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Abstract

We examine the write endurance of USB flash drives
using a range of approaches: chip-level measurements,
reverse engineering, timing analysis, whole-device en-
durance testing, and simulation. The focus of our inves-
tigation is not only measured endurance, but underlying
factors at the level of chips and algorithms—both typical
and ideal—which determine the endurance of a device.

Our chip-level measurements show endurance far in
excess of nominal values quoted by manufacturers, by
a factor of as much as 100. We reverse engineer
specifics of the Flash Translation Layers (FTLs) used
by several devices, and find a close correlation between
measured whole-device endurance and predictions from
reverse-engineered FTL parameters and measured chip
endurance values. We present methods based on anal-
ysis of operation latency which provide a non-intrusive
mechanism for determining FTL parameters. Finally we
present Monte Carlo simulation results giving numeri-
cal bounds on endurance achievable by any on-line algo-
rithm in the face of arbitrary or malicious access patterns.

1 Introduction

In recent years flash memory has entered widespread
use, in embedded media players, photography, portable
drives, and solid-state disks (SSDs) for traditional com-
puting storage. Flash has become the first competitor to
magnetic disk storage to gain significant commercial ac-
ceptance, with estimated shipments of 5 x 109 bytes
in 2009 [10], or more than the amount of disk storage
shipped in 2005 [31].

Flash memory differs from disk in many characteris-
tics; however, one which has particular importance for
the design of storage systems is its limited write en-
durance. While disk drive reliability is mostly unaffected
by usage, bits in a flash chip will fail after a limited num-
ber of writes, typical quoted at 10* to 10° depending on
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the specific device. When used with applications expect-
ing a disk-like storage interface, e.g. to implement a FAT
or other traditional file system, this results in over-use
of a small number of blocks and early failure. Almost
all flash devices on the market—USB drives, SD drives,
SSDs, and a number of others—thus implement internal
wear-leveling algorithms, which map application block
addresses to physical block addresses, and vary this map-
ping to spread writes uniformly across the device.

The endurance of a flash-based storage system such as
a USB drive or SSD is thus a function of both the parame-
ters of the chip itself, and the details of the wear-leveling
algorithm (or Flash Translation Layer, FTL) used. Since
measured endurance data is closely guarded by semi-
conductor manufacturers, and FTL details are typically
proprietary and hidden within the storage device, the
broader community has little insight into the endurance
characteristics of these systems. Even empirical testing
may be of limited utility without insight into which ac-
cess patterns represent worst-case behavior.

To investigate flash drive endurance, we make use of
an array of techniques: chip-level testing, reverse engi-
neering and timing analysis, whole device testing, and
analytic approaches. Intrusive tests include chip-level
testing—where the flash chip is removed from the drive
and tested without any wear-leveling—and reverse en-
gineering of FTL algorithms using logic analyzer prob-
ing. Analysis of operation timing and endurance testing
conducted on the entire flash drive provides additional
information; this is augmented by analysis and simula-
tion providing insight into achievable performance of the
wear-leveling algorithms used in conjunction with typi-
cal flash devices.

The remainder of the paper is structured as follows.
Section 2 presents the basic information about flash
memory technology, FTL algorithms, and related work.
Section 3 discusses our experimental results, includ-
ing chip-level testing (Section 3.1), details of reverse-
engineered FTLs (3.2), and device-level testing (3.3).



o Bit line (in)
Bit line (in)

Word 0 —

cell

Word 1 —1

I
LT

Word 2 —

L
L1

'

Bit line (out)

(a) NOR Flash

Bit line (out)
(b) NAND Flash

Figure 1: Flash circuit structure. NAND flash is distin-
guished by the series connection of cells along the bit line,
while NOR flash (and most other memory technologies) ar-
range cells in parallel between two bit lines.

Section 4 presents a theoretical analysis of wear-leveling
algorithms, and we conclude in Section 5.

2 Background

NAND flash is a form of electrically erasable pro-
grammable read-only memory based on a particularly
space-efficient basic cell, optimized for mass storage ap-
plications. Unlike most memory technologies, NAND
flash is organized in pages of typically 2K or 4K bytes
which are read and written as a unit. Unlike block-
oriented disk drives, however, pages must be erased
in units of erase blocks comprising multiple pages—
typically 32 to 128—before being re-written.

Devices such as USB drives and SSDs implement a
re-writable block abstraction, using a Flash Translation
Layer to translate logical requests to physical read, pro-
gram, and erase operations. FTL algorithms aim to max-
imize endurance and speed, typically a trade-off due to
the extra operations needed for wear-leveling. In addi-
tion, an FTL must be implementable on the flash con-
troller; while SSDs may contain 32-bit processors and
megabytes of RAM, allowing sophisticated algorithms,
some of the USB drives analyzed below use 8-bit con-
trollers with as little as SKB of RAM.

2.1 Physical Characteristics

We first describe in more detail the circuit and electri-
cal aspects of flash technology which are relevant to sys-
tem software performance; a deeper discussion of these
and other issues may be found in the survey by San-
vido et al [29]. The basic cell in a NAND flash is a
MOSFET transistor with a floating (i.e. oxide-isolated)
gate. Charge is tunnelled onto this gate during write op-
erations, and removed (via the same tunnelling mecha-
nism) during erasure. This stored charge causes changes
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Figure 2: Typical flash device architecture. Read and write
are both performed in two steps, consisting of the transfer of
data over the external bus to or from the data register, and the
internal transfer between the data register and the flash array.

in Vp, the threshold or turn-on voltage of the cell tran-
sistor, which may then be sensed by the read circuitry.
NAND flash is distinguished from other flash technolo-
gies (e.g. NOR flash, EZPROM) by the tunnelling mech-
anism (Fowler-Nordheim or FN tunnelling) used for both
programming and erasure, and the series cell organiza-
tion shown in Figure 1(b).

