.

The approach this class takes to teaching its material
matches this goal, as well. The class does not teach how
a computer operating system is structured, or what its most
important concepts are - it tries to teach how it works. In
particular, by this we refer specifically to the causal chains
of events which occur in response to stimuli such as user
requests, and which as a whole comprise its behavior.1

This goal is reflected at all levels within the course. Lec-
tures emphasize event-by-event walkthroughs to illustrate
concepts. Material is presented in order from low-level com-
ponents up, so that higher-level behaviors may be seen as
combinations of previously-learned lower-level ones. Assign-
ments are used to illustrate these behaviors, with test scripts
or other oracles provided so that students may identify cor-
rect behavior. Finally, evaluation on exams is done in a way
which emphasizes exposition of system behavior in response
to state and stimuli, rather than descriptive or computa-
tional problems.

With the introduction of this revised course, enrollment
has increased by 60%, while the pool of eligible students
has remained roughly constant. A university-wide change
from paper to online course evaluations coincident with the
first offering of this course prevents direct comparison with
previous versions; however, evaluations have been well above
average, with many students describing the new syllabus and
format in highly enthusiastic terms.

2. BACKGROUND
CS 5600, Computer Systems (previously CS G112) in the

College of Computer and Information Science at Northeast-
ern is a core course in the professional MS program - students

1We note that an operating system is often the first reactive
system which students see in their studies, requiring them to
be introduced to the idea of reasoning about the evolution
of system state given a sequence of inputs over time.

must take either this or Managing Software Development as
one of 8 courses. In addition, most students undertake a
cooperative assignment in industry as part of their degree; a
significant fraction of the students in this course have already
been on co-op. The students are primarily international,
with a broad range of undergraduate preparation that may
or may not have included an operating systems course or
exposure to the C programming language.

Prior to 2008 the class was a traditional operating systems
concepts class. Anecdotal evidence indicated that the class
was not meeting the needs of students—enrollment was low,
and co-op employers had commented on students’ lack of op-
erating systems background. With a change of instructor,
the course was re-focused to emphasize topics which would
be of long-term use for students pursuing careers in embed-
ded systems, such as networking and storage devices, which
represent a significant number of co-op and career opportu-
nities for students in the College.

3. BEHAVIOR AS A PRIMARY CONCEPT
The class is structured around operating system behavior

for several reasons. First, because it fits the intuitive idea
of “how it works”. Part of the goal of the class is to make
students comfortable working “under the hood”, as would
be the case in embedded fields such as consumer or network
devices; the author believes that the form of operational
understanding emphasized in this class is a key factor in
achieving this familiarity. In addition we wish to teach prin-
ciples that are general, rather than specific to an individual
operating system, and while structure and abstractions may
vary from one OS to another, behavior such as response to
a page fault remains relatively constant.

The level of abstraction at which this behavior is described
varies according to the complexity of the interaction. Thus
the discussion of keyboard input in the first lecture would
serve as a detailed design for the keyboard driver of the sim-
ple machine being described, while when discussing virtual
memory and demand paging we refer to reading a block from
a file (itself a complicated process) as one operation.

Assessment of student comprehension of these behavioral
concepts poses a set of challenges. Programming assign-
ments when successfully completed result in code which when
executed will reproduce the behavior in question, but do not
necessarily prove understanding of the behavior by the stu-
dent. For in-class exams the problem is worse, as typical
problems involving calculation or description fail to capture
the behavioral aspects of a system at all.

Instead we place a heavy reliance on questions which ask
for pseudo-event traces in response. Like pseudo-code, these
questions ask for a description at a prescribed level of detail,
in this case describing the sequence of actions which unfold
given a specified starting state and stimulus. An example of
such an assessment is shown in Figure 1, where students are
asked to trace the virtual memory operations which occur
as several lines of machine code are faulted in and executed.

