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Abstract

In this work, we address information retrieval evaluation and the methods and
metrics used for such evaluations. We consider the relative lack of understanding
in this area to be the crucial problem in advancing information retrieval. To that
end, we introduce several frameworks for meta-evaluation and describe how their
unification with evaluation measures can lead to improvements in assessing the
quality of information retrieval systems.

For example, many queries, especially in the context of the web, have multiple
interpretations; they are ambiguous or underspecified. To account for this, much re-
cent research has focused on creating systems that produce diverse ranked lists that
cover as many interpretations in as few documents as possible. Ideally, measures
that evaluate these systems would distinguish between them by how many inter-
pretations they cover and how quickly. Unfortunately, diversity is also a function
of the collection over which the system is run and a system’s ability to retrieve doc-
uments relevant to any interpretation. To ensure that we are assessing systems by
their diversity, we develop (1) a family of evaluation measures that take into ac-
count the diversity of the collection and (2) a meta-evaluation measure that explic-
itly controls for a system’s ability to retrieve relevant documents. We demonstrate
experimentally that our new measures can achieve substantial improvements in
sensitivity to diversity without reducing discriminative power.

Furthermore, we propose a probabilistic framework whose utility encompasses
both evaluation and meta-evaluation. This allows us to develop new information-
theoretic evaluation and meta-evaluation metrics that will, hopefully, be more easy
to unify in a fashion similar to our family of diversity measures. We demon-
strate that these new metrics are powerful and generalizable, enabling evaluations
heretofore not possible.
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Chapter 1

Introduction

Today we live in a world of effectively infinite information. Each of us carries a
device in our pocket that allow us access to the sum total of human knowledge. It
has become increasingly less important to know facts, and increasingly more crucial
to be able to find them. The gatekeeper to this vast trove of data is the search engine.

Search engines are a modern manifestation of the field known in Computer Sci-
ence as Information Retrieval (IR). IR is “a field concerned with the structure, anal-
ysis, organization, storage, searching, and retrieval of information [65].” As early
as the 1950s, IR researchers have been exploring means of locating specific docu-
ments in haystacks of text, often as large as whole encyclopedias [35]. While the
scale of information retrieval has changed drastically, the underlying tasks them-
selves, though certainly more complicated to perform in today’s world, are essen-
tially unchanged.

Any IR system must solve the following problems:

1. Document collecting—The first step in building an IR system is choosing the
set of documents that your system can be used to search. The modern search
engine is built to search the web, and finds its documents by performing a
web “crawl.” Crawling the web is the practice of utilizing the hyperlinked
structure of web pages to discover large portions of the web based on smaller
sets of seed pages.

2. Information processing—Every time you locate a new document in your crawl,
you must process this information in some fashion. In the context of the web,
this involves parsing HTML for text, images and other multimedia content,
and meta-data. This data, when properly represented, will be used to deter-
mine whether the page contains the content the user is searching for.
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3. Indexing—The previous steps generate unimaginably vast amounts of data,
which must be compressed and stored. Since the web is ever changing, these
steps must be efficient enough that they can be run frequently. Furthermore,
modern users of the web are often unwilling to wait to load pages with any
noticeable delay. Therefore, this index must provide representations of mil-
lions of web pages to the search engine in milliseconds.

4. Query Processing—Initially, for research purposes, IR systems were given
detailed narratives describing the specific information the user was search-
ing for. Modern search engines are given two or three keywords. Therefore it
is necessary to expand queries with additional terms to aid in search. Search
engines are also often able to make use of additional information such as lo-
cation, search history, etc. which can be considered alongside the actual query
submitted by the user.

5. Document Ranking—At its heart, an IR system is a function that takes rep-
resentations of documents and representations of “information needs” and
returns a number that represents how likely the document is to satisfy that
need. This number is then used to present a ranked list of documents to the
user. These functions can either be formal, empirically and theoretically de-
rived “retrieval models,” or can be learned using so-called “learning to rank”
algorithms. Additionally, search engines now provide not just ranked lists of
web pages, but entire “search engine results pages” containing, for example,
images, news, maps, suggested queries, etc., as well as advertising.

6. Result Evaluation—In order to improve the performance of an IR system, it
is necessary to have some means of assessing the quality of the system as it
currently exists. Otherwise, while you can certainly alter the system to your
heart’s content, there is no way for you to know whether your changes were
beneficial. The core of this evaluation is some means of utilizing humans to
find some sample of the true set of “relevant” information. Historically, this
has been provided by hiring trained assessors or performing user studies.
The modern search engine has enough people interacting with it that they
are also able to make use of observed user behavior, such as observing which
documents are clicked on, whether users reformulate their queries and con-
tinue searching, etc.

Our work is focused on the result evaluation phase of this process. Currently,
we consider this to be the bottleneck in improving the modern search engine. To a
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physicist, defining temperature as that which can be measured by a thermometer is
a reasonable and often useful approximation. Under no circumstances would one
consider a search engine to be that which can be measured by an evaluation met-
ric such as nDCG [45]. Since the introduction of the World Wide Web, there have
been perhaps a half-dozen new evaluation measures specifically aimed at ad hoc
retrieval (see Section 2.1). Ad hoc retrieval has become a niche problem that rela-
tively few researchers are still trying to solve, and yet we are still not confident in
our ability to recognize high quality ad hoc systems when we see them. The recent
past has seen an explosion of new retrieval tasks such as Web search, Diversifica-
tion, Topic Distillation, Knowledge Acquisition, Temporal Summarization, Legal
search, Enterprise search, Microblog search, and on and on. The vast majority of IR
research-hours are spent trying to improve systems that solve these problems. It is
our contention that without an accurate thermometer, those researchers may have
already found adequate solutions, or may even be making their systems worse,
and would never know.

To demonstrate the ways in which our thermometers may be leading us in
the wrong direction, consider the Diversity task which TREC ran from 2009 to
2012 [28–31], in which systems try to provide ranked lists that are both diverse—
in that they cover as many search intents as possible—and novel—in that each new
document should provide previously unseen information [33]. Evaluating these
systems requires effectiveness measures that appropriately reward diversity in the
result list. Many such measures have been proposed [1, 24, 27, 32, 33, 62–64, 93],
all highly correlated and all assumed to measure system’s success at diversifica-
tion. Therefore, researchers strive to build systems that perform well according
to these measures, believing that this will lead to systems that satisfy users who
search for ambiguous and underspecified queries. The primary meta-evaluation
used to demonstrate the effectiveness of these measures is discriminative power [60],
which assesses how sensitive measures are to changes in ranked lists. Discrimina-
tive power is a valuable tool, yet it was originally designed for ad hoc performance
measures. While these measures are highly sensitive as measured by discrimina-
tive power, discriminative power alone does not tell us if the sensitivity is due to
diversity. However, according to Santos et al. and as we argue in Sections 3.1 and
5.2, these measures are largely dominated by ad hoc performance.

The goal of this work is to: 1) prove that by using targeted meta-evaluations,
one can define the true nature of the problem that is being attacked, 2) prove that
evaluation can be unified with meta-evaluation to better identify high-quality sys-
tems, and 3) provide a new, powerful, highly interpretable information-theoretic
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toolkit that can be used for evaluation and meta-evaluation within a single unified
framework. Our framework for evaluation is based on the observation that rele-
vance judgments can be interpreted as a preference between those documents with
different relevance grades. This implies that relevance judgments can be treated as
a retrieval system, and that evaluation can be considered as the “rank” correlation
between systems and relevance judgments. To this end, we develop a probabilis-
tic framework for rank correlation based on the expectation of random variables,
which we demonstrate can also be used to compute existing evaluation metrics.
However, the true value of our framework lies in its extension to new information-
theoretic evaluation tools.

Outline

In Chapter 2, we give a brief history of how academia has, without the access to
user behavior enjoyed by major search engines, evaluated information retrieval
systems through the use of test collections. In Section 2.1, we describe the ad hoc
testing regime that was in place at the dawn of the Internet era, and how the eval-
uation measures used were adapted to the presence of the web. In Section 2.2, we
describe the diversity task, which grew out of the ad hoc task, and was specifically
designed to allow researchers to address problems inherent to searching the web.
We focus on how these diversity systems are evaluated. In Section 2.3 we describe
a few of the questions that were posed by those researching test collection con-
struction and how those answers relate to our work. In Section 2.3.1 we describe
the problems of stability and reusability caused by the size of document collections
and cost of obtaining quality relevance assessments. In Section 2.3.2, we describe
the means by which IR researchers compare ranked lists, both of documents and
of systems. Finally, in Section 2.3.3, we describe the meta-evaluation measures that
have been used to evaluate evaluation measures themselves.

In Chapter 3, we demonstrate several new meta-evaluation measures for the
diversity task described in Section 2.2. In Section 3.1, we show that the current
methodology is dominated by ad hoc performance and introduce document selec-
tion sensitivity, a new measure of the sensitivity of an evaluation measure to di-
versity that controls for this. Another factor that influences diversity evaluation is
the amount of intrinsic diversity in the collection (Section 3.2). In Section 3.2.1, we
briefly describe the related problem of Query Difficulty Prediction [17] before de-
scribing our notion of diversity difficulty, which quantifies the amount of diversity
present in a collection at the topic level. In Section 3.2.2, we introduce an analo-
gous notion, subtopic miss rate, that quantifies a collection’s intrinsic diversity at the
subtopic level. The chapter concludes with a brief summary of results (Section 3.3).
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In Chapter 4, we show how to incorporate these meta-evaluation measures into
the existing framework of diversity evaluation. We introduce a new family of mea-
sures in Section 4.1 that have as much discriminative power as existing measures
(Section 4.2). We show that, by amplifying the impact of difficult queries that on
which only high quality systems should have good performance, our measures pre-
fer different systems than do existing measures (Section 4.3). However, this does
not indicate that our measures prefer more diverse systems, as we do now know
why it prefers the systems that it does. Therefore, in Section 4.4, we use our new
meta-evaluation measure to show that our family of measures is more sensitive to
document selection and ordering than existing measures. We conclude with a brief
summary in Section 4.5.

In Chapter 5, we introduce our probabilist framework for evaluation and ap-
plications. In Section 5.1, we motivate and define our framework (Section 5.1.1). In
Section 5.1.2, we show how it can be used to compute traditional ad hoc evaluation
measures and in Section 5.1.3 we demonstrate that our probabilistic framework
can be interpreted information theoretically. This leads to our first application in
Section 5.2, information τ , a measure of conditional rank correlation and a useful meta-
evaluation tool for demonstrating that a correlation between rankings is not causal.
In Section 5.3, we demonstrate how our framework can be manipulated to pro-
duce an evaluation measure, which we call Relevance Information Correlation (Sec-
tion 5.3.1). In Section 5.3.2, we show that these evaluation measures are consistent
with existing measures currently in use. However, we show that the information-
theoretic nature of our evaluation framework allows for novel uses (Section 5.4),
such as considering multiple ranked lists simultaneously, effectively computing an
upper bound on metasearch. Section 5.5 contains a brief summary.