Many of the more problematic characteristics of
NAND flash are due to this organization, which elim-
inates much of the decoding overhead found in other
memory technologies. In particular, in NAND flash the
only way to access an individual cell for either reading or
writing is through the other cells in its bit line. This adds
noise to the read process, and also requires care during
writing to ensure that adjacent cells in the string are not
disturbed. (In fact, stray voltage from writing and read-
ing may induce errors in other bits on the string, known
as program disturbs and read disturbs.) During erasure,
in contrast, all cells on the same bit string are erased.

Individual NAND cells store an analog voltage; in
practice this may be used to store one of two voltage lev-
els (Single-Level Cell or SLC technology) or between 4
and 16 voltage levels—encoding 2 to 4 bits—in what is
known as Multi-Level Cell (MLC) technology. These
cells are typically organized as shown in the block di-
agram in Figure 2. Cells are arranged in pages, typi-
cally containing 2K or 4K bytes plus a spare area of 64
to 256 bytes for system overhead. Between 16 and 128
pages make up an erase block, or block for short, which
are then grouped into a flash plane. Devices may con-
tain independent flash planes, allowing simultaneous op-
erations for higher performance. Finally, a static RAM
buffer holds data before writing or after reading, and data
is transferred to and from this buffer via an 8- or 16-bit
wide bus.



2.2 Flash Translation Layer

As described above, NAND flash is typically used with a
flash translation layer implementing a disk-like interface
of addressable, re-writable 512-byte blocks, e.g. over
an interface such as SATA or SCSI-over-USB. The FTL
maps logical addresses received over this interface (Log-
ical Page Numbers or LPNs) to physical addresses in the
flash chip (Physical Page Numbers, PPNs) and manages
the details of erasure, wear-leveling, and garbage collec-
tion [2, 3, 17].

Mapping schemes: A flash translation layer could in
theory maintain a map with an entry for each 512-byte
logical page containing its corresponding location; the
overhead of doing so would be high, however, as the map
for a 1GB device would then require 2M entries, con-
suming about 8MB; maps for larger drives would scale
proportionally. FTL resource requirements are typically
reduced by two methods: zoning and larger-granularity
mapping.

Zoning refers to the division of the logical address
space into regions or zones, each of which is assigned its
own region of physical pages. In other words, rather than
using a single translation layer across the entire device,
multiple instances of the FTL are used, one per zone.
The map for the current zone is maintained in memory,
and when an operation refers to a different zone, the map
for that zone must be loaded from the flash device. This
approach performs well when there is a high degree of lo-
cality in access patterns; however it results in high over-
head for random operation. Nonetheless it is widely used
in small devices (e.g. USB drives) due to its reduced
memory requirements.

By mapping larger units, and in particular entire erase
blocks, it is possible to reduce the size of the mapping ta-
bles even further [8]. On a typical flash device (64-page
erase blocks, 2KB pages) this reduces the map for a 1GB
chip to 8K entries, or even fewer if divided into zones.
This reduction carries a cost in performance: to modify
a single 512-byte logical block, this block-mapped FTL
would need to copy an entire 128K block, for an over-
head of 256 x.

Hybrid mapping schemes [19, 20, 21, 25] augment a
block map with a small number of reserved blocks (log or
update blocks) which are page mapped. This approach is
targeted to usage patterns that exhibit block-level tempo-
ral locality: the pages in the same logical block are likely
to be updated again in the near future. Therefore, a com-
pact fine-grained mapping policy for log blocks ensures
a more efficient space utilization in case of frequent up-
dates.

Garbage collection: Whenever units smaller than an
erase block are mapped, there can be stale data: data
which has been replaced by writes to the same logical

address (and stored in a different physical location) but
which has not yet been erased. In the general case re-
covering these pages efficiently is a difficult problem.
However in the limited case of hybrid FTLs, this process
consists of merging log blocks with blocks containing
stale data, and programming the result into one or more
free blocks. These operations are of the following types:
switch merges, partial merges, and full merge [13].

A switch merge occurs during sequential writing; the
log block contains a sequence of pages exactly replacing
an existing data block, and may replace it without any
further operation; the old block may then be erased. A
partial merge copies valid pages from a data block to
the log block, after which the two may be switched. A
full merge is needed when data in the log block is out of
order; valid pages from the log block and the associated
data block are copied together into a new free block, after
which the old data block and log block are both erased.

Wear-leveling: Many applications concentrate their
writes on a small region of storage, such as the file alloca-
tion table (FAT) in MSDOS-derived file systems. Naive
mechanisms might map these logical regions to similar-
sized regions of physical storage, resulting in prema-
ture device failure. To prevent this, wear-leveling algo-
rithms are used to ensure that writes are spread across
the entire device, regardless of application write behav-
ior; these algorithms [11] are classified as either dynamic
or static. Dynamic wear-leveling operates only on over-
written blocks, rotating writes between blocks on a free
list; thus if there are m blocks on the free list, repeated
writes to the same logical address will cause m + 1
physical blocks to be repeatedly programmed and erased.
Static wear-leveling spreads the wear over both static and
dynamic memory regions, by periodically swapping ac-
tive blocks from the free list with static randomly-chosen
blocks. This movement incurs additional overhead, but
increases overall endurance by spreading wear over the
entire device.

2.3 Related Work

There is a large body of existing experimental work
examining flash memory performance and endurance;
these studies may be broadly classified as either circuit-
oriented or system-oriented. Circuit-level studies have
examined the effect of program/erase stress on internal
electrical characteristics, often using custom-fabricated
devices to remove the internal control logic and allow
measurements of the effects of single program or erase
steps. A representative study is by Lee et al. at Sam-
sung [24], examining both program/erase cycling and hot
storage effects across a range of process technologies.
Similar studies include those by Park et al. [28] and Yang
et al. [32], both also at Samsung. The most recent work



Device Size Cell Nominal Process
(bits) endurance
NANDI128W3A2BN 128M SLC 10° 90nm
HY27USO8121A 512M SLC 10° 90nm
MT29F2G08AAD 2G SLC 10° 50nm
MT29F4GOSAAC 4G SLC  10° 72nm
NAND0O8GW3B2C 8G SLC 10° 60nm
MT29F8GOSMAAWC  8G MLC 10 72nm
29F16GO8CANCI1 16G SLC 10° 50nm
MT29F32G08QAA 32G MLC 104 50nm

Table 1: Devices tested

in this area includes a workshop report of our results [9]
and an empirical characterization of flash memory car-
ried out by Grupp et at. [12], analyzing performance of
basic operations, power consumption, and reliability.