In contrast, programming assignments are designed to il-
lustrate the behavior patterns being studied, as well as as-
sessing the students’ knowledge of these patterns. For the
most part the assignments are accompanied by test scripts;
successfully completion of all tests should correspond to full
marks on the assignment. The assignment thus acts as a
simulator, reproducing the behavior the student heard de-

The diagram below shows the page tables in
physical memory for two address spaces [. . .]
The operating system view of address space 2 is
shown on the right - note that the shared page is
mapped read-only so that it can be copied on
write, while 05000000 is demand-paged from disk
and BFFF0000 is allocated on demand.
[diagrams omitted]
We begin execution in the following state:

PC = 05000000
SP = BFFF0FFC

The code to be paged in starts with the
following 3 instructions:

MOV *(06000100) -> EAX
PUSH EAX
MOV EAX -> *(06000300)

Give the sequence of events which occur during
the execution of these three instructions.
Specifically describe each of the following events
when they occur:

• instruction attempts - indicate which insn.
• instruction completions
• page faults - indicate which insn. faulted (1st
MOV, PUSH, or 2nd MOV), whether an I or
D fault, and for D faults, the fault address.

[...]

Figure 1: Behavior-based exam questions

scribed in lecture, or failing tests until corrected if that un-
derstanding proves to be incorrect.

4. LOADING AND CONTEXT SWITCHING
The beginning of the class is designed to help students de-

velop a mental model of an operating system and programs
in memory on a simple machine, and be able to walk through
the steps involved in loading a program, invoking OS func-
tions, and context switching. For this purpose we define a
simple machine, executing only on the blackboard. Thus
we do not need to fully define the CPU; instead we give
only its assembly language instructions – the basic MOV,
CALL, etc. found on most CPUs, with numbered registers
and fixed-length instructions for simplicity.

For our purposes the key characteristic of this machine is
its set of simple I/O devices mapped into the top of its 16-bit
address space. At present these consist of a text-mode 80x24
video display buffer, a keyboard controller, a primitive disk
controller, and 4 serial ports for multiprocessing.

Rather than taking a top-down approach, we begin with a
very simple “bare-metal” program, copying the string “Hello
World” to the display buffer, as shown in Figure 2. Starting
with this program, which may easily be understood in its
entirety with little effort, we proceed in stages to develop
a simple single-user system, transitioning from assembler to
pseudo-code when appropriate. Hardware-specific function-
ality is split into separate procedures, and then segregated
to a separate region of the memory space to allow load-
ing of programs; loading is done by a simple command line
which allows the user to specify disk blocks and then begin
execution. Next we introduce a system call vector at a well-
known location, as well as its software interrupt equivalent,

frame_buf eq F000

str .db ’Hello World’

len eq 11

begin: MOV #frame_buf → R0

MOV #str → R1

MOV #len → R2

loop: MOV *(R1++) → R3

MOV R3 → *(R0++)

SUB 1 → R2

JMP NZ, loop

done: JMP done

Figure 2: Our first program

providing a stable interface for binary compatibility across
instances of the OS.

We then describe the concept of a command-line shell
which uses OS functions to load and execute other programs,
hardware interrupts and their application in buffering key-
board input, and a file system using a directory of {name,
start, length} tuples in block 0. At this point we have ex-
plained a system of roughly the sophistication of MS-DOS
1.0, a contemporary description of which is part of the as-
signed reading. [8]

Using the motivating example of the 4 serial ports
with attached terminals, we review subroutine linkage and
stack frames and introduce context switching and multi-
programming. On a simple system such as this, process
state can be pushed onto the stack and represented by noth-
ing more than a saved stack pointer value, allowing context
switches to be easily walked through on the blackboard.
Drawing on the prior description of hardware interrupts, a
timer device is then introduced, and with that, preemptive
context switching.