In Chapter 6, we focus on one particular application of our framework, infor-
mation difference, which can be used to measure the similarity between IR systems
based on their behavior rather than their performance (Section 6.1). In Section 6.2,
we use this technology to measure the relative impact of choice of retrieval models
versus retrieval model parameter tuning. We describe the models we will com-
pare in Section 6.2.1. In Section 6.2.2, we present our experimental results. We also
demonstrate that information difference can be used to select candidate systems to
be used in metasearch (Section 6.3), significantly outperforming selecting systems
at random. In Section 6.3.1, we describe our methodology for selecting systems
in term of Facilities Location Analysis [42] and present our experimental results in
Section 6.3.2. We briefly summarize our results in Section 6.4.

We present concluding remarks and suggestions for future work in Chapter 7.
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We present additional figures in Appendix A.
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Chapter 2

A (Brief) History of Evaluation and
Meta-Evaluation

In this chapter we provide a brief history of evaluation and meta-evaluation. In
Section 2.1, we describe the TREC ad hoc test collection paradigm, a foundational
evaluation paradigm that was in place at the dawn of the Internet era and contin-
ues to shape our understanding of search engine evaluation in subtle ways. We
describe our framework for understanding this evaluation paradigm in Chapters 5
and 6. In Section 2.2, we describe the diversity task, a refinement of this evalua-
tion paradigm specifically designed to improve the experience of users of modern,
commercial search engines. We demonstrate improvements to diversity evaluation
created by leveraging meta-evaluation measures in Chapters 3 and 4. In Section 2.3,
we describe a few of the meta-evaluation challenges that researches face, especially
as they relate to our work.

2.1 TREC and the Ad Hoc Test Collection

In order to evaluate a search system, it is necessary to define a search task that the
system will be asked to perform and to provide a test collection: a corpus of docu-
ments and a set of searches to perform, as well as a set of relevance assessments—for
each search, a subset of those documents which are considered “relevant” by some
definition defined by that task. For over 20 years, one of the main sources of these
tasks and collections used in academia has been the annual, NIST-sponsored Text
REtrieval Conference (TREC). One of the early tasks used by TREC is the ad hoc
retrieval task. In this task, trained assessors are provided detailed statements of the
information need underlying each search query, denoted as topics (see Figure 2.1
for an example). Assessors are tasked with marking documents as relevant if “any
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<top>

<num> Number: 405

<title> cosmic events

<desc> Description:

What unexpected or unexplained cosmic events or

celestial phenomena, such as radiation and

supernova outbursts or new comets, have been detected?

<narr> Narrative:

New theories or new interpretations concerning

known celestial objects made as a result of new

technology are not relevant.

</top>

Figure 2.1: Example ad hoc topic from TREC 8.

piece of it is relevant (regardless of how small the piece in in relation to the rest
of the document).” Assessors provide binary relevance judgments, i.e. they simply
mark documents as relevant or non-relevant with no regard for quality or degree
of relevance. The set of all relevance judgments are known as QRELs. Participants
are asked to rank up to 1,000 documents for each topic. TREC in general, and the
ad hoc task in particular, have hugely influenced IR research [66].

Systems are evaluated for the ad hoc task based on their trade-off between pre-
cision, the percentage of retrieved documents that are relevant, and recall, the per-
centage of relevant documents that are retrieved. For a given topic, Let gi ∈ {0, 1}
be the relevance grade of the document at rank i, and let R be the number of rele-
vant documents in the collection. At rank k,

precision@k =

k∑
i=1

gi

k
(2.1)

recall@k =

k∑
i=1

gi

R
(2.2)
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Figure 2.2: Precision-recall curves are a visualization of their tradeoff. These curves are
typically interpolated so as to be non-increasing, ensuring that precision is defined for
every recall.

It is trivial to design a system that is perfect with respect to one of these by simply
adjusting the number of documents that are retrieved. A system that retrieves a
single document is highly likely to have perfect precision, whereas a system that
retrieves all documents is guaranteed to have perfect recall. The trade-off between
the two can be measured by average precision, which is the average of the observed
precision at the rank of each relevant document if non-retrieved relevant docu-
ments are assumed to appear at rank∞.

AP =

∞∑
i=1

gi × precision@i

R
(2.3)

Average precision can also be interpreted as the area under the precision-recall
curve (see Figure 2.2).

Average precision does not include information about document quality and
degrees of relevance, and is an inherently recall-oriented measure. It is therefore
not suitable for evaluating commercial web search engines. With the growth of the
World Wide Web, test collections began to include graded, non-binary relevance
judgments, e.g. G = {non-relevant, relevant, highly relevant} or G = {0, . . . , 4}. To
make use of these graded assessments, Järvelin and Kekäläinen developed normal-
ized discounted cumulative gain (nDCG) [45]. nDCG also has the advantage that it can
be evaluated at arbitrary ranks, and can therefore be used for precision-oriented
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tasks such as web search.
Unlike average precision, which has a technical interpretation, nDCG can be

best understood in terms of a model of a hypothetical user. In this model, a user
will read the first k documents in a ranked list, deriving utility from each docu-
ment. The amount of utility is proportional to the document’s relevance grade and
inversely proportional to the rank at which the document is encountered. We first
define discounted cumulative gain (DCG).

DCG@k =
k∑
i=1

2gi − 1

log2(i+ 1)
(2.4)

Since the range of DCG will vary from topic to topic, it is necessary to normalize
these scores so that an average can be computed. Normalization is performed with
regard to an ideal ranked list. If DCG′@k is the maximum possible DCG of any
ranked list of documents in the collection then

nDCG@k =
DCG@k

DCG′@k
(2.5)

However, one does not always know how many documents are relevant at each
level, and therefore the ideal list used for normalization is only an approximation.
Moffat and Zobel [50] introduced a measure, rank-biased precision (RBP), that ad-
dresses this issue. In RBP, the probability that a user will read the document at
rank k is drawn from a geometric distribution, whose parameter, β ∈ [0, 1), models
the user’s persistence. Given a utility function u : G→ [0, 1], commonly defined as

u(g) =
2g − 1

2d
(2.6)

where d is the maximum possible relevance grade, RBP is defined as the expected
utility of a user who browses according to this model.

RBP = (1− β)
∞∑
i=1

u(gi)× βi−1 (2.7)

Since RBP is guaranteed to be in the range [0,1) for any topic and β, it does not
require normalization.

These user models were derived theoretically, and were not validated experi-
mentally. This led Craswell et al. [34] to introduce the Cascade model of user be-
havior. In this model, a user is still assumed to browse documents in order, but
the probability that a user will view a particular document is no longer assumed
to be independent of the documents that were viewed previously, i.e. a user is not
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assumed to stop at a particular rank, or at each rank with some probability. In-
stead, the user is assumed to stop after finding a relevant document. This implies
that if a user reaches rank k, then all of the k − 1 documents ranked before it were
non-relevant. Craswell et al. demonstrated empirically that this model corresponds
well to observed user behavior in terms of predicting the click-through behavior
observed on a commercial search engine.

Chapelle et al. [25] developed an evaluation measure, expected reciprocal rank
(ERR), based on the Cascade model. Let Ri denote the probability that a user will
find the document at rank i to be relevant. Then in the Cascade model, which
assumes that documents do not interact with one another, the likelihood that a
user will terminate his or her search at rank r is

P (user stops at rank r) = Rr

r−1∏
i=1

(1−Ri). (2.8)

If we interpret the previously defined utility function (Equation 2.6) as the probabil-
ity that a user will find a document relevant, i.e. Ri = u(gi), then we can computed
the expected reciprocal rank at which a user will terminate his or her search as

ERR =
∞∑
r=1

1

r
Rr

r−1∏
i=1

(1−Ri). (2.9)

This whole evaluation paradigm is predicated upon the Probabilistic Ranking
Principle (PRP) [58], which dictates that documents should be ranked by their
probability of relevance to the user’s intent, with the simplifying assumption of
independent document relevance. Chen and Kargar [26] showed that the PRP is
actually sub-optimal if the user is interested in a limited number of relevant doc-
uments, rather than all relevant documents. Also contrary to the PRP, Carbonell
and Goldstein’s Maximal Marginal Relevance method [16], which iteratively se-
lects documents that are most similar to the query and least similar to the docu-
ments previously shown to the user, was shown to be more effective at tasks such
as automatic summarization. Zhai et al. [93] explicitly rejected the assumption of
independent relevance to define the subtopic retrieval problem. These insights led
to the creation of what has come to be known as the diversity task.

2.2 The Diversity Task
Information retrieval research traditionally assumes that a given query can be as-
sociated with a single underlying user intent, or information need. In reality—
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especially in the context of Web search—users with very different intents may
enter identical queries. In many cases, queries may be ambiguous, with multiple
unrelated interpretations [27]. For example, a user entering the query “zeppelin”
may be interested in either the band or the type of airship. Even when a query
is unambiguous it may be underspecified, and may not precisely express the user’s
information need. For example, a user entering the query “led zepplin” may be
seeking a discography, biographies of the members, and/or news about a possi-
ble reunion. When a query gives rise to many possible interpretations, the ideal
ranked result list should be both diverse—it should cover as many search intents as
possible—and novel—each new document should provide previously unseen in-
formation [33]. Producing such a ranked list has come to be known as the diversity
task.

From 2009 to 2012, the TREC Web Track [28–31] has included a diversity task
alongside the traditional ad-hoc task. The track organizers constructed 50 topics
for each collection. For each topic, the organizers created a number of subtopics
corresponding to example search intents by extracting information from the logs
of a commercial search engine. Each subtopic is given a type, “navigational” or
“informational,” denoting whether the user is interested in finding a specific web
page or any web page with the correct content. Figure 2.3 presents two topics from
the 2011 collection and their subtopics. Topic 114 is “faceted,” i.e. “underspecified”
in the same sense as our “led zeppelin” example; we know what an adobe indian
house is, but we do not know which facet of this broad topic the user is interested
in. Topic 140 is “ambiguous,” similar to our “zeppelin” example. There are many
high schools named East Ridge; without additional information, there is no way of
knowing which one the user intended.

Track participants were given the queries (and not the subtopics) associated
with each topic. Through 2011, systems were run on the ClueWeb09 corpus,1 a
general web crawl from 2009 containing approximately 1 billion documents. The
submissions were pooled (see Section 2.3) and judged to a depth of 20 (2009, 2010)
or 25 (2011). Hired assessors made binary relevance judgments with respect to
each subtopic.2 All of our evaluations will be performed using these relevance
assessments. We focus on the 2010 and 2011 collections, since participants in those
years had time to work with the 2009 data to better understand how to diversify
runs.

1lemurproject.org/clueweb09/
2In 2011, the judgments were actually graded. For this work, we consider any document with

relevance grade greater than zero to be relevant and any document with a relevance grade of zero or
marked as spam to be non-relevant.
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<topic number="114" type="faceted">

<query>adobe indian houses</query>

<description>

How does one build an adobe house?