System-level studies have instead examined charac-
teristics of entire flash-based storage systems, such as
USB drives and SSDs. The most recent of these presents
uFLIP [7], a benchmark for such storage systems, with
measurements of a wide range of devices; this work
quantifies the degraded performance observed for ran-
dom writes in many such devices. Additional work in
this area includes [14],[27], and [1]

Ben-Aroyo and Toledo [5] have presented detailed
theoretical analyses of bounds on wear-leveling perfor-
mance; however for realistic flash devices (i.e. with erase
block size > 1 page) their results show the existence of a
bound but not its value.

3 Experimental Results

3.1 Chip-level Endurance

Chip-level endurance was tested across a range of de-
vices; more detailed results have been published in a pre-
vious workshop paper [9] and are summarized below.
Methodology: Flash chips were acquired both
through distributors and by purchasing and disassem-
bling mass-market devices. A programmable flash con-
troller was constructed using software control of general-
purpose I/O pins on a micro-controller to implement the
flash interface protocol for 8-bit devices. Devices tested
ranged from older 128Mbit (16MB) SLC devices to more
recent 16Gbit and 32Gbit MLC chips; a complete list of
devices tested may be seen in Table 1. Unless otherwise
specified, all tests were performed at 25° C.
Endurance: Limited write endurance is a key charac-
teristic of NAND flash—and all floating gate devices in
general—which is not present in competing memory and
storage technologies. As blocks are repeatedly erased
and programmed the oxide layer isolating the gate de-
grades [23], changing the cell response to a fixed pro-
gramming or erase step as shown in Figure 3. In prac-
tice this degradation is compensated for by adaptive pro-
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Figure 3: Typical V1 degradation with program/erase cy-
cling for sub-90 nm flash cells. Data is abstracted from [24],
[28], and [32].
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Figure 4: Write/Erase endurance by device. Each plotted
point represents the measured lifetime of an individual block on
a device. Nominal endurance is indicated by inverted triangles.

gramming and erase algorithms internal to the device,
which use multiple program/read or erase/read steps to
achieve the desired state. If a cell has degraded too much,
however, the program or erase operation will terminate
in an error; the external system must then consider the
block bad and remove it from use.

Program/erase endurance was tested by repeatedly
programming a single page with all zeroes (vs. the erased
state of all 1 bits), and then erasing the containing block;
this cycle was repeated until a program or erase opera-
tion terminated with an error status. Although nominal
device endurance ranges from 10* to 10° program/erase
cycles, in Figure 4 we see that the number of cycles until
failure was higher in almost every case, often by nearly
a factor of 100.

During endurance tests individual operation times
were measured exclusive of data transfer, to reduce de-
pendence on test setup; a representative trace is seen in
Figure 5. The increased erase times and decreased pro-
gram times appear to directly illustrate V- degradation
shown in Figure 3—as the cell ages it becomes easier to
program and harder to erase, requiring fewer iterations of
the internal write algorithm and more iterations for erase.

Additional Testing: Further investigation was per-
formed to determine whether the surprisingly high en-



Mean Standard Min. and max
Endurance Deviation (vs. mean)

128mb 10.3 (x10°) 0.003 +0.002 /-0.002

512mb 6.59 1.32 +2.09 /-1.82
2Gb 0.806 0.388 +0.660 / -0.324

4Gb 2.39 1.65 +2.89 /-1.02
8Gb SLC 0.827 0.248 +0.465 /-0.359
8Gb MLC* 0.783 0.198 +0.313/-0.252
16Gb 0.614 0.078 +0.136 /-0.089
32Gb 0.793 0.164 +0.1857-0.128

Table 2: Endurance in units of 10° write/erase cycles. The
single outlier for 8§ Gb MLC has been dropped from these statis-
tics.
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Figure 5: Wear-related changes in latency. Program and
erase latency are plotted separately over the lifetime of the same
block in the 8Gb MLC device. Quantization of latency is due
to iterative internal algorithms.

durance of the devices tested is typical, or is instead due
to anomalies in the testing process. In particular, we
varied both program/erase behavior and environmental
conditions to determine their effects. Due to the high
variance of the measured endurance values, we have not
collected enough data to draw strong inferences, and so
report general trends instead of detailed results.

Usage patterns — The results reported above were mea-
sured by repeatedly programming the first page of a
block with all zeroes (the programmed state for SLC
flash) and then immediately erasing the entire block.
Several devices were tested by writing to all pages in a
block before erasing it; endurance appeared to decrease
with this pattern, but by no more than a factor of two.
Additional tests were performed with varying data pat-
terns, but no difference in endurance was detected.

Environmental conditions — The processes resulting in
flash failure are exacerbated by heat [32], although in-
ternal compensation is used to mitigate this effect [22].
The 16Gbit device was tested at 80° C, and no noticeable
difference in endurance was seen.

Conclusions: The high endurance values measured
were unexpected, and no doubt contribute to the mea-
sured performance of USB drives reported below, which
achieve high endurance using very inefficient wear-

Device Size Chip Signature  USB ID
Generic  512Mbit  HY27USO08121A 1976:6025
House  16Gbit 29F16GO8CANCI1  125F:0000
Memorex  4Gbit MF12G2BABA 12F7:1A23

Table 3: Investigated devices

Figure 6: USB Flash drive modified for logic analyzer prob-
ing.

leveling algorithms.  Additional experimentation is
needed to determine whether these results hold across
the most recent generation of devices, and whether flash
algorithms may be tailored to produce access patterns
which maximize endurance, rather than assuming it as a
constant. Finally, the increased erase time and decreased
programming time of aged cells bear implications for op-
timal flash device performance, as well as offering a pre-
dictive failure-detection mechanism.