In each iteration of the system there is an emphasis on
the memory map, using the classic organization of code at
the bottom, heap growing up, and stack growing down. This
organization is used to present the memory map for the mul-
titasking system, leading to a discussion of methods for load-
ing programs at this differing locations in memory—separate
compilation, load-time fix-up, position-independent code,
and segment registers.

In practice most students have a great deal of difficulty
with context switching; although they understand the con-
cept, they have trouble following the exact sequence of
events which occur. This difficulty is seen regardless of prior
preparation or experience; we believe that it is because a
context switch function, which is called in one thread but
returns in another, breaks a fundamental programming ab-
straction which is more deeply ingrained in the more ex-
perienced students. We have found it helpful to present
multiple ways of visualizing the context switch process, in-
cluding both the low-level instructions themselves as well as
higher-level views of behavior, as shown in Figure 3.

The assignment for this section of the class involves writ-
ing a user-space loader, context switching between threads,
and scheduling multiple threads to respond to user input.
Students are provided with a code framework which cre-
ates an executable data segment and two network connec-

switch(uint16 *oldsp, uint16 newsp)
_switch: PUSH R7 (caller-saved)

PUSH R6
MOV *(SP-8) → R0
MOV SP → *R0
MOV *(SP-10) → SP
POP R6
POP R7
RET

thread 1

switch()

thread 2

call

return

return

call

Figure 3: Alternate context switching depictions

tions, as well as functions for switching the stack pointer and
initializing a stack. In addition, a build script is provided
which extracts the contents of simple ELF executables in
binary form which may be easily loaded into memory and
invoked, as well as an assembler file which defines a vector
table these “micro-programs” can use to invoke functions
within the main executable.

Students must write several micro-programs and a simple
shell to load and execute them, as well as the “system calls”
such as printline() which are invoked through the vector
table. Next they implement context switching between two
threads, and finally implement a thread context switch, and
modify their input routine to switch between two threads as
user input is received on the network connections.

For many students this assignment is a high point of the
class — although tiny, they have written an operating sys-
tem of their own. Where in prior classes they were looking
down at the interface to the OS, by creating a sort of micro-
OS with basic functions, they become able to look at the
remainder of the class as elaborations on top of this base.

5. SYNCHRONIZATION
Having introduced threads and preemptive switching, the

concept of race conditions is described via the classic bank
balance update example. We walk through the operation of
a spinlock at the memory transaction level, and show how
to construct a mutex using spinlocks or interrupt disabling
in conjunction with a thread scheduler.

For the remainder of the section on synchronization we fo-
cus on abstract synchronization primitives rather than lower
levels. Using classic problems such as bounded buffer for mo-
tivation, we introduce semaphores, monitors, and deadlock.

This is in a sense the most practical unit of the class, as
it is likely that most students will have to write and debug
threaded code at some point in their career. As such, there
is a strong focus on best practices and rules of thumb, e.g.:

• Logical association of mutexes with data, rather than code
sections; we therefore downplay the term“critical section”.
• Safe handling of shared variables, through means such as

creating local copies before releasing a lock.
• Use of lock ranking to avoid deadlocks.

Although semaphores are introduced early on, the pri-
mary synchronization mechanism used in this class is the

method() n ≥ 2
(return)

no

yes

monitor
condition C, int n
method()
n++
if n >= 2
signal C

else
wait C

Figure 4: Graphical illustration of synchronization

monitor. We do this for both practical and philosophi-
cal reasons. First, monitors are the more likely form in
which students will later encounter concurrency control, in
either Java (as synchronized objects or re-entrant locks from
java.utils.concurrent) or Posix threads pthread cond opera-
tions. More importantly, we believe monitors are more ped-
agogically sound, as the intuitive understanding of how a
semaphore works must be violated (by calling wait in one
thread and signal in another) in order to use it for any but
the simplest of problems.