</description>

<subtopic number="1" type="inf">

How does one build an adobe house?

</subtopic>

<subtopic number="2" type="inf">

information about Indian tribes that used adobe houses

</subtopic>

<subtopic number="3" type="nav">

I’d like to order books or videos/CDs about how to construct

adobe buildings.

</subtopic>

</topic>

<topic number="140" type="ambiguous">

<query>east ridge high school</query>

<description>

demographics of East Ridge High School in Lick Creek, Kentucky

</description>

<subtopic number="1" type="inf">

demographics of East Ridge High School in Lick Creek, Kentucky

</subtopic>

<subtopic number="2" type="nav">

home page for East Ridge High School in Chattanooga, Tennessee

</subtopic>

<subtopic number="3" type="inf">

information about the sports program at East Ridge High School

in Clermont, Florida

</subtopic>

<subtopic number="4" type="inf">

description of the sports facilities at East Ridge High School

in Woodbury, MN

</subtopic>

</topic>

Figure 2.3: Examples of TREC 2011 Web track diversity task topics.
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1. ERR(k) = 1
k

2. DCG(k) = 1
log(k+1)

3. RBP(k) = 1
β

k−1

Table 2.1: Discount vectors used in evaluation measures.

Figure 2.4: Discount vectors used in evaluation measures.

Following Zhang et al. [94], we note that most measures can easily be described
as the cross-product of a gain vector with a discount vector, normalized in some
fashion. Following Clarke et al. [32], we begin by highlighting three particular
functions for producing discount vectors based on ad hoc performance measures
(see Table 2.1 and Figure 2.4).

The first diversity evaluation measures are due to Zhai et al. [93]. One of these
measures, S-Recall, is still in use. S-Recall does not fit into cross-product frame-
work. Let X be the number of subtopics covered by at least one document at or
before rank k. Assume a topic has M subtopics. Then

S-Recall@k =
X

M
. (2.10)

The next measures we choose to highlight are the Cascade measures [27,32,33].
Clarke et al. [33] modified nDCG by using the diminishing returns of cascade mea-
sures to model the user’s tolerance for redundancy in a ranked list. By penalizing
redundancy, α-nDCG rewards both novelty and diversity. Cascade measures use a
cascading gain function where a document’s gain with respect to some subtopic is
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decreased each time the subtopic is encountered. To define the gain function, let Iri
be an indicator variable representing whether the document at rank r is relevant to
subtopic i. Let

cki =

k−1∑
r=1

Iri (2.11)

represent the number of documents relevant to subtopic i seen prior to rank k.
Let gki be the relevance grade, or a function thereof, of the document at rank k with
respect to subtopic i. Letwi represent the probability that a user’s intent is subtopic
i. Then the gain of the document at rank k is

Gain(k) =

M∑
i=1

wi × gki (1− α)c
k
i , (2.12)

where α is a parameter in [0, 1] which models the users tolerance for redundancy.
The gain can be combined with any discount vector from Table 2.1. Normalization
is performed relative to a single ideal ranked list. A drawback of the Cascade mea-
sures is that the ideal ranked list required for normalization is NP-hard to compute,
and is therefore usually approximated.

Agrawal et al. [1] proposed the IA measure family that computes the weighted
average of ad hoc metrics computed separately for each intent. These measures
incorporate both degrees of relevance, known as graded relevance, and the likeli-
hood that a user is interested in a particular subtopic, known as intent probability.
As an example of intent probability, suppose that more users who enter the query
“zeppelin” are interested in the band than the mode of travel. Then systems should
receive higher rewards for retrieving documents that refer to the former than the
later.

Intent aware measures model diversity by computing the weighted average
of an evaluation measure with respect to each subtopic. As an example of an in-
tent aware measure, consider nDCG-IA. Let nDCGi represent nDCG [45] evaluated
with respect to subtopic i. Then the intent aware measure nDCG-IA would be:

nDCG-IA@k =
M∑
i=1

wi × nDCGi@k. (2.13)

Notice that normalization is computed separately for each subtopic. Each subtopic
requires its own ideal ranked list, but these lists can be computed directly.

A drawback of IA measures is that they tend to prefer systems that perform well
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on the most likely subtopics over systems that are more diverse [32, 63]. Partially
in an attempt to correct this problem, Sakai et al. [63] introduced the D# family
of measures [62–64]. The authors begin by returning to the Probabilistic Ranking
Principle. If we assume that:

1. intents are mutually exclusive, i.e.
M∑
i=1

wi = 1, and

2. the binary probability of relevance is proportional to the relevance grade,

then the gain of a document, which the authors refer to as global gain, is

Global Gain(k) =
M∑
i=1

wig
k
i . (2.14)

Global gains are computed for each subtopic and normalized with regard to a
single ideal ranked list. Unlike Cascade measures, this ideal ranked list can be
found by a simple greedy algorithm. Measures using global gain are called D-
measures. To increase the correlation with subtopic coverage, D#-measures are
D-measures combined linearly with S-Recall. The mixture is controlled by a pa-
rameter λ ∈ [0, 1], with λ = 1 being equivalent to pure S-Recall.

Additionally, noting that D# measures seemed to perform differently on subtopics
depending on their taxonomy, i.e. navigational vs. informational [12], Sakai [62] de-
veloped additional measures in the style of D# that explicitly take subtopic tax-
onomy into account. When the intent is informational, one of these, the P+Q#
measures, uses what we would call a #-IA measure in the sense of Section 4.1.

2.3 Meta-Evaluations
In the previous sections, we have described how test collections are used for evalua-
tion. We have not discussed how test collections are created, nor the meta-evaluations
used in guiding this process. In this section, we will discuss three of the main prob-
lems that test collection creation research must address:

1. minimizing the impact of missing relevance judgments,

2. comparing ranked lists, be they lists of documents or lists of systems, and

3. assessing the relative merits of evaluation metrics.

Our work was inspired by applying the probabilistic approach of computing evalu-
ation measures in expectation, first employed in addressing the problem of missing
judgments, to the problem of comparing ranked lists. The goal of our work is to
introduce a framework for assessing evaluation metrics.
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2.3.1 Missing Relevance Judgments

In Section 2.1 we discussed how human assessors separate documents into two
classes for each query: relevant and non-relevant. However, given the size of even
a modest test collection, there is a third, far, far larger class: documents that asses-
sors do not read. To limit the impact of these unjudged documents, test collections
are usually created via pooling [77]. In depth pooling, a number of retrieval sys-
tems are selected and run over the corpus for each topic. The union of the top k

results from each system are then presented to assessors for judging. It is assumed
that this forms a reasonable sample that will contain a large fraction of the relevant
documents present in the corpus. In this way, it is reasonable to consider any un-
judged document as non-relevant; if it were relevant, it would have been included
in the pool.

This assumption, that pooling leads to effectively complete judgments, was
challenged as early as 1998. Zobel [97] estimated that fixed-depth pooling strate-
gies at relatively large depths such as rank 100 can lead to as few as 50 to 70% of
the relevant documents being judged. However, Zobel concluded that while these
evaluations vastly over-estimated recall, they were not biased and therefore sys-
tems are ranked correctly. However, Buckley and Voorhees [14] showed that TREC
style evaluation is not robust to gross violations of the completeness assumption,
i.e. that system ranking can change drastically as the number of relevance judg-
ments are artificially reduced. To combat this, they introduced the BPref measure,
so-called because “it uses binary relevance judgments to define the preference re-
lation.” The definition of BPref, refined by Soboroff [74], is:

BPref =
1

R

∑
r

(
1− |n ranked higher than r|

min(R,N)

)
(2.15)

where N is the number of judged non-relevant documents, r is the set of retrieved,
relevant documents, and n is the set of retrieved, non-relevant documents. This
measure was found to be far more robust to drastically reduced judgment sets
as non-judged documents are not used in computing evaluation scores, and was
briefly in very wide use [66].

The TREC Million Query Track [22] was created to explore the boundaries of
accurate evaluation with minimal assessment. The two main approaches to eval-
uation were the so-called “MTC” and “statAP” paradigms. The minimal test col-
lection (MTC) algorithm [21] is a greedy, on-line approach to selecting the set of
documents that are most useful for accurately ranking systems. This is very simi-
lar to the approach of Moffet et al. [50] that targets for judgment the documents that
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1. Pick a random relevant document,

2. Pick a random document ranked at or above the rank of the
document selected in step 1.

3. Output 1 if the document from step 2 is relevant, otherwise output 0.

Table 2.2: A random experiment whose expected value is equal to average precision.

are most useful for determining the best systems. statAP [7] is the culmination of
a research project [8, 87, 88, 90] in using various sampling methodologies to create
unbiased, minimum-variance estimates of average precision. We describe an inter-
mediate result, inferred AP (infAP), due to its popularity, ease of explanation, and
similarity to our probabilistic framework.

Yilmaz and Aslam [87] begin with the observation that average precision can
be seen as the expectation of the random experiment described in Table 2.2. For
a given relevant document, in expectation, steps two and three compute precision
at the rank of the chosen document. Step one averages this in the manner of av-
erage precision. To accurately estimate average precision, for each system Yilmaz
and Aslam [90] split the unjudged documents into two sets based on whether the
documents would have contributed to the test collection’s pool. If an unjudged
document would not have contributed to the pool, than it is simply deemed non-
relevant. Unjudged documents that would have contributed to the pool are con-
sidered relevant with a probability proportional to the ratio of retrieved, judged
documents that were considered relevant to the number of retrieved documents
that were judged. If we assume that systems are pooled at depth 100, then at rank
k

infAP (k) =
1

R

∑
r

[
1

k
+
k − 1

k

(
|d100|
k − 1

· |rel|+ ε

|rel|+ |nonrel|+ 2ε

)]
(2.16)

where |d100| is the number of judged documents found above rank k plus the num-
ber of unjudged documents above rank k that would have contributed to the docu-
ment pool; |rel| is the number of documents above rank k that are judged relevant;
|nonrel| is the number of documents above rank k that are judged non-relevant;
and ε is a smoothing constant. Notice that the value of infAP given complete judg-
ments, as well as the expected value of infAP if we assume that documents are
selected for judging at random, is equal to AP. Experimentally, infAP was found to
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be substantially more stable than BPref.

One drawback to the approaches used in the Million Query Track is that they
are not reusable, in that they are biased estimators of the effectiveness of new sys-
tems that did not contribute to the pool. This is due to the on-line, targeted na-
ture of the judgments used by the MTC algorithm and the additional information
statAP requires to compute scaling factors necessary for the creation of an unbi-
ased estimate. Additional work since then to combat this problem has been to, for
example, use machine learning techniques trained on relevance judgments [15], or
to match relevant pieces of information with portions of documents [3, 56, 57], to
algorithmically assess unjudged documents. Also, the recent emergence of crowd-
sourcing platforms such as Amazon’s Mechanical Turk3 has led to the exploration
of using inexpensive crowdworkers either in place of, or in addition to, trained
assessors to judge large numbers of documents at the same or lesser cost than tra-
ditional methods. For example, see the TREC Crowdsourcing task which ran in
2012 and 2013 [72, 73].