3.2 FTL Investigation

Having examined performance of NAND flash itself, we
next turn to systems comprising both flash and FTL.
While work in the previous section covers a wide range
of flash technologies, we concentrate here on relatively
small mass-market USB drives due to the difficulties in-
herent in reverse-engineering and destructive testing of
more sophisticated devices.

Methodology: we reverse-engineered FTL opera-
tion in three different USB drives, as listed in Ta-
ble 3: Generic, an unbranded device based on the
Hynix HY27USO08121A 512Mbit chip, House, a Mi-
croCenter branded 2GB device based on the Intel
29F16G08CANCI1, and Memorex, a 512MB Memorex
“Mini TravelDrive” based on an unidentified part.

In Figure 6 we see one of the devices with probe wires
attached to the I/O bus on the flash chip itself. Reverse-
engineering was performed by issuing specific logical
operations from a Linux USB host (by issuing direct
I/0O reads or writes to the corresponding block device)
and using an I0-3200 logic analyzer to capture resulting
transactions over the flash device bus. From this captured
data we were then able to decode the flash-level opera-



Generic House Memorex
Structure 16 zones 4 zones 4 zones
Zone size 256 physical blocks 2048 physical blocks 1024 physical blocks
Free blocks list size 6 physical blocks per zone ~ 30-40 physical blocks per zone 4 physical blocks per zone
Mapping scheme  Block-level Block-level / Hybrid Hybrid
Merge operations  Partial merge Partial merge / Full merge Full merge
Garbage collection frequency At every data update At every data update Variable
Wear-leveling algorithm  Dynamic Dynamic Static

Table 4: Characteristics of reverse-engineered devices

tions (read, write, erase, copy) and physical addresses
corresponding to a particular logical read or write.

We characterize the flash devices based on the fol-
lowing parameters: zone organization (number of zones,
zone size, number of free blocks), mapping schemes,
merge operations, garbage collection frequency, and
wear-leveling algorithms. Investigation of these specific
attributes is motivated by their importance; they are fun-
damental in the design of any FTL [2, 3, 17, 19, 20,
21, 25], determining space requirements, i.e. the size of
the mapping tables to keep in RAM (zone organization,
mapping schemes), overhead/performance (merge oper-
ations, garbage collection frequency), device endurance
(wear-leveling algorithms). The results are summarized
in Table 4, and discussed in the next sections.

Zone organization: The flash devices are divided in
zones, which represent contiguous regions of flash mem-
ory, with disjoint logical-to-physical mappings: a logical
block pertaining to a zone can be mapped only in a phys-
ical block from the same zone. Since the zones function
independently from each other, when one of the zones
becomes unusable, other zones on the same device can
still be accessed. We report actual values of zone sizes
and free list sizes for the investigated devices in Table 4.

Mapping schemes: Block-mapped FTLs require
smaller mapping tables to be stored in RAM, compared
to page-mapped FTLs (Section 2.2). For this reason,
the block-level mapping scheme is more practical and
was identified in both Generic and multi-page updates of
House flash drives. For single-page updates, House uses
the simplified hybrid mapping scheme (which we will
describe next), similar to Ban’s NFTL [3]. The Memo-
rex flash drive uses hybrid mapping: the data blocks are
block-mapped and the log blocks are page-mapped.

Garbage collection: For the Generic drive, garbage
collection is handled immediately after each write, elim-
inating the overhead of managing stale data. For House
and Memorex, the hybrid mapping allows for several se-
quential updates to be placed in the same log block. De-
pending on specific writing patterns, garbage collection
can have a variable frequency. The number of sequential
updates that can be placed in a 64-page log block (before
a new free log block is allocated to hold updated pages of
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v
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Figure 7: Generic device page update. Using block-level
mapping and a partial merge operation during garbage collec-
tion. LPN = Logical Page Number. New data is merged with
block A and an entire new block (B) is written.

the same logical block) ranges from 1 to 55 for Memorex
and 1 to 63 for House.

We illustrate how garbage collection works after being
triggered by a page update operation.

The Generic flash drive implements a simple page up-
date mechanism (Figure 7). When a page is overwritten,
a block is selected from the free block list, and the data
to be written is merged with the original data block and
written to this new block in a partial merge, resulting in
the erasure of the original data block.

The House drive allows multiple updates to occur be-
fore garbage collection, using an approach illustrated in
Figure 8. Flash is divided into two planes, even and odd
(blocks B-even and B-odd in the figure); one log block
can represent updates to a single block in the data area.
When a single page is written, meta-data is written to the
first page in the log block and the new data is written to
the second page; a total of 63 pages may be written to
the same block before the log must be merged. If a page
is written to another block in the plane, however, the log
must be merged immediately (via a full merge) and a new
log started.

We observe that the House flash drive implements an
optimized mechanism for multi-page updates, requiring
2 erasures rather than 4. This is done by eliminating the
intermediary storage step in log blocks B-even and B-
odd, and writing the updated pages directly to blocks C-
even and C-odd.
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Figure 8: House device single-page update. Using hybrid
mapping and a full merge operation during garbage collection.
LPN = Logical Page Number. LPN 4 is written to block B,
“shadowing” the old value in block A. On garbage collection,
LPN 4 from block B is merged with LPNs 0 and 2 from block
A and written to a new block.

The Memorex flash drive employs a complex garbage
collection mechanism, which is illustrated in Figure 9.
When one or more pages are updated in a block (B), a
merge is triggered if there is no active log block for block
B or the active log block is full, with the following oper-
ations being performed:

e The new data pages together with some settings infor-
mation are written in a free log block (Log_B).

e A full merge operation occurs, between two blocks
(data block A and log block Log_A) that were ac-
cessed 4 steps back. The result is written in a free
block (Merged_A). Note that the merge operation may
be deferred until the log block is full.

e After merging, the two blocks (A and Log A) are
erased and added to the list of free blocks.