We focus on reasoning about the operation of multiple
threads, an area which presents difficulties for even experi-
enced programmers. Rather than understanding the order of
events which will occur, students must learn to understand
all possible orders of events. To cope with this, we introduce
a flowchart-based graphical notation for visualizing the flow
of control in multiple simultaneous threads, as shown in Fig-
ure 4. Although not as precise as the n-dimensional state
graphs used in e.g. Bryant and O’Hallaron [2], the ability to
visualize multiple threads moving through a 2-dimensional
network provides students with an effective metaphor to un-
derstand the state space of a multi-threaded system. 2

We augment this section with a review of continuous-time
Markov models, providing students with another tool to rea-
son about state-based behavior. This allows us to give the
following assignment:

• Write a pseudo-code description of a monitor-based solu-
tion to a concurrency problem (e.g. the sleeping barber)
• Translate this solution into C using Posix thread condition

variables, and execute this solution.
• Run the same solution as an event-driven simulation us-

ing a virtual-time thread scheduler, with additional in-
strumentation to gather state occupancy and throughput
statistics.
• Finally, formulate the problem as a Markov model and

solve the balance equations, deriving expected state occu-
pancies and transition rates.

A significant problem in assigning multi-threaded pro-
gramming assignments is that unlike the single-threaded
case, student observation of program behavior appears to
do little to dispel misconceptions about the operation of a
particular piece of code; instead, they often need to be shown
by some other means that it is operating incorrectly. Using

2Graph representations of concurrency (e.g. Petri nets) have
a long history, however a review of current textbooks shows
no examples of their use in teaching introductory concur-
rency concepts.

the approach described here, we are able to provide an oracle
to test the Markov model solution (e.g. selected digits from
the decimal solution), and once students have successfully
solved that portion of the problem, they may in turn use it
to verify operation of their code.

6. VIRTUAL MEMORY
Virtual memory plays a central role in modern operating

systems, and without understanding it much of the opera-
tion of these systems must remain an unknown black box.
We therefore focus heavily on this topic, covering the range
from hardware mechanisms through software policies and
algorithms.

Early on we introduced the use of segment registers for
run-time relocation of executables; we now examine per-
process memory protection, leading to simple base-and-
bounds translation hardware. A walk though several exam-
ples leads to the necessity of separate user and supervisor
modes, along with mechanisms (e.g. software interrupts) to
allow controlled transitions into supervisor mode. At this
point we have covered all the infrastructure needed to un-
derstand the non-file system portions of the original Unix
paper [14] which is assigned for reading.

There is a brief (and very conventional) discussion of heap
allocation strategies (first/best/next fit, buddy) and exter-
nal and internal fragmentation. These problems motivate
the introduction of paged translation. Students become fa-
miliar with the steps involved in address translation via page
tables, as well as use of a TLB to achieve acceptable perfor-
mance. To reinforce this knowledge we ask students to (a)
given a specified table, describe the steps needed to translate
a particular address, and (b) for a specified memory map,
construct a page table to implement it.

The central idea of this unit is virtual memory, though,
rather than address translation. We thus describe the con-
cept of operating system virtual memory areas, and the page
fault handling necessary for demand allocation, copy-on-
write, and demand paging. As before, the emphasis is on
understanding of the sequence of steps involved, as illus-
trated in the test question shown in Figure 1.

We describe hardware virtualization next, which is per-
haps the most conceptually difficult subject in the class. At
this point At this point we have erected enough infrastruc-
ture that we can describe the difficulty of the problem—i.e.
why one operating system cannot be run directly on top of
another. The first solution presented is full software emula-
tion, as in e.g. Bochs [5], which despite its practical com-
plexity is conceptually an almost trivial fetch-switch-execute
loop. From this we proceed to the trap-and-emulate strategy
used on CPUs meeting the Popek & Goldberg virtualization
requirements [10], and finally discuss software and hardware
techniques for virtualizing non-virtualizable CPUs such as
the x86 series. [11]

The homework for this unit is split between paper exer-
cises, in particular pseudo-event traces, and a programming
assignment. Creating meaningful programming assignments
for this unit is a challenge, as pure user-mode projects are
very restrictive, while a kernel-mode assignment would re-
quire an amount of development and debugging infrastruc-
ture which really needs to be amortized over multiple as-
signments. To date our assigment requires students to use
the mprotect system call and a sigsegv handler to emulate
actual page faulting. They then implement several differ-

ent page replacement policies - FIFO with differing working
set sizes, and the VMS LRU approximation [6] using FIFO
replacement from the working set and a victim cache with
LRU replacement.