2.3.2 Comparing Ranked Lists

Common rank correlation measures such as Kendall’s τ are not ideally suited for
comparing the output of search engines since they treat all objects equally indepen-
dent of rank. Multiple solutions to this have been proposed. We focus on two, Ku-
mar and Vassilvitskii [48] and Yilmaz et al. [89], that demonstrate how researchers
have extended Kendall’s τ to behave more like IR evaluation measires, nDCG and
AP respectively, in the past.

Kumar and Vassilvitskii call their measure generalized Kendall’s τ (K∗). Gener-
alized Kendall’s τ encodes positional information by modeling the cost of swap-
ping adjacent documents, denoted δ. In traditional Kendall’s τ , δ is uniform in-
dependent of rank. Kumar and Vassilvitskii propose several δs; we focus on one
based on nDCG. Let δr denote the cost of swapping the document at rank r with
the document at rank r − 1. If n objects are ranked, then

δr =
1

log(r)
+

1

log(r + 1)
, (2.17)

which is defined for 2 ≤ r ≤ n. Let σ and σ∗ be two rankings. Element i’s displace-
ment weight p̄i(σ, σ∗) is given by the average cost incurred in moving from rank

3www.mturk.com
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1. Pick a random document from σ ranked after the first document.

2. Pick a random document from σ ranked above the document
selected in step 1.

3. Output 1 if these two documents are in the same relative order in σ∗,
otherwise output 0.

Table 2.3: A random experiment for comparing ranked lists.

σ(i) to rank σ∗(i) in terms of adjacent swaps. If pr =
r∑
2
δr, then

p̄i(σ, σ
∗) =

1 if σ(i) = σ∗(i)
pσ(i)−pσ∗(i)
σ(i)−σ∗(i) otherwise.

(2.18)

If I[σ(i) > σ(j)] is an indicator variable, then the K∗ distance is given by

K∗(σ, σ∗) =
∑

σ∗(i)<σ∗(j)

p̄i(σ, σ
∗)p̄j(σ, σ

∗)I[σ(i) > σ(j)] (2.19)

Yilmaz et al. [89] define a version of Kendall’s τ based on average precision,
τap, in terms of the random experiment whose expectation can be used as a defi-
nition for AP. Their random experiment, described in Table 2.3, is designed to ask
the analogous question about the correlation between ranked lists. Compare this
experiment to the one that is used to compute AP (see Table 2.2). The expectation
of this random experiment, p′ can be computed as

p′ =
1

n− 1

n∑
i=2

C(i)

i− 1
, (2.20)

where C(i) is the number of items in σ∗ that are ranked above the document at
rank i in σ. This number is then normalized to fall within the interval [−1, 1].

τap(σ, σ
∗) = p′ − (1− p′) = 2p′ − 1 =

2

n− 1

n∑
i=2

(
C(i)

i− 1

)
− 1. (2.21)

Note that unlike K∗, τap(σ, σ∗) 6= τap(σ
∗, σ), and therefore one usually reports the
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average of the two, i.e.

τ ′ap =
τap(σ, σ

∗) + τap(σ
∗, σ)

2
. (2.22)

Both of these measures, K∗ and τap, are undefined when documents do not
appear in both lists; in practice, all such documents are simply ignored. However,
Webber et al. [86] observe that in information retrieval, ranked lists are incomplete,
i.e. not all documents are ranked. Therefore, they introduced Rank-Biased Overlap
(RBO), an adaptation of RBP (Equation 2.7) to the comparison of ranked lists. The
key insight of RBO is that a ranked list can be considered to be a sequence of sets
indexed by rank. At any given rank, the set intersection between two ranked lists
is defined even if the two ranked lists are not over the same set of objects. In this
way, two ranked lists can be compared by the average size of their set intersection
at progressively deeper ranks. To make the comparison appropriately top-heavy,
they weight their average according to the persistence based user-model of RBP.
Let σk represent the object appearing in list σ at rank k. Then

RBO(σ, σ∗) = (1− β)

∞∑
i=1

βk−1|{σ1, . . . , σk} ∩ {σ∗1, . . . , σ∗k}|. (2.23)

Note that RBO(σ, σ∗) ∈ [0, 1) for all β ∈ [0, 1).

Rank correlation measures can also be used to evaluate ranked lists based on
their distance from a reference list. This is often done by aggregating preferences on
subsets of objects, as in Voting Theory. For example, Arguello et al. [4] showed that
user’s preferences between ranked lists with multiple verticals, e.g. image search,
news search, items for sale, etc., were correlated with the lists’ similarity to a ref-
erence list built from preferences on individual verticals using the Shulze voting
method [69]. However, since many preferences are missing and not all preferences
are transitive, building a reference list is an instance of the feedback arc set prob-
lem, the decision version of which was one of Karp’s original 21 NP-complete prob-
lems [46]. Building these lists is a very active area of research, e.g. Chen et al. [26],
Volkovs et al. [82], and many others.

2.3.3 Evaluating Evaluation Metrics

This is the most crucial question in the understanding of the modern information
retrieval test collection paradigm: how do we interpret evaluation scores and how
should we produce them. Unfortunately, this is an incredibly difficult question to
even formulate, let alone answer.
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One of the early TREC-era attempts to address this question was to quantify
measure stability: could measurements of system quality on one test collection be
used to predict measurements of system quality on another? Zobel [97] simulated
this test by splitting test collections into two sets and comparing the rankings of
systems induced by evaluation measures on the two sets. Zobel then counted the
proportion of systems that had swapped orders between one set and the other.
Voorhees and Buckley [85] applied this swap method to additional test collections.
In another experiment, Buckley and Voorhees [13], measured the consistency of
induced rankings across test collections as the set of topics are reformulated into
alternate queries.

When of the most commonly used meta-evaluation techniques appearing in the
literature is discriminative power [60]. For a given evaluation measure, discrimina-
tive power quantifies how sensitive the measure is, i.e. how often one would expect
a measure to be able to distinguish between different systems based on their perfor-
mance. This is achieved via a paired bootstrap hyphothesis test using a Studentised
test statistic [38, 60].

The following discussion, notation, and examples are due to Sakai [60]. Let
Q be the set of topics in the test collection. Let |Q| = n. Let x = (x1, . . . , xn)

and y = (y1, . . . , yn) be the per-topic evaluation scores of two systems X and Y

according to evaluation metric M . Typically systems are compared by their sample

means, e.g. x̄ =
n∑
i=1

xi
n . However, what we truly wish to compare is the population

means for X and Y , µX and µY , based on the population of topics, P , of which Q

is assumed to be a uniformly random sample. We regard X and Y as paired data,
and let z = (z1, . . . , zn) where zi = xi − yi and µ = µX − µY . In this way, we
have replaced the two-sample question of whether µX = µY with the one-sample
question of whether µ = 0. We wish to perform a two-tailed test of the following
hypothesis

H1 : µ 6= 0

vs

H∅ : µ = 0. (2.24)

under the assumption that z is an independent and identically distributed sample
drawn from some unknown probability distribution.

To conduct our hypothesis test, we use a Studentised test statistic, t

t(z) =
z̄

s/
√
n

(2.25)
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Algorithm 2.1 Algorithm for creating Bootstrap samples w∗
b

= (w∗
b

1 , . . . w
∗b
n ).

1: for b = 1, . . . , B do
2: Let Q∗

b
be n topics randomly sampled from Q with replacement

3: for i = 1, . . . , n do
4: q = ith topic from Q∗

b

5: w∗
b

i = observed value in w for topic q

Algorithm 2.2 Algorithm for estimating the achieved significance level (ASL)
1: count = 0
2: for b = 1, . . . , B do

3: t(w∗
b
) = w̄∗

b

s∗b/
√
n

4: if |t(w∗b)| ≥ |t(z)| then
5: count+ +

6: ASL = count
B

where s is the sample standard deviation of z given by

s =

√√√√ n∑
i=1

(zi − z̄)2

n− 1
. (2.26)

If we let w = (w1, . . . , wn) where wi = zi − z̄, then w is a random variable drawn
from the null hypothesis distribution. We let w∗

b
denote a bootstrap sample of per-

topic performance over topics Q∗
b

generated by sampling with replacement from
the set of topics Q. Algorithm 2.1 shows how to obtain B bootstrap samples of
topics Q∗

b
and the corresponding values of w∗

b
. For example, assume we have

5 topics, Q = {1, 2, 3, 4, 5}, and that w = (0.2, 0.0, 0.1, 0.4, 0.0). Suppose that for
some trial b, sampling with replacement from Q yields Q∗

b
= (1, 3, 1, 2, 5). Then

w∗
b

= (0.2, 0.1, 0.2, 0.0, 0.0).

For each b, let w̄∗
b

and s∗
b

denote the sample mean and sample standard de-
viation of w∗

b
. Algorithm 2.2 shows how to compute the achieved significance

level (ASL) using w∗
b
. If ASL < α, then we conclude that the observed difference

would be sufficiently rare under the null hypothesis, that µX = µY , and we reject
it. Throughout this paper we let B = 1000 and α = 0.05.

While sensitivity is a necessary condition for an evaluation measure, it is not
sufficient. While it does guarantee that the ranking of systems is almost total, is
does not guarantee that the systems are ranked by quality. For example, systems
submitted to TREC are required to have a unique identifier. Imagine an evalua-
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tion measure that computed a hash function from these identifiers to [0, 1]. This
measure would have perfect discriminative power, and yet be completely useless.4

Aslam et al. [10] proposed to assess evaluation measures by their informativeness.
Using the maximum entropy method, evaluation measures can be viewed as induc-
ing constraints on where in a ranked lists it is possible to find relevant documents.
The more informative a measure, the more accurate and specific these constraints
are. While Ashkan and Clarke [5] applied this method to several families of diver-
sity measures, this method can be quite difficult to employ in practice and it has
seen little use. It is hoped that the ease of use and expressiveness of our frame-
work (introduced in Chapter 5) can be used to create many more meta-evaluation
measures, allowing us to better interpret evaluation in the future and create better
evaluation measures, as in Chapter 4.

4This argument is due to private conversation with Javed A. Aslam.
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Chapter 3

Meta-Evaluation Metrics for
Diversity

Measuring the quality of a diversity system is very difficult, since diversity also de-
pends on a system’s performance at basic ad-hoc retrieval—how many documents
are relevant to any reasonable intent, especially at the top of the ranked list. Poor
ad-hoc performance implies poor diversity; a system that returns few documents
relevant to any intent cannot present a diverse ranked list to the user. For exam-
ple, consider the following experiment. In work by Santos et al. [68], the authors
investigate the relative impact of increasing subtopic coverage versus reducing re-
dundancy. In one particular experiment, they show that taking a quality ad-hoc run
and diversifying it using state-of-the-art algorithms can increase the α-nDCG@100
from roughly 0.35 to 0.45. However, removing all non-relevant documents from
the list without any attempts at diversification increases the α-nDCG@100 to al-
most 0.6. This demonstrates that when we perform diversity evaluation, we must
take great care to ensure that we are actually measuring the quantity of interest: the
quality of the system’s ordering of documents, not the quality of the documents the
system retrieved.