Wear-leveling aspects: From the reverse-engineered
devices, static wear-leveling was detected only in the
case of the Memorex flash drive, while both Generic and
House devices use dynamic wear-leveling. As observed
during the experiments, the Memorex flash drive is peri-
odically (after every 138th garbage collection operation)
moving data from one physical block containing rarely
updated data, into a physical block from the list of free
blocks. The block into which the static data has been
moved is taken out of the free list and replaced by the
rarely used block.

Conclusions: The three devices examined were found
to have flash translation layers ranging from simple
(Generic) to somewhat complex (Memorex). Our in-
vestigation provided detailed parameters of each FTL,
including zone organization, free list size, mapping
scheme, and static vs. dynamic wear-leveling methods.

LPN=0, valid
LPN=1, valid
LPN=2, invalid

Settings, valid
LPN=2, valid
LPN=@, free

Figure 9: Memorex device page update. Using hybrid map-
ping and a full merge operation during garbage collection. LPN
= Logical Page Number. LPN 2 is written to the log block of
block B and the original LPN 2 marked invalid. If this requires
a new log block, an old log block (Log_A) must be freed by
doing a merge with its corresponding data block.

In combination with the chip-level endurance measure-
ments presented above, we will demonstrate in Section
3.4 below the use of these parameters to predict overall
device endurance.

3.3 Timing Analysis

Additional information on the internal operation of
a flash drive may be obtained by timing analysis—
measuring the latency of each of a series of requests
and detecting patterns in the results. This is possible be-
cause of the disparity in flash operation times, typically
20us, 200-300us, and 2-4ms for read, write and erase
respectively [9]. Selected patterns of writes can trigger
differing sequences of flash operations, incurring differ-
ent delays observable as changes in write latency. These
changes offer clues which can help infer the following
characteristics: (a) wear-leveling mechanism (static or
dynamic) and parameters, (b) garbage collection mecha-
nism, and (c) device end-of-life status.

Approach: Timing analysis uses sequences of writes
to addresses { A1, Aa, . .. A, } which are repeated to pro-
voke periodic behavior on the part of the device. The
most straightforward sequence is to repeatedly write the
same block; these writes completed in constant time for
the Generic device, while results for the House device are
seen in Figure 10. These results correspond to the FTL
algorithms observed in Section 3.2 above; the Generic
device performs the same block copy and erase for every
write, while the House device is able to write to Block B
(see Figure 8) 63 times before performing a merge oper-
ation and corresponding erase.

More complex flash translation layers require more
complex sequences to characterize them. The hybrid
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Figure 10: House device write timing. Write address is con-
stant; peaks every 63 operations correspond to the merge oper-
ation (including erasure) described in Section 3.2.
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Figure 11: Memorex device garbage collection patterns.
Access pattern used is { A1 Xxn, Az xn, ...} forn = 55, 60, 64
writes/block.

FTL used by the Memorex device maintains 4 log blocks,
and thus pauses infrequently with a sequence rotating
between 4 different blocks; however, it slows down for
every write when the input stream rotates between ad-
dresses in 5 distinct blocks. In Figure 11 we see two
patterns: a garbage collection after 55 writes to the same
block, and then another after switching to a new block.

Organization: In theory it should be possible to deter-
mine the zones on a device, as well as the size of the free
list in each zone, via timing analysis. Observing zones
should be straightforward, although it has not yet been
implemented; since each zone operates independently, a
series of writes to addresses in two zones should behave
like repeated writes to the same address. Determining
the size of the free list, m, may be more difficult; varia-
tions in erase time between blocks may produce patterns
which repeat with a period of m, but these variations may
be too small for reliable measurement.

Wear-leveling mechanism: Static wear-leveling is in-
dicated by combined occurrence of two types of peaks:
smaller, periodic peaks of regular write/erase operations,
and higher, periodic, but less frequent peaks that suggest
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Figure 12: Memorex device static wear-leveling. Lower val-
ues represent normal writes and erasures, while peaks include
time to swap a static block with one from the free list. Peaks
have a regular frequency of one at every 138 write/erasure.
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Figure 13: House device end-of-life signature. Latency of
the final 5 x 10* writes before failure.

additional internal management operations. In particu-
lar, the high peaks are likely to represent moving static
data into highly used physical blocks in order to uni-
formly distribute the wear. The correlation between the
high peaks and static wear-leveling was confirmed via
logic analyzer, as discussed in Section 3.2 and supported
by extremely high values of measured device-level en-
durance, as reported in Section 3.3.

For the Memorex flash drive, Figure 12 shows latency
for a series of sequential write operations in the case
where garbage collection is triggered at every write. The
majority of writes take approximately 45 ms, but high
peaks of 70 ms also appear every 138th write/erase op-
eration, indicating that other internal management oper-
ations are executed in addition to merging, data write
and garbage collection. The occurrence of high peaks
suggests that the device employs static wear-leveling by
copying static data into frequently used physical blocks.

Additional tests were performed with a fourth device,
House-2, branded the same as the House device but in
fact a substantially newer design. Timing patterns for
repeated access indicate the use of static wear-leveling,
unlike the original House device. We observed peaks of
15 ms representing write operations with garbage col-
lection, and higher regular peaks of 20 ms appearing at
approximately every 8,000 writes. The 5 ms time differ-



Device Parameters

Predicted endurance

Measured endurance

Generic m =6, h =107 mh | 6 x 107 7.7 x 107,10.3 x 107
House m =30,k =64, h =106 between mh and mkh | between 3 x 107 and 1.9 x 10°  10.6 x 107
Memorex z = 1024, k = 64, h = 108(est.) zkh | 6 x 1010 N/A

Table 5: Predicted and measured endurance limits.

ence from common writes to the highest peaks is likely
due to data copy operations implementing static wear-
leveling.

End-of-life signature: Write latency was measured
during endurance tests, and a distinctive signature was
seen in the operations leading up to device failure. This
may be seen in Figure 13, showing latency of the final
5 x 10* operations before failure of the House device.
First the 80ms peaks stop, possibly indicating the end of
some garbage collection operations due to a lack of free
pages. At 25000 operations before the end, all operations
slow to 40ms, possibly indicating an erasure for every
write operation; finally the device fails and returns an
error.