7. I/O AND BLOCK DEVICES
In traditional operating systems classes the block storage

layer is woefully under-represented in comparison to the at-
tention it receives in both industry and academia. In this
portion of the class we focus on the block interface both in-
ternally and externally, again paying close attention to the
sequences of operations involved, which are typically the cru-
cial determinants of performance.

On the host side of the interface we focus on driver archi-
tecture and the performance characteristics of buses such as
PCI and PCI-e. We calculate what I/O performance would
be for simple memory-mapped devices given typical bus la-
tencies, and use this to motivate the discussion of a typical
I/O device using DMA, a descriptor queue, and interrupts.
We discuss driver architectures, and put these together to
provide students with a picture of the operation of blocking
I/O from the application, through the OS and down through
to the PCI bus, and back.

Disk drives are then discussed, from the point of view
of performance. The goal here is to give students a basic
understanding of the mechanical and geometric properties
which determine performance—rotation speed, seek time,
and zone density. The primary focus of this portion of the
class, however, is on features which may be provided on the
device side of the block interface. After a brief discussion
of transports (SCSI, Fibre Channel, USB, etc.) we cover
standard RAID levels (RAID0, RAID1, RAID4 and RAID5)
as well as logical volume management (snapshot, migration,
storage virtualization) and storage de-duplication.

To date the assignment for this unit has been combined
with that for virtual memory. Students are given specifica-
tions for a small but otherwise representative disk drive—
rotational speed, zones and sectors per track in each zone,
and seek time as a simple function of tracks moved. They
must then write a timing simulator, which may be validated
against a provided sample sequence. Finally they use a page
fault trace collected during the virtual memory portion of
the assignment, and use their simulator to determine per-
formance of that trace on the specified drive.

On-paper assessment for this unit is a work in progress;
to date it has focused on RAID systems and students’ un-
derstanding of their operation and performance. Thus they
may be asked to indicate the sequence of underlying disk
operations in response to reads and writes at the volume
level, or to calculate the time taken for certain operations,
given specified disk seek and transfer parameters.

8. FILE SYSTEMS AND SECURITY
These are the final sections in the class; to date file sys-

tems has been covered first, building on top of the discussion
of block devices, with security last. However this order may
be revised, as permission checking has been an area of sig-
nificant confusion in the file system assignment.

Unlike other portions of the class, we begin at an abstract
level, presenting the ideas of file system namespace and op-
erations. We do this in order to solidify students’ intuitive
notions of file and directory, providing a firm basis for dis-

cussing concepts such as hard and soft links, inclusion of
devices in the file system namespace, and Win32 (device-
rooted) vs. Unix (single root) path names.

Kernel implementation of file systems is covered briefly,
covering dispatch at the file operations level (e.g. to device
driver methods) and at the VFS level. The primary focus,
however, is on the externally-visible file system structure.
We characterize file systems by their solutions to the follow-
ing problems:

• Free space management: Do they use linked lists (i.e. the
original UNIX file system), a bitmap, some array-based
equivalent such as a file allocation table, or extent lists?
• File organization: We discuss contiguous files (e.g. ISO

9660), allocation table-based linking, direct/indirect block
structures such as used by most UNIX file systems, and
extent lists.
• Directory entries and file meta-data: What information

is stored about a file? Is there a separation between file
meta-data (i.e. i-node) and directory entry?
• Robustness: Here we discuss file system checking, as well

as the operation of log-structured file systems and file sys-
tem journalling.