In order to isolate a measure’s sensitivity to diversity—the order in which doc-
uments are presented to the user—from its ad-hoc performance—whether the doc-
uments presented to the user are relevant—in Section 3.1 we consider artificial
ranked lists created by randomly permuting relevant documents. We show exper-
imentally that, as measured by discriminative power, existing diversity measures
are insensitive to the changes in these lists, i.e. discriminative power alone is not
sufficient to assess the quality of a diversity metric. Therefore, we develop a new
meta-evaluation measure, document selection sensitivity, which is able to distinguish
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between evaluation measures applied to perfect-performance ranked lists and can
therefore be used to assess diversity metrics based on their sensitivity to diversity.

Furthermore, diversity necessarily depends on the collection over which the
search is being run. If we search back-issues of the Journal of Aerospace Engineer-
ing for the query “zeppelin,” we are unlikely to find many references to the band.
When a collection only covers a single interpretation, even the best search engine
will be unable to create a diverse ranked list. Alternatively, consider searching a
corpus like Wikipedia. Since so many of the documents provide broad overviews,
any relevant document is likely to be at least partially relevant to several intents,
and almost any system will produce a diverse ranked list.

In order to further isolate the quantity of interest we leverage the intrinsic di-
versity of the collection. To do so, we develop a notion analogous to query diffi-
culty that measures the diversity present in a collection, independent of any ranked
list. Diversity difficulty (Section 3.2.1) measures this property at the topic (i.e. query)
level, and subtopic miss rate (Section 3.2.2) measures this property at the subtopic
(i.e. interpretation) level. Our intuition is that every system should be able to pro-
vide diverse lists for diverse topics and cover prevalent subtopics, whereas only
the best systems will be able to provide diverse lists for difficult topics and cover
rare subtopics. It is our hypothesis that by viewing measures from the perspective
of the collection and leveraging as much information as we can, no matter how
opaque to the end-user, we will be best able to distinguish between systems. While
a user neither knows nor cares whether a particular query is hard, we believe that
if we can find systems that are still able to perform reasonably on the most difficult
queries, they will tend to best satisfy users over all.

3.1 Document Selection Sensitivity: Quantifying the Sensi-
tivity of Diversity Evaluation to Diversity

A system’s diversity is necessarily conflated with the system’s ad-hoc performance.
If no relevant documents are retrieved, then there is no way to present them to the
user in a diversified order. A consequence of this is that a system’s score with
respect to a diversity evaluation measure can be increased simply by improving
the systems underlying ad hoc performance [68]. Therefore, when using meta-
evaluation tools to determine which diversity measure to use in practice, we must
ensure that we are choosing based on the measure’s sensitivity to diversity.

One way to control for the impact of ad hoc performance on diversity evalua-
tion is to only consider lists with the same performance. We do so using artificial
ranked lists created by randomly permuting the set of relevant documents. These
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ERR-IA 2010 2011

Actual 0.571 0.544

Artificial 0.039 0.031

D#-nDCG 2010 2011

Actual 0.583 0.600

Artificial 0.036 0.019

Table 3.1: Discriminative power on actual submitted runs and an equal number of arti-
ficial ranked lists with perfect combined precision. Discriminative power is an order of
magnitude smaller on artificial lists than on actual systems.

lists will all have the same ad-hoc performance—perfect. For a given topic, what-
ever difference exists between ranked lists with perfect combined precision—the
percentage of retrieved documents relevant to at least one subtopic [32]—must be
due solely to novelty and diversity.

We use the binary TREC subtopic relevance judgments to create artificial runs
by (uniformly) randomly ranking the relevant documents of each topic. Figure 3.1
shows the discriminative power of ERR-IA and D#-nDCG at rank 20, the baseline
measures reported by the TREC and NTCIR contests, on these simulated runs. We
observe that discriminative power is an order of magnitude smaller than it is over
actual runs. Therefore, the quality measured by discriminative power is dominated
by ad hoc performance. If we wish to assess the extent to which measures are
impacted by novelty and diversity, we must use an alternative framework.

For some measure M , imagine evaluating randomly selected permutations of
the set of relevant documents. The observed set of evaluations has some sample
mean, x̄, and sample standard deviation, s. We define the document selection sen-
sitivity of a measure as the coefficient of variation—the standard deviation divided
by the mean—of the set of evaluations.

dss(M) =
s

x̄
(3.1)

This produces a normalized measure of the variance of ranked lists with perfect
performance. A low document selection sensitivity means that it is unlikely that
a system which assigns relevant documents at random will be different than the
mean.1 The larger this number, the more sensitive the measure is to the documents
in ranked lists and their order. If this number is small, it does not mean that the

1For normally-distributed data, a coefficient of variation of c% means that roughly 68% of the
population is within +/− c% of the mean.

27



DSS 2010 2011

ERR-IA 0.026 0.024

D#-nDCG 0.013 0.010

Table 3.2: Document Selection Sensitivity of the baseline measures reported by TREC and
NTCIR.

measure did not evaluate some lists as substantially better than others: the max-
imum and minimum scores achieved by any of the randomly generated ranked
lists could be quite different; it simply means that the majority of ranked lists have
highly similar scores. For example, Table 3.2 shows the document selection sensi-
tivity of our baseline measures. These numbers indicate that the majority of arti-
ficial, perfect ranked lists had evaluation scores quite near the mean, which is in
accordance with the observed vast reduction in discriminative power.

We note that as described, document selection sensitivity does not use relevance
grades or intent probabilities. We suggest that one way to use this information
would be to select documents iteratively by first using the intent probability distri-
bution to choose a subtopic, and then randomly drawing from the most relevant
documents remaining for that subtopic. We hypothesize that not using relevance
grades and subtopic probabilities may be beneficial, in that some diversity mea-
sures will be better able to leverage this information to distinguish between lists
than others. We will address this question in future work.

A further limitation is that, as defined, DSS can only be used to evaluate mea-
sures that are always positive. While this is almost always the case, it is not uni-
versal, e.g. logit(AP). Also, DSS is not invariant to even the most simple of trans-
formations. For example, given a measure M , the measure M ′ = M+1

2 would have
a smaller DSS score, while still ranking systems in the exact same order.

3.2 Quantifying The Intrinsic Diversity of a Collection
The amount of diversity present in a ranked list is affected by the amount of diver-
sity present in the collection. Therefore, when evaluating systems for diversity, it
is necessary to control for the diversity of the collection. For a specific topic and
corpus, query difficulty is a measure of how well a reasonable search engine can
be expected to perform ad hoc retrieval. In this section, we introduce analogous
notions for diversity, diversity difficulty (Section 3.2.1) and Subtopic Miss Rate
(Section 3.2.2), which assesses the amount of diversity present in the collection.
Like query difficulty, diversity difficulty is defined with respect to a topic and a
corpus, and independent of any ranked list.
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3.2.1 The Topic Level: Diversity Difficulty

In this Section we give a very brief overview of the work in the area of query dif-
ficulty prediction before describing our related notion of diversity difficulty. For
further discussion, we direct the interested reader to Carmel and Yom-Tov [17].

Query Difficulty Prediction

In general, analysis of variance shows that the topics have a larger impact on eval-
uation than the systems being evaluated [11, 54, 79]. This huge variability in per-
formance drove researchers to try and predict query difficulty. By determining
in advance which queries would be more difficult, search engines can choose ap-
propriate retrieval methods on a per-query basis, hopefully decreasing the overall
variance in performance. The goal of this section is to situate our notion of diversity
difficulty within this broader work. We do so using a taxonomy due to Carmel and
Yom-Tov [17]. At the highest level, this schema first divides query difficulty pre-
diction by whether the analysis is performed pre- or post-retrieval.2 Pre-retrieval
prediction is further divided by whether the analysis is statistical [43] or linguis-
tic [53] in nature. Post-retrieval prediction is split into three categories: clarity, score
analysis, and robustness. Clarity analyzes the difference between the top-retrieved
documents and the collection as a whole [18, 36, 37]. Score analysis measures how
much the document scores used by a system to rank documents vary at the top
of the list and across the corpus as a whole [71, 96]. Robustness measures the ex-
tent to which retrieval is affected by perturbations. These perturbations can be to
the query [80, 91, 96], to the document set [80, 95] or to the retrieval systems [6].
Our approach to measuring diversity difficulty at the topic and subtopic level is
to consider the output of systems that pick relevant documents at random. Even
though we do not use actual IR systems, this falls in the category of post-retrieval
robustness as measured by perturbing systems.

Diversity Difficulty

Imagine a collection and a topic with ten subtopics and 1,009 relevant documents.
One of these subtopics, subtopic A, is covered by 1,000 different documents. Subtopics
B through J are each covered by only one relevant document. It is possible to
generate a diverse ranked list that covers all ten subtopics, but it is difficult. A
system would need to order those nine documents relevant to subtopics B–J high
in the list—the equivalent of finding a handful of “needles” in the “haystack” of
1,000 documents relevant to subtopic A. However, imagine a different collection

2These categories are due to He and Ounis [44]
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in which there are large numbers of documents relevant to each subtopic, or per-
haps there are large numbers of documents relevant to multiple subtopics. In this
collection, it would be easy to produce a diverse list. In fact, almost any list with
good performance should exhibit diversity. However, this topic exhibits the same
maximum amount of diversity in both collections—each of the 10 subtopics can
be covered by some ranked list of ten documents. One could also imagine a third
collection where subtopics A through I are each covered by many documents, each
of which cover many subtopics, but there are no documents whatsoever relevant
to subtopic J. In this collection, it would still be easy to create a diverse ranked
list, but the maximum diversity is smaller than in the first two collections. One
might argue that this simply means that subtopic J should be disregarded, and that
this third collection is just as diverse. We will argue that this depends on how the
collection was created, and the purpose it is intended to serve.

We consider diversity difficulty to be a function of the two factors previously
discussed: (1) the maximum amount of diversity achievable by any ranked list,
and (2) the ease with which a system can produce a diverse ranked list. When
the maximum amount of diversity achievable by any system is small, the topic has
little diversity. When the maximum amount of diversity is large but it is hard to
create a diverse list, the topic is somewhat more diverse. Finally, if the maximum
amount of diversity is large and a system created at random will come close to
achieving it, the topic is diverse.