Conclusions: By analyzing write latency for vary-
ing patterns of operations we have been able to deter-
mine properties of the underlying flash translation algo-
rithm, which have been verified by reverse engineering.
Those properties include wear-leveling mechanism and
frequency, as well as number and organization of log
blocks. Additional details which should be possible to
observe via this mechanism include zone boundaries and
possibly free list size.

3.4 Device-level Endurance

By device-level endurance we denote the number of suc-
cessful writes at logical level before a write failure oc-
curs. Endurance was tested by repeated writes to a con-
stant address (and to 5 constant addresses in the case of
Memorex) until failure was observed. Testing was per-
formed on Linux 2.6.x using direct (unbuffered) writes
to the block devices.
Several failure behaviors were observed:

o silent: The write operation succeeds, but read verifies
that data was not written.

e unknown error: On multiple occasions, the test ap-
plication exited without any indication of error. In
many casses, further writes were possible.

e error: An I/O error is returned by the OS. This was
observed for the House flash drive; further write op-
erations to any page in a zone that had been worn out
failed, returning error.

o blocking: The write operation hangs indefinitely. This
was encountered for both Generic and House flash
drives, especially when testing was resumed after fail-
ure.

Endurance limits with dynamic wear-leveling: We
measured an endurance of approximately 106 x 106
writes for House; in two different experiments, Generic
sustained up to 103 x 10° writes and 77 x 10 writes, re-
spectively. As discussed in Section 3.2, the House flash
drive performs 4 block erasures for 1-page updates, while
the Generic flash drive performs only one block erasure.
However, the list of free blocks is about 5 times larger
for House (see Table 3), which may explain the higher
device-level endurance of the House flash drive.

Endurance limits with static wear-leveling: Wear-
ing out a device that employs static wear-leveling (e.g.
the Memorex and House-2 flash drives) takes consider-
ably longer time than wearing out one that employs dy-
namic wear-leveling (e.g. the Generic and House flash
drives). In the experiments conducted, the Memorex and
House-2 flash drives had not worn out before the paper
was submitted, reaching more than 37 x 106 writes and
26 x 10® writes, respectively.

Conclusions: The primary insight from these mea-
surements is that wear-leveling techniques lead to a
significant increase in the endurance of the whole de-
vice, compared to the endurance of the memory chip it-
self, with static wear-leveling providing much higher en-
durance than dynamic wear-leveling.

Table 5 presents a synthesis of predicted and measured
endurace limits for the devices studied. We use the fol-
lowing notation:

N = total number of erase blocks,

k = total number of pages in the erase block,

h = maximum number of program/erase cycles
of a block (i.e. the chip-level endurance),

z = number of erase blocks in a zone, and

m = number of free blocks in a zone.

Ideally, the device-level endurance is Nkh. In prac-
tice, based on the FTL implementation details presented
in Section 3.2 we expect device-level endurance limits
of mh for Generic, between mh and mkh for House,
and zkh for Memorex. In the following computations,
we use the program/erase endurance values, i.e. h, from
Figure 4, and m and z values reported in Table 4. For
Generic, mh = 6 x 107, which approaches the actual
measured values of 7.7 x 107 and 10.3 x 10”. For House,
mh = 3 x 107 and mkh = 30 x 64 x 105 = 1.9 x 10,
with the measured device-level endurance of 10.6 x 107
falling between these two limits. For Memorex, we do
not have chip-level endurance measurements, but we will
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use h = 10° in our computations, since it is the pre-
dominant value for the tested devices. We estimate the
best-case limit of device-level endurance to be zkh =
1024 x 64 x 105 ~ 6 x 10'9 for Memorex, which is
about three orders of magnitude higher than for Generic
and House devices, demonstrating the major impact of
static wear-leveling.

3.5 Implications for Storage Systems

Space management: Space management policies for
flash devices are substantially different from those used
for disks, mainly due to the following reasons. Com-
pared to electromechanical devices, solid-state electronic
devices have no moving parts, and thus no mechanical
delays. With no seek latency, they feature fast random
access times and no read overhead. However, they ex-
hibit asymmetric write vs. read performance. Write op-
erations are much slower than reads, since flash mem-
ory blocks need to be erased before they can be rewrit-
ten. Write latency depends on the availability (or lack
thereof) of free, programmable blocks. Garbage collec-
tion is carried out to reclaim previously written blocks
which are no longer in use.

Disks address the seek overhead problem with
scheduling algorithms. One well-known method is the
elevator algorithm (also called SCAN), in which requests
are sorted by track number and serviced only in the cur-
rent direction of the disk arm. When the arm reaches the
edge of the disk, its direction reverses and the remaining
requests are serviced in the opposite order.

Since the latency of flash vs. disks has entirely differ-
ent causes, flash devices require a different method than
disks to address the latency problem. Request schedul-
ing algorithms for flash have not yet been implemented
in practice, leaving space for much improvement in this

track 35.

area. Scheduling algorithms for flash need to minimize
garbage collection, and thus their design must be depen-
dent upon FTL implementation. FTLs are built to take
advantage of temporal locality; thus a significant per-
formance increase can be obtained by reordering data
streams to maximize this advantage. FTLs map succes-
sive updates to pages from the same data block together
in the same log block. When writes to the same block are
issued far apart from each other in time, however, new
log blocks must be allocated. Therefore, most benefit is
gained with a scheduling policy in which the same data
blocks are accessed successively. In addition, unlike for
disks, for flash devices there is no reason to reschedule
reads.

To illustrate the importance of scheduling for perfor-
mance as well as the conceptually different aspects of
disk vs. flash scheduling, we look at the following sim-
ple example (Figure 14).