The assignment for this unit is typically the most intensive
one of the semester. Students are given the definition of a
simple file system using a file allocation table and UNIX-like
file names and attributes, along with several sample disk
images, a mkfs utility, and test scripts. In addition to this
they are given skeleton code to read and write blocks from
a disk image file and to interface with the Linux FUSE (File
system in USEr space [13]) library.

Given these materials, students create an implementation
of the specified file system, which they are able to mount
and use on a Linux system. As with prior assignments,
students are provided with test suites which may be used
to verify their solutions, so that with sufficient effort most
teams should be able to obtain full marks.

On-paper assessment of students’ understanding focuses
on operations across the block interface boundary, as well
as the role of buffering in optimizing these interactions, for
both FAT and i-node/indirect block organizations. Thus
students might be asked for the sequence of reads necessary
for certain operations, and of the effect of e.g. a small buffer
cache vs. an i-node cache on the number of operations, or to
contrast the worst-case overhead for FAT vs. indirect block
organizations for retrieving a block at a large offset within
a file.

The final unit, security, is quite brief. It focuses on se-
curity mechanisms found in common operating systems (i.e.
UNIX, Windows) and covers user/group permissions, access
control lists, and capabilities as used in Posix and Windows.
The goal of this unit is for students to be able to construct
user/group permissions and access control lists to implement
a given access policy, a skill which many (although by no
means all) students enter the class with.

9. COMPLICATIONS
One of the particular issues with this course, as with many

other operating system classes, is the use of C for program-
ming assignments. For many students this is their first ex-
posure to an unsafe language, yet we wish to use class time
for teaching course content rather than the assignment lan-
guage. To some extent this problem has been ameliorated

by student use of Valgrind [7] to detect memory bugs. Un-
fortunately this is not always feasible; in particular, valgrind
is unable to differentiate a user-constructed context switch
from a severe memory error. To complement valgrind, we are
currently working on a set of grading-enforced style rules —
e.g. all pointer variables must be initialized to a valid value
or NULL— which we hope will further reduce problems.

The other major issue is that of grading. Due to the open-
ended nature of the exam questions and cascading effects of
errors, considerable judgment is required to assign marks in
a way that reasonably reflects a student’s performance. The
assignments are similarly subject to a wide range of often
subtle errors; in both cases it has been difficult for graduate
teaching assistants to achieve the desired quality of grading
on their own. (This may change as the course matures.) Our
solution to date has been the use of “grading parties”, where
TAs and the professor mark papers, agree on an ordering of
answers, and then assign grades accordingly.

As with any novel course, textbook support is problem-
atic. To date we have used Silbershatz et al. [12], and are
using Bryant and O’Hallaron [2] in an undergraduate ver-
sion of the class, but neither is a good fit. Silbershatz is too
abstract, avoiding hardware details, although its treatment
of synchronization and file systems fits well. Bryant and
O’Hallaron cover more hardware details, but not file sys-
tems and concurrency are poorly covered. The gap between
the textbook and class material has been filled with readings
from the literature, as well as student-produced scribe notes
and lecture videos posted on the course website.

The use of lecture videos has been highly successful. These
are low quality videos, made using consumer-grade equip-
ment operated by the TA, who also typically edits them for
posting. Although no doubt responsible for a small drop
in course attendance, many students report that the videos
have been a valuable study aid.

10. DISCUSSION
In order to provide students with an in-depth exposure

to the concepts in this class, certain compromises have been
made. Chief among these is the use of user-mode program-
ming assignments, rather than kernel code running on simu-
lated, virtual, or real hardware. This is a deliberate decision,
as the goal of these exercises is to illustrate particular issues
and mechanisms, not to teach students how to work with a
large body of systems code. The largest amount of “scaf-
folding” required for the CS 5600 assignments is 600 lines
of actual code (including headers) for the file system assign-
ment, compared to 4500 lines for project0 in GeekOS [3, 4],
or over 7000 for just the scheduler in a recent Linux kernel.