Given a topic, S-Recall@k [93] is the percentage of subtopics covered by a list
at rank k. The S-Recall of a set of documents is the same for any ranked list of
those documents. We consider the maximum amount of diversity (denoted dmax)
for a topic to be the Maximum S-Recall for any set of documents in the corpus.
Let ξ represent the minimum cutoff k at which dmax can be achieved, i.e. the min-
imum number of documents that cover the maximum number of subtopics. Un-
fortunately, computing ξ can be shown to be NP-hard by reduction from the set
covering problem [19]. In this work, we use a greedy approximation.

Once we know ξ, imagine the random experiment of selecting ξ relevant docu-
ments from the corpus and measuring the S-Recall. The expectation of this exper-
iment is analogous to the S-Recall of a system that performs ad-hoc retrieval per-
fectly, yet does not attempt to diversify its results. We use the Expected S-Recall@ξ
(also denoted dmean) to measure how easy it is to create a diverse list. Let M be the
number of subtopics, Ri be the number of documents relevant to subtopic i, and
RT be the number of documents relevant to at least one subtopic. Then dmean can
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be approximated as

dmean ≈ 1−

M∑
i=1

(
1− Ri

RT

)ξ
M

. (3.2)

We note that while dmean can be computed directly, we use an approximation that
actually models documents sampled with replacement. Therefore this approxima-
tion can be poor when there are few relevant documents for a subtopic, e.g. when
the subtopic is navigational. We define diversity difficulty, dd, as the harmonic
mean of dmax and dmean,

dd =
2dmaxdmean
dmax + dmean

. (3.3)

Since S-Recall is a percentage of subtopics, diversity difficulty ranges between zero
and one. It is large for diverse queries where there are many subtopics and an
arbitrary ranked list is likely to cover many of them. It is small for queries lacking
in diversity where there are either few subtopics, or there are many subtopics but
they are unlikely to be covered.3

TREC Collections

A commercial web search engine—which, in theory, indexes the entire web—must
retrieve relevant documents for every search intent, no matter how rare. In this
context, it is important to find those intents that the search engine is unable to sat-
isfy so that the situation can be rectified. TREC collections, however, are more arti-
ficial. Designed to evaluate search engines, they consist of a first tier web crawl and
topics created by visually inspecting the search logs of a commercial search engine.
In this context, there are often uncovered subtopics with no relevant documents.
These subtopics may not have represented common user intents, or documents
pertaining to them may be missing from the crawl. Therefore, for TREC collections
only, we restrict our attention to subtopics that are actually covered by relevant
documents. However, this changes the meaning of diversity difficulty. Due to the
collection we are using, in these experiments, the Maximum S-Recall will be 1 for any
topic. In this case, topics will be considered diverse, i.e. dd is large, if and only if an
arbitrary ranked list is likely to cover all subtopics, independent of the number of
subtopics.

Measuring the diversity difficulty of the TREC 2010 and 2011 topics, we see
that dd does in fact measure the diversity of topics. Table 3.3 shows several topics

3Note that our definition of diversity difficulty will actually be a description of diversity “easi-
ness” in that larger values indicate topics on which systems should do well. This is similar to e.g.
query average average precision [6]. We choose to call this diversity difficulty rather than diversity
easiness to emphasize the similarity to query difficulty prediction.
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Topic ID Title # Rel Docs
Subtopic

dd
1 2 3 4 5 6

143

arka-
delphia
health
club

25 25 21 - - - - 0.994

86 bart sf 82 78 62 60 - - - 0.977

125

butter
and
mar-
garine

132 110 47 13 - - - 0.735

73
neil
young

156 69 52 28 19 - - 0.730

60 bellevue 313 254 47 16 11 4 4 0.481

57 ct jobs 261 261 14 5 2 - - 0.449

Table 3.3: Examples of subtopic coverage and diversity difficulty in TREC 2010 and 2011
topics.

Min Max Mean

2010 0.449 0.994 0.727

2011 0.643 0.977 0.809

Table 3.4: TREC 2010 and 2011 diversity difficulty statistics.

and the number of relevant documents for each subtopic. Topics 143 (“arkadelphia
health club”) and 86 (“bart sf”), have a non-negligible and roughly equal num-
ber of relevant documents for each subtopic. These are very diverse topics, and
they have very high diversity difficulty scores of almost 1. Topics 125 (“butter and
margarine”) and 73 (“neil young”) each cover all subtopics with many documents,
but some subtopics are covered by many more documents than others. They have
some diversity, which is reflected in their diversity difficulty scores of about 0.75.
Topics 60 (“bellevue”) and 57 (“ct jobs”) both have dominant subtopics that are far
more covered than the others, as well as subtopics that are barely covered. These
topics have little diversity, and low diversity difficulty scores that are less than 0.5.

Figure 3.1 shows a histogram of the diversity difficulty of the topics in the com-
bined TREC 2010 and 2011 collection. Table 3.4 shows the minimum, maximum,
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Figure 3.1: Histogram of diversity difficulties of the topics in the combined TREC 2010 and
2011 collection. The larger the value, the easier it is to create a diverse ranked list for that
topic.

and mean diversity difficulty values for each year. Using diversity difficulty, we
can see that the TREC 2010 and 2011 collections were diverse, with 2011 being
somewhat more so.

3.2.2 The Subtopic Level: Subtopic Miss Rate

Because it is necessary to average system evaluations over topics to control for
natural variations within a collection, diversity difficulty tells us which topics are
naturally more diverse than others. However, for individual topics, there is vari-
ation among subtopics as well. In this section, we present subtopic miss rate,
which, for each topic, measures the relative prevalence of documents relevant to
each subtopic.

For a given topic, consider drawing relevant documents at random. Subtopics
containing large numbers of relevant documents will be covered early and easily—
these are the “easy” subtopics, likely to be covered by any system with reason-
able ad hoc performance. However, subtopics with few relevant documents are
“harder” and will likely be covered early and well by only high-quality diversity
systems.

We define the subtopic miss rate of subtopic i at rank k as the probability of
drawing k relevant documents at random and failing to cover that subtopic, nor-
malized with respect to all of the subtopics for that topic. This forms a distribution
for each topic, with probabilities corresponding to each subtopic’s relative diffi-
culty.

It is not strictly necessary to normalize these probabilities into a distribution.
We do so to emphasize the relative importance of each subtopic to evaluation,
rather than any universal notion of difficulty. The drawback to this approach is
that the normalized probabilities are not comparable across topics.

Let M be the number of subtopics, Ri represent the number of documents rel-
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evant to subtopic i, and RT represent the total number of documents relevant to
at least one subtopic. The subtopic miss rate, smr, of subtopic i at rank k can be
approximated as

smrki ≈

(
1− Ri

RT

)k
M∑
j=1

(
1− Rj

RT

)k . (3.4)

While smrki can be computed directly, to simplify computation, we approximate,
asserting that documents are sampled with replacement. Again, this is a poor as-
sumption for subtopics with a small number of relevant documents. If no rank is
specified, we define the smr of a subtopic as the smr at rank ξ,

smri = smrξi , (3.5)

where ξ is the minimum rank at which all subtopics can be covered.

If a subtopic is covered by all relevant documents, then every reasonable sys-
tem should be able to cover it. The miss rate of this subtopic is zero at any rank;
the subtopic is of no interest and should be ignored. However, if a subtopic is cov-
ered by only a relatively small number of relevant documents while most other
subtopics are covered heavily, then the miss rate could approach one. This implies
that this subtopic will be very useful in differentiating between the best systems.

Table 3.5 shows the subtopic miss rate of several TREC topics. Topic 60 has
a small diversity difficulty score, meaning that it is a topic with little inherent di-
versity. Subtopic one has a very small subtopic miss rate—it is very unlikely to
be missed by any ranked list. The remaining five subtopics all have very similar
subtopic miss rates. They are all equally unlikely to be covered. This implies that
the first subtopic is not useful for evaluation, and that systems should be measured
by how well they cover the other five subtopics. Topic 73 has an intermediate di-
versity difficulty score, and is therefore a topic that is neither particularly diverse
nor lacking in diversity. The subtopic miss rates are less similar, showing that sev-
eral subtopics are highly likely to be covered and several subtopics are less likely
to be covered. Each subtopic should contribute differently to evaluation. Topic 86
has a high diversity difficulty score; it is a diverse topic. This topic has a single
“dominant” subtopic with a very high miss rate. All systems should be expected
to satisfy the more common user intents, but only the best systems are likely to
cover this rare one.
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Topic ID Title dd ξ Subtopic
Rank

ξ 5 10 20

60 “bellevue” 0.481 3

1 0.002 0.000 0.000 0.000

2 0.143 0.113 0.061 0.016

3 0.199 0.196 0.182 0.144

4 0.209 0.213 0.215 0.202

5 0.224 0.239 0.271 0.319

6 0.224 0.239 0.271 0.319

73 “neil young” 0.730 2

1 0.141 0.050 0.007 0.000

2 0.202 0.122 0.040 0.003

3 0.306 0.344 0.321 0.204

4 0.351 0.484 0.632 0.793

86 “bart sf” 0.977 1
1 0.087 0.00 0.000 0.000

2 0.435 0.383 0.278 0.129

3 0.478 0.617 0.722 0.871

Table 3.5: Example subtopic miss rates of TREC topics. All subtopics tend to have sim-
ilar rates for non-diverse topics (small diversity difficulty scores), whereas diverse topics
(high diversity difficulty scores) tend to have “dominant” subtopics. Recall that ξ is the
minimum rank at which all coverable subtopics can be covered by any ranked list.
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3.3 Summary
A search engine’s diversity is necessarily conflated with its ability to perform ad-
hoc retrieval and the diversity of the collection. In this chapter, we introduced a
meta-evaluation measure of diversity sensitivity that controls for ad hoc perfor-
mance. To show that measures prefer more diverse systems, we restricted our
attention to artificial ranked lists with perfect combined precision. According to
discriminative power, no measure was able to distinguish between these lists. This
led us to introduce document selection sensitivity, the coefficient of variation of an
evaluation measure over these artificial ranked lists.

To assess collection difficulty, we developed measures at the topic and subtopic
level. At the topic level, diversity difficulty blends the maximum possible number
of subtopics covered by any ranked list with the number of subtopics covered by
the expected ranked list. At the subtopic level, subtopic miss rate measures the
probability of selecting documents at random and failing to cover subtopics. Our
hypothesis is that these collection-oriented features, while opaque to the user, will
be better able to differentiate between systems, thereby leading to a better overall
user experience.
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Chapter 4

Utilizing Meta-Evaluation Metrics
to Increase the Sensitivity of
Diversity Evaluation to Diversity

In this chapter, we introduce our new diversity evaluation metric and describe how
it incorporates the intrinsic diversity of the collection (Section 4.1). In Section 4.2,
we demonstrate that our measures retain their discriminative power. In Section 4.3,
we will demonstrate that, by incorporating meta-evaluation, our measures prefer
different systems than existing measures. However, just because our measures pre-
fer different systems, it does not mean that they prefer systems that are more di-
verse. We use document selection sensitivity to argue that our measures do prefer
more diverse systems in Section 4.4.