Disk scheduling. Let us assume that the following re-
quests arrive: R 70, R 10, R 50, W 70, W 10, W 50, R
70, R 10, R 50, W 70, W 10, W 50, where R = read,
W = write, and the numbers represent tracks. Initially,
the head is positioned on track 35. We ignore the rota-
tional delay of searching for a sector on a track. Without
scheduling, the overhead (seek time) is 495. If the ele-
vator algorithm is used, the requests are processed in the
direction of the arm movement, which results in the fol-
lowing ordering: R 50, W 50, R 50, W 50, R 70, W 70, R
70, W 70, (arm movement changes direction), R 10, W
10, R 10, W 10. Also, the requests to the same track are
grouped together, to minimize seek time; however, data
integrity has to be preserved (reads/writes to the same
disk track must be processed in the requested order, since
they might access the same address). This gives an over-
head of 95, which is 5x smaller with scheduling vs. no
scheduling.



Flash scheduling. Let us assume that the same se-
quence of requests arrives: R 70, R 10, R 50, W 70, W
10, W 50, R 70, R 10, R 50, W 70, W 10, W 50, where
R = read, W = write, and the numbers represent erase
blocks. Also assume that blocks are of size 3 pages, and
there are 3 free blocks, with one block empty at all times.
Without scheduling, 4 erasures are needed to accommo-
date the last 4 writes. An optimal scheduling gives the
following ordering of the requests: R 70, R 10, R 50,
W 70, R 70, W 70, W 10, R 10, W 10, W 50, R 50, W
50. We observe that there is no need to reschedule reads;
however, data integrity has to be preserved (reads/writes
to the same block must be processed in the requested or-
der, since they might access the same address). After
scheduling, the first two writes are mapped together to
the same free block, next two are also mapped together,
and so on. A single block erasure is necessary to free one
block and accommodate the last two writes. The garbage
collection overhead is 4x smaller with scheduling vs. no
scheduling.

Applicability: Although we have explored only a few
devices, some of the methods presented here (e.g. tim-
ing analysis) can be used to characterize other flash de-
vices as well. FTLs range in complexity across devices;
however, at low-end there are many similarities. Our re-
sults are likely to apply to a large class of devices that
use flash translation layers, including most removable
devices (SD, CompactFlash, etc.), and low-end SSDs.
For high-end devices, such as enterprise (e.g. the Intel
X25-E [16] or BiTMICRO Altima [6] series) or high-
end consumer (e.g. Intel X25-M [15]), we may expect to
find more complex algorithms operating with more free
space and buffering.

As an example, JMicron’s JMF602 flash con-
troller [18] has been used for many low-end SSDs with
8-16 flash chips; it contains 16K of onboard RAM, and
uses flash configurations with about 7% free space. Hav-
ing little free space or RAM for mapping tables, its
flash translation layer is expected to be similar in design
and performance to the hybrid FTL that we investigated
above.

At present, several flash devices including low-end
SSDs have a built-in controller that performs wear-
leveling and error correction. A disk file system in con-
junction with a FTL that emulates a block device is pre-
ferred for compatibility, and also because current flash
file systems still have implementation drawbacks (e.g.
JFFS2 has large memory consumption and implements
only write-through caching instead of write-back) [26].

Flash file systems could become more prevalent as the
capacity of flash memories increases. Operating directly
over raw flash chips, flash file systems present some ad-
vantages. They deal with long erase times in the back-
ground, while the device is idle, and use file pointers

(which are remapped when updated data is allocated to
a free block), thus eliminating the second level of indi-
rection needed by FTLs to maintain the mappings. They
also have to manage only one free space pool instead of
two, as required by FTL with disk file systems. In addi-
tion, unlike conventional file systems, flash file systems
do not need to handle seek latencies and file fragmenta-
tion; rather, a new and more suited scheduling algorithm
as described before can be implemented to increase per-
formance.

4 Analysis and Simulation

In the previous section we have examined the perfor-
mance of several real wear leveling algorithms under
close to worst-case conditions. To place these results
in perspective, we wish to determine the maximum the-
oretical performance which any such on-line algorithm
may achieve. Using terminology defined above, we as-
sume a device (or zone within a device) consisting of N
erase blocks, each block containing & separately writable
pages, with a limit of A program/erase cycles for each
erase block, and m free erase blocks. (i.e. the physical
size of the device is IV erase blocks, while the logical
size is N — m blocks.)

Previous work by Ben-Aroya and Toledo [5] has
proved that in the typical case where k£ > 1, and with rea-
sonable bounds on m, upper bounds exist on the perfor-
mance of wear-leveling algorithms. Their results, how-
ever, offer little guidance for calculating these bounds.
We approach the problem from the bottom up, using
Monte Carlo simulation to examine achievable perfor-
mance in the case of uniform random writes to physi-
cal pages. We choose a uniform distribution because it
is both achievable (by means such as Ban’s randomized
wear leveling method [4]) and in the worst case unavoid-
able by any on-line algorithm, when faced with uniform
random writes across the logical address space. We claim
therefore that our numeric results represent a tight bound
on the performance of any on-line wear-leveling algo-
rithm in the face of arbitrary input.

We look for answers to the following questions:

e How efficiently can we perform static wear leveling?
We examine the case where & = 1, thus ignoring erase
block fragmentation, and ask whether there are on-line
algorithms which achieve near-ideal endurance in the
face of arbitrary input.

e How efficiently can we perform garbage collection?
For typical values of k, what are the conditions needed
for an on-line algorithm to achieve good performance
with arbitrary access patterns?

In doing this we use endurance degradation of an al-
gorithm, or relative decrease in performance, as a figure
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Figure 16: Wear-leveling performance. Endurance degrada-
tion (by simulation) for different numbers of erase blocks (/V),
block lifetime (h), and number of free blocks (m).

of merit. We ignore our results on block-level lifetime,
and consider a device failed once m blocks have been
erased h times—at this point we assume the m blocks
have failed, thus leaving no free blocks for further writes.
In the perfect case, all blocks are erased the same num-
ber of times, and the drive endurance is Nkh + m.S (or
approximately Nkh) page writes—i.e. the total amount
of data written is approximately h times the size of the
device. In the worst case we have seen in practice, m
blocks are repeatedly used, with a block erase and re-
program for each page written; the endurance in this case
is mh. The endurance degradation for an algorithm is the
ratio of ideal endurance to achieved endurance, or %’“ for
this simple algorithm.