The only area in which this has presented significant dif-
ficulty is the virtual memory assignment, where the mpro-
tect/sigsegv mechanism has a number of deficiencies when
compared to the equivalent functions in the kernel. With
work we believe this may be remedied, either with better
support code, or by moving the entire assignment into ker-
nel mode under e.g. QEMU.

The notion of starting from the bottom up in a computer
systems class is not new; in particular, Patt and Patel [9]
begin at the lowest level with digital logic. After the hard-
ware level, however, their focus turns directly to application
programming, while CS 5600 leaves discussion of hardware
implementation to digital design classes, but focuses almost
exclusively on the layers underneath the application.

Unlike Bryant and O’Hallaron’s Introduction to Computer
Systems [2, 1], CS 5600 does not attempt to describe those
aspects of a computer system which every application pro-
grammer will interact with. This is in part due to purpose of
the class; as an elective core, it is taken by students with an
interest in low-level programming. In addition, however, we
consider some aspects of this material to be a fundamental
part of any engineering-oriented computer science education.

The class is still evolving, and this paper does not exactly
reflect any single semester of CS5600, but rather those por-
tions which have been successful in the past and are being
retained, as well as several new approaches which have been
tested in a more advanced version of the same class (CS7600)
and will be introduced to CS5600 this year.

The author is in the process of revising class and scribe
notes into a form which may be used as a text for this class,
either alone or in combination with another text. These ma-
terials will be made available under an open documentation
license on the author’s web page, where existing materials
such as prior lecture videos and the pedagogical machine
description may be found.

11. REFERENCES
[1] Bryant, R. E., and O’Hallaron, D. R. Introducing

computer systems from a programmer’s perspective.
In SIGCSE (Charlotte, NC, 2001), ACM, pp. 90–94.

[2] Bryant, R. E., and O’Hallaron, D. R. Computer
Systems: A Programmer’s Perspective. Prentice Hall,
Aug. 2002.

[3] Hovemeyer, D. GeekOS.
http://geekos.sourceforge.net/, 2010.

[4] Hovemeyer, D., Hollingsworth, J. K., and
Bhattacharjee, B. Running on the bare metal with
GeekOS. In SIGCSE (Norfolk, VA, 2004), ACM.

[5] Lawton, K. P. Bochs: A portable PC emulator for
Unix/X. Linux J. 1996, 29es (1996), 7.

[6] Levy, H. M., and Lipman, P. H. Virtual memory
management in the VAX/VMS operating system.
Computer 15, 3 (1982), 35–41.

[7] Nethercote, N., and Seward, J. Valgrind: a
framework for heavyweight dynamic binary
instrumentation. In SIGPLAN (San Diego, CA, 2007).

[8] Paterson, T. An inside look at MS-DOS. Byte
Magazine 8, 6 (1983), 230–252.

[9] Patt, Y. N., and Patel, S. Introduction to
Computing Systems: From Bits and Gates to C and
Beyond. Osborne/McGraw-Hill, 2000.

[10] Popek, G. J., and Goldberg, R. P. Formal
requirements for virtualizable third generation
architectures. Commun. ACM 17, 7 (1974), 412–421.

[11] Robin, J. S., and Irvine, C. E. Analysis of the intel
pentium’s ability to support a secure virtual machine
monitor. In USENIX Security Symposium (Denver,
Colorado, 2000), pp. 10–10.

[12] Silberschatz, A., Galvin, P. B., and Gagne, G.
Operating System Concepts. Wiley, July 2008.

[13] Szeredi, M. FUSE: filesystem in userspace.
http://fuse.sourceforge.net/, 2010.

[14] Thompson, K., and Ritchie, D. M. The UNIX
timesharing system. Communications of the ACM 17,
7 (1974), 365–375.