4.1 α#-IA Measures

Consider a hypothetical user whose search needs are satisfied by any document
relevant to their intent. If the probability of each subtopic is uniform, then S-
Recall represents the percentage of such users that would be satisfied by a par-
ticular ranked list. Intent aware measures can be thought of as extending this idea
to non-trivial user models and non-uniform subtopic probabilities; in this frame-
work, intent aware measures represent the expected satisfaction of a user over all
possible intents. This is an attractive model of diversity, but there is no explicit nov-
elty component: systems will be rewarded for finding multiple documents relevant
to a subtopic rather than being penalized. Cascade measures do model novelty,
but they do not have this feature of explicitly averaging over intents—in a sense,
they “macro-average” subtopics, whereas in this work we wish to “micro-average”
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them. Merging cascade measures with intent-aware measures creates a new family
of intent aware cascade measures e.g. α-nDCG-IA. This family computes gains in
the style of cascade measures using Equation 2.12, but separately for each subtopic,
with each normalized against a ranked list ideal for that subtopic. These separate
evaluations can then be merged in the style of the intent aware measures. Un-
fortunately, this re-inherits the problem of rewarding systems for ignoring minor
intents. Therefore, our final family has a #-measure component as well. Intent-
Aware cascade #-measures are defined as a linear combination of S-Recall and an
intent aware cascade measure. For example,

α#-nDCG-IA@k = λ× S-Recall@k + (1− λ)
M∑
i=1

wi × α-nDCGi@k. (4.1)

Our goal is to develop evaluation measures that explicitly take into account the
diversity present in the collection. Our hypothesis is that all systems will perform
well on the easier topics for which any ranked list is likely to be diverse, and the
easier, more represented subtopics that any ranked list is likely to cover. If a system
performs well with regard to these topics and subtopics, it does not provide us
with much information. Therefore, we wish to place more emphasis on the more
difficult topics and less prevalent subtopics, as only high quality systems should
be able to perform well on these.

We focus on the difficult topics and subtopics in two ways. The first, inspired
by GMAP [59], is by using the geometric mean. This has the effect of amplifying the
impact of topics and subtopics for which a system performed poorly. By assump-
tion, these must have been the more difficult topics and subtopics. The second is
to explicitly account for the difficulty using diversity difficulty and subtopics miss
rate. Since dd is a number between zero and one, with zero representing a topic
with no diversity, we weight each topic by one minus its diversity difficulty. smr
can be used directly.

Experimentally, we investigate three methodologies for averaging evaluations
over topics described in Table 4.1 and four methodologies for averaging over subtopics
described in Table 4.2.

4.2 Discriminative Power

In this section, we show that incorporating the intrinsic diversity of the collection
does not sacrifice the sensitivity of evaluation to changes in ranked lists. One of
the primary measures of sensitivity appearing in the IR literature [32,62–64] is dis-
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1. Avg: the arithmetic average over the topics.

2. Geom: the geometric mean over the topics.

3. DD: dd-weighted average.

Table 4.1: Topic averaging methodologies used in α#-IA measures.

1. Cascade: we do not average over subtopics. As in cascade and D# mea-
sures, ranked lists are normalized by a single ideal ranked list.

2. Micro: each subtopic is weighted by its intent probability. Since the TREC
2010 and 2011 collections assumed intent probabilities are uniform, in our
experiments, this is equivalent to the arithmetic mean.

3. Geom: the geometric mean.

4. SMR: each subtopic is weighted by its subtopic miss rate.

Table 4.2: Subtopic averaging methodologies used in α#-IA measures.
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criminative power [60] (Section 2.3.3). Discriminative power measures sensitivity
by conducting statistical significance testing on pairs of systems. Given the same
set of queries, two different systems will produce different ranked lists. Ideally,
measures should produce different sets of evaluations. The discriminative power
of a measure is defined as the percentage of system pairs that are significantly dif-
ferent.

In this section, we compare the discriminative power of α#-IA measures with
that of existing measures. There are, essentially, four aspects of α#-IA measures that
can be varied: our choice of discount function (Table 2.1), our tuning of the α and λ
parameters used to model a user’s tolerance for redundancy and the weight given
to S-Recall, respectively, our choice of topic and subtopic normalization (Tables 4.1
and 4.2), and the rank at which our evaluation is calculated. Unfortunately, it is
not immediately obvious how to measure the effect of topic averaging on discrim-
inative power. We leave this for future work. In this section, we focus on subtopic
normalization. In all experiments, α and λ vary over the set {0, 0.1, 0.2, . . . , 1}. Fol-
lowing Clarke et al. [32], when using RBP, β is set to 0.8.

Table 4.3 shows the maximum discriminative power at rank 20 of each α#-IA
measure observed as α and λ are varied, as well as the maximum observed value
of the D# measures as λ is varied. From this table we observe that no measures
have substantially more discriminatory power than any other when parameters are
appropriately tuned. We note that the α#-IA measures have more discriminatory
power than D# measures, though not substantially.

Figure 4.1 shows the discriminative power of each evaluation measure at rank
20 with DCG discounting for all values of α and λ. These results were found to
be typical for all three discount functions. (See Appendix A.1 for other choices of
rank and discount function.) We can compare the α#-IA measures to existing mea-
sures (with the exception of D# measures) by carefully considering these plots. For
any subtopic average, setting λ = 1 (the far-right side in 3D plots) shows S-Recall.
Using the cascade average and setting λ = 0 (the near-left side in 3D plots) shows
α-nDCG. Using the micro average and setting λ = α = 0 (the leftmost corner)
shows nDCG-IA. Since the maximum for each year is achieved by cascade averag-
ing, and not on the near-left or far-right side (i.e. it is achieved with 0 < λ < 1),
we can conclude that the α#-IA measures do have somewhat higher discriminatory
power than existing measures.

From Figure 4.1, we observe that setting α = 0.3 and λ = 0.5 seem to be rea-
sonable choices to use in further investigation. Figures 4.2 and 4.3 show all four
subtopic averages at ranks 5,10, and 20 as one of the parameters is fixed while
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2010

2011

Figure 4.1: Discriminative power at rank 20 using DCG discounting as a function of α and
λ. (For other choices of rank and discount function see Appendix A.1.)

the other is allowed to vary using DCG discounting. (See Appendix A.1 for other
choices of discount function.) From these we conclude that while the subtopic av-
erages that emphasize the difficult subtopics—the geometric average (geom) and
the subtopic miss rate-weighted average (smr)—have lower discriminative power
overall, they are comparable when α and λ are appropriately tuned.

The results of this section as a whole tell us that α#-IA measures are slightly
more sensitive than existing measures, as assessed by discriminative power.
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2010 2011

Discount Subtopic Max Max

ERR

Cascade 0.677 0.606

Micro 0.673 0.610

Geom 0.627 0.593

SMR 0.659 0.601

D#-ERR 0.667 0.607

DCG

Cascade 0.675 0.617

Micro 0.673 0.623

Geom 0.617 0.595

SMR 0.651 0.607

D#-nDCG 0.643 0.608

RBP

Cascade 0.677 0.607

Micro 0.677 0.621

Geom 0.617 0.595

SMR 0.657 0.600

D#-RBP 0.653 0.595

Table 4.3: Maximum discriminative power observed on actual runs at rank 20. All choices
of subtopic average and discount function have comparable maxima.
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2010 2011

DCG@5

DCG@10

DCG@20

Figure 4.2: Discriminative power of as a function of λ with DCG discounting. α is fixed at
0.3. While choice of subtopic average clearly impacts discriminative power, all maxima are
comparable.

2010 2011

DCG@5

DCG@10

DCG@20

Figure 4.3: Discriminative power as a function of α with DCG discounting. λ is fixed at
0.5. While choice of subtopic average clearly impacts discriminative power, all maxima are
comparable.
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4.3 Impact on Evaluation
In this section, we explore the extent to which α#-IA measures evaluate systems dif-
ferently than existing measures. Given a collection, an evaluation measure induces
an ordering on the submitted runs. We use Kendall’s τ [47] to assess the degree of
correlation between the ranking of systems by different measures. By evaluating
all systems submitted to TREC 2010 and 2011, we can compare the relative system
rankings as computed by ERR-IA and D#-nDCG, the primary measures by which
systems are evaluated at TREC and NTCIR respectively, and α#-IA measures to
see how correlated they are. We can also measure the impact of the topic averaging
methodologies of Section 4.1 by using them with ERR-IA and D#-nDCG. In our
evaluations, we use the default parameters of TREC and NTCIR, and set α = 0.3

and λ = 0.5 in α#-IA measures, which were shown to produce metrics with high
discriminatory power in Section 4.2. This can tell us whether two measures evalu-
ate systems similarly. However, if two measures are found to be different, it cannot
tell us which of the two is better. This question will be addressed in Section 4.4.

Table 4.4 shows the baseline TREC and NTCIR measures compared with each
other and several α#-IA measures. Each cell in the table shows the Kendall’s τ
value in 2010 and 2011, separated by a slash. With τ values ranging from roughly
0.7 to 0.9, we can see that the ERR-IA, D#-nDCG, and α#-IA measures with geomet-
rice topic averaging and arithmetic subtopic averaging (Geom-Micro), and arith-
metic topic averaging and subtopic miss rate-weighted subtopic averaging (AVG-
SMR) all rank systems in highly correlated orders. However, when comparing any
of these measures to α#-IA with diversity difficulty topic averaging and geometric
subtopic averaging (DD-Geom), we get highly uncorrelated rankings with τ values
approximately between 0.15 and 0.2. This tells us that DD-Geom evaluates systems
very differently from other measures.

Tables 4.5 and 4.6 show the impact of topic averaging on the gold standard mea-
sures. With τ values ranging from 0.74 to 0.89, we can see that ordering systems by
arithmetic (avg) and geometric (geom) averaging produce similar lists. However,
averaging topics by their diversity difficulty (DD) produces orderings that rank
systems very differently. In fact, in 2010, the τ values of 0.06 and 0.08 show that the
results using ERR-IA with DD averaging are almost completely uncorrelated with
the results using ERR-IA with arithmetic and geometric averaging.

Table 4.7 shows the impact of subtopic averaging on α#-IA measures. We ob-
serve that, independent of topic average, cascade normalization (casc) and geo-
metric subtopic averaging (geom) are quite similar. This matches our intuition of
α-nDCG (recall that arithmetic average and cascading subtopic average is a lin-
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ERR-IA D#-nDCG DD-Geom Geom-Micro Avg-SMR

ERR-IA - 0.82 / 0.71 0.15 / 0.23 0.72 / 0.68 0.80 / 0.73

D#-nDCG - 0.19 / 0.13 0.74 / 0.86 0.89 / 0.86

DD-Geom - 0.21 / 0.16 0.20 / 0.17

Geom-Micro - 0.79 / 0.86

Avg-SMR -

Table 4.4: TREC and NTCIR gold standard vs a small sample of α#-IA measures. Kendall’s
τ 2010 / 2011.