4.1 Static Wear Leveling

As described in Section 2.2, static wear leveling refers to
the movement of data in order to distribute wear evenly

across the physical device, even in the face of highly non-
uniform writes to the logical device. For ease of analysis
we make two simplifications:

e FErase unit and program unit are of the same size, i.e.
k = 1. We examine k > 1 below, when looking at
garbage collection efficiency.

e Writes are uniformly distributed across physical
pages, as described above.

Letting X1, Xo,... Xy be the number of times that
pages 1... N have been erased, we observe that at any
point each X; is a random variable with mean w/N ,
where w is the total number of writes so far. If the vari-
ance of each X is high and m < N, then it is likely that
m of them will reach h well before w = N h, where the
expected value of each X; reaches h. This may be seen
in Figure 15, where in a trivial case (N = 20, m = 4,
h = 10) the free list has been exhausted after a total of
only Nh/2 writes.

In Figure 16 we see simulation results for a more real-
istic set of parameters. We note the following points:

e For h < 100 random variations are significant, giving
an endurance degradation of as much as 2 depending
on i and m.

e For h > 1000, uniform random distribution of writes
results in near-ideal wear leveling.

e N causes a modest degradation in endurance, for rea-
sonable values of V; larger values degrade endurance
as they increase the odds that some m blocks will ex-
ceed the erase threshold.

o Larger values of m result in lower endurance degrada-
tion, as more blocks must fail to cause device failure.

For reasonable values of h, e.g. 10% or 105, these re-
sults indicate that randomized wear leveling is able to
provide near-optimal performance with very high prob-
ability. However the implementation of randomization
imposes its own overhead; in the worst case doubling the
number of writes to perform a random swap in addition
to every logical write. In practice a random block is typ-
ically selected every d writes and swapped for a block
from the free list, reducing the overhead to 1/d.

Although this reduces overhead, it also reduces the de-
gree of randomization introduced. In the worst case—
repeated writes to the same logical block—a page will
remain on the free list until it has been erased d times
before being swapped out. A page can thus only land
in the free list i /d times before wearing out, giving per-
formance equivalent to the case where the lifetime A’ is
h/d. As an example, consider the case where d = 200
and h = 10%; this will result in performance equivalent
to h = 50 in our analysis, possibly reducing worst-case
endurance by a factor of 2.
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4.2 Garbage Collection

The results above assume an erase block size (k) of 1
page; in practice this value is substantially larger, in the
devices tested above ranging from 32 to 128 pages. As
a result, in the worst case m free pages may be scattered
across as many erase blocks, and thus k pages must be
erased (and k — 1 copied) in order to free a single page;
however depending on the number of free blocks, the ex-
pected performance may be higher.

Again, we assume writes are uniformly and randomly
distributed across Nk pages in a device. We assume that
the erase block with the highest number of stale pages
may be selected and reclaimed; thus in this case random
variations will help garbage collection performance, by
reducing the number of good pages in this block.

Garbage collection performance is strongly impacted
by the utilization factor, or ratio of logical size to phys-
ical size. The more free blocks available, the higher the
mean and maximum number of free pages per block and
the higher the garbage collection efficiency. In Figure 17
we see the degradation in relative endurance for several
different combinations of device size N (in erase blocks)
and erase block size k, plotted against the fraction of free
space in the device. We see that the worst-case impact of
garbage collection on endurance is far higher than that
of wear-leveling inefficiencies, with relative decreases in
endurance ranging from 3 to 5 at a typical utilization (for
low-end devices) of 93%.

Given non-uniform access patterns, such as typical file
system access, it is possible that different wear-leveling
strategies may result in better performance than the ran-
domized strategy analyzed above. However, we claim
that no on-line strategy can do better than randomized
wear-leveling in the face of uniformly random access

patterns, and that these results thus provide a bound on
worst-case performance of any on-line strategy.

For an ideal on-line wear-leveling algorithm, perfor-
mance is dominated by garbage collection, due to the
additional writes and erases incurred by compacting
partially-filled blocks in order to free up space for new
writes. Garbage collection performance, in turn, is en-
hanced by additional free space and degraded by large
erase block sizes. For example, with 20% free space and
small erase blocks (32 pages) it is possible to achieve an
endurance degradation of less than 1.5, while with 7%
free space and 128-page blocks endurance may be de-
graded by a factor of 5.!

5 Conclusions

As NAND flash becomes widely used in storage systems,
behavior of flash and flash-specific algorithms becomes
ever more important to the storage community. Write
endurance is one important aspect of this behavior, and
one on which perhaps the least information is available.
We have investigated write endurance on a small scale—
on USB drives and on flash chips themselves—due to
their accessibility; however the values we have measured
and approaches we have developed are applicable across
devices of all sizes.

Chip-level measurements of flash endurance presented
in this work show endurance values far in excess of
those quoted by manufacturers; if these are representa-
tive of most devices, the primary focus of flash-related
algorithms may be able to change from wear level-
ing to performance optimization. We have shown how
reverse-engineered details of flash translation algorithms
from actual devices in combination with chip-level mea-
surements may be used to predict device endurance,
with close correspondence between those predictions and
measured results. In addition, we have presented non-
intrusive timing-based methods for determining many of
these parameters. Finally, we have provided numeric
bounds on achievable wear-leveling performance given
typical device parameters.

Our results explain how simple devices such as flash
drives are able to achieve high endurance, in some cases
remaining functional after several months of continual
testing. In addition, analytic and simulation results high-
light the importance of free space in flash performance,
providing strong support for mechanisms like the TRIM
command which allow free space sharing between file
systems and flash translation layers. Future work in

IThis is a strong argument for the new SATA TRIM operator [30],
which allows the operating system to inform a storage device of free
blocks; these blocks may then be considered free space by the flash
translation layer, which would otherwise preserve their contents, never
to be used.



this area includes examination of higher-end devices, i.e.
SSDs, as well as pursuing the implications for flash trans-
lation algorithms of our analytical and simulation re-
sults.
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