ERR-IA avg geom DD

avg - 0.89 / 0.81 0.06 / 0.25

geom - 0.08 / 0.17

DD -

Table 4.5: Impact of topic averaging on ERR-IA. Kendall’s τ 2010 / 2011.

ear combination of S-Recall and α-nDCG), namely that penalizing redundancy in-
creases the impact of difficult subtopics.

We can also see that, with a minimum τ value of 0.72, if we use arithmetic topic
averaging (avg, top table), the choice of subtopic averaging does not have a large
impact. The impact is somewhat larger with geometric topic averaging (geom,
middle table), with a minimum of 0.6. When we use diversity difficulty (DD, bot-
tom table) topic weighting, however, the difference becomes more dramatic, with
a minimum of 0.4. However, we observe that subtopic miss rate weighting (smr) is
highly similar to the arithmetic average of subtopics (micro).

That diversity difficulty averaging is so different from the other averages sup-
ports our hypothesis that evaluation should use information about the collection to
emphasize difficult topics. We have shown that doing so causes evaluation metrics

D#-nDCG avg geom DD

avg - 0.74 / 0.88 0.50 / 0.29

geom - 0.56 / 0.34

DD -

Table 4.6: Impact of topic averaging on D#-nDCG. Kendall’s τ 2010 / 2011.
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avg casc micro geom smr
casc - 0.87 / 0.77 0.94 / 0.87 0.81 / 0.73

micro - 0.82 / 0.74 0.90 / 0.94
geom - 0.80 / 0.72
smr -

geom casc micro geom smr

casc - 0.72 / 0.66 1.00 / 0.92 0.72 / 0.65

micro - 0.73 / 0.62 0.99 / 0.97

geom - 0.72 / 0.60
smr -

DD casc micro geom smr

casc - 0.44 / 0.63 0.99 / 1.00 0.40 / 0.60

micro - 0.45 / 0.63 0.90 / 0.94

geom - 0.41 / 0.60
smr -

Table 4.7: Impact of subtopic averaging on α#-IA measures. Kendall’s τ 2010 / 2011.

to prefer different systems (although we have not yet shown that it causes metrics
to prefer more diverse systems). However, Table 4.7 also shows that subtopic miss
rate-weighted averaging (smr) is very similar to the arithmetic average of subtopics
(micro), suggesting that it would be better to emphasize subtopics on which sys-
tems performed poorly, rather than subtopics that we expect to be difficult. We
believe that our hypothesis is valid, but our approximation of smr is not. We dis-
cuss this further in Section 4.4 and the conclusion of this chapter (Section 4.5).

4.4 Sensitivity Experiments

For each topic, 1,000 ranked lists were created by ranking the relevant documents
at uniformly random. These ranked lists were used to compute the document se-
lection sensitivity of each measure on each topic. To increase the impact of the topic
averaging scheme being used, the reported results are averaged over all 100 topics
in TREC 2010 and TREC 2011 combined. As before, α—which models a user’s tol-
erance for redundancy—and λ—which controls the mixture with S-Recall—vary
over the set {0, 0.1, 0.2, . . . , 1}. Table 4.8 shows that, unlike discriminatory power,
document selection sensitivity can be affected by choice of topic and subtopic av-
eraging. At rank 20, document selection sensitivity ranges from a low of 0.05 to
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Avg

Geom

DD

Figure 4.4: Document selection sensitivity at rank 20 as a function of α and λ using DCG
discounting. (For other ranks and discount functions see Appendix A.2.) Choice of topic
and subtopic averaging can have a substantial impact.
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a high of 0.8. This can also be seen in Figure 4.4, which shows the selection sen-
sitivity using DCG discounting at rank k = 20. (For other ranks and discount
functions see Appendix A.2.) Geometric (geom) and arithmetic topic averaging are
quite similar. Diversity difficulty topic weighting (DD) shows marked increases in
selection sensitivity, as does geometric subtopic weighting (geom). Subtopic miss
rate weighting (smr) has higher selection sensitivity than subtopic intent-weighted
(micro) and cascade normalization.

Figures 4.5 and 4.6 show the selection sensitivity of the topic averages at ranks
k = 5, 10, and 20, each with one of the parameters fixed using DCG discount-
ing. (For other discount functions see Appendix A.2.) From these figures, as well
as Table 4.8, we can see that selection sensitivity clearly goes down as the cutoff
increases. This makes sense intuitively. Imagine that there are 20 relevant docu-
ments, 5 documents relevant to all subtopics and 15 documents each relevant to a
single subtopics. At k = 20, you will get at least some gain from every relevant
document. At k = 5, you may see the 5 documents relevant to all subtopics, or
you may see none of them. Seeing all of them versus none of them should have
more variance than seeing all of them in different orders. Consulting Table 4.8,
we can see that α#-IA measures clearly have higher document selection sensitivity
than D# measures. We can compare the α#-IA measures against the other exist-
ing measures by carefully considering Figure 4.4. Again, for any subtopic average,
setting λ = 1 (the far-right side in 3D plots) shows S-Recall. Using the cascade
average and setting λ = 0 (the near-left side in 3D plots) shows α-nDCG. When
the subtopic intent distribution is uniform, then using subtopic intent-weighted
averaging (micro) and setting λ = α = 0 (the leftmost corner) shows nDCG-IA.
Since the maximum is achieved by geometric subtopic averaging (geom), and not
on the far-right side where λ = 1, we can conclude that the α#-IA measures can
have significantly higher document selection sensitivity than existing measures.

According to document selection sensitivity, one should use diversity difficulty
topic averaging and geometric subtopic averaging. That one should use diversity
difficulty topic averaging supports our hypothesis that evaluation should take a
collection-oriented view, emphasizing topics that are difficult, rather than a user-
oriented view, emphasizing topics with poor results. However, as with Section 4.3,
geometric subtopic averaging outperforms subtopic miss rate-weighted averag-
ing. This would seem to directly contradict our hypothesis; by emphasizing small
values, geometric subtopic averaging takes the user-oriented view, emphasizing
subtopics on which the user is expected to be left unsatisfied. Instead, we be-
lieve that this is likely due to our particular implementation of subtopic miss rate,
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ERR DCG RBP

Topic Subtopic Rank Max Max Max

Avg

Cascade
5 0.229 0.218 0.218
10 0.210 0.174 0.176
20 0.204 0.152 0.170

Micro
5 0.229 0.218 0.218
10 0.211 0.174 0.174
20 0.204 0.154 0.154

Geom
5 1.558 1.556 1.556
10 1.012 0.978 0.978
20 0.683 0.608 0.608

SMR
5 0.598 0.529 0.516
10 0.518 0.404 0.422
20 0.480 0.327 0.391

D#
5 0.218 0.218 0.218
10 0.152 0.152 0.152
20 0.116 0.096 0.111

Geom

Cascade
5 0.224 0.204 0.196
10 0.205 0.168 0.167
20 0.199 0.149 0.162

Micro
5 0.224 0.204 0.204
10 0.206 0.169 0.169
20 0.199 0.151 0.151

Geom
5 1.176 1.120 1.120
10 0.761 0.667 0.667
20 0.540 0.420 0.420

SMR
5 0.504 0.436 0.423
10 0.448 0.344 0.344
20 0.425 0.292 0.323

D#
5 0.176 0.175 0.175
10 0.109 0.095 0.097
20 0.081 0.057 0.077

DD

Cascade
5 0.260 0.260 0.260
10 0.220 0.194 0.201
20 0.211 0.163 0.193

Micro
5 0.260 0.260 0.260
10 0.220 0.194 0.194
20 0.211 0.165 0.165

Geom
5 2.015 2.029 2.029
10 1.319 1.300 1.300
20 0.871 0.801 0.801

SMR
5 0.719 0.642 0.629
10 0.612 0.492 0.518
20 0.559 0.383 0.478

D#
5 0.260 0.260 0.260
10 0.194 0.194 0.194
20 0.129 0.129 0.129

Table 4.8: Maximum observed document selection sensitivity. Smaller cutoffs have higher
sensitivity.
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DCG@10

DCG@20

Figure 4.5: Document Selection Sensitivity as a function of λ with DCG discounting. (For
other discount functions see Appendix A.2.) α is fixed at 0.3.

Avg Geom DD

DCG@5

DCG@10

DCG@20

Figure 4.6: Document Selection Sensitivity as a function of α with DCG discounting. (For
other discount functions see Appendix A.2.) λ is fixed at 0.5.
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both the approximation of sampling with replacement, and by choosing to measure
subtopic miss rate at ξ, which is often as high as rank one or two. We believe that
geometric subtopic averaging, by emphasizing the subtopics where systems per-
formed poorly, as would be expected of subtopics with large subtopic miss rates,
was actually a better approximation of subtopic miss rate than our computed ap-
proximation. We will revisit this in future work. We do observe that smr, even
as approximated here, still outperforms micro and cascade normalization with re-
spect to document selection sensitivity.

4.5 Summary
In this chapter, we attempted to isolate diversity from confounding factors so that
we can begin to understand it. To this end, we introduce a new family of measures
that explicitly accounts for collection diversity. We showed that α#-IA measures,
which combine the best features of existing evaluation measures and emphasize
difficult topics and subtopics, sometimes rank systems in quite different orders
than existing measures, yet have slightly more discriminative power.

That our measures prefer different systems does not indicate that they prefer
more diverse systems. However, according to document selection sensitivity, α#-
IA measures that explicitly account for collection diversity were far more sensitive
to differences in these lists than existing measures, suggesting that these measures
may prefer more diverse systems. However, while averaging subtopics by their
difficulty also led to higher document selection sensitivity, it was still less than
geometric averaging. This is likely due to limitations of our implementation of
difficulty at the subtopic level. We believe that these results support our hypoth-
esis that taking a collection-oriented view of evaluation leads to systems that are
preferable to the user.
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Chapter 5

An Information-Theoretic
Framework for Unifying
Evaluation and Meta-Evaluation

In Chapters 3 and 4, we demonstrated the utility of developing meta-evaluation
measures and incorporating them into the measurement of system quality. In this
chapter, we introduce a powerful new probabilistic framework that, by allowing
us to view evaluation using the tools of information theory, provides immediate
access to a large number of powerful evaluation and meta-evaluation tools allow-
ing for a deeper understanding of the performance of search engines. It is our hope
that by creating a single, unifying framework that can be used to perform evalua-
tion and can be easily manipulated to create meta-evaluations, future researchers
will be able to incorporate meta-evaluations into evaluation measures as we did in
Chapter 4.

Our framework for evaluation is based on the same observation that under-
lies BPref, that relevance judgments can also be interpreted as a preference be-
tween documents having different relevance grades. However, we take this one
step further by interpreting relevance judgments as a retrieval system. Therefore,
evaluation can be considered as a rank correlation between systems and relevance
judgments. To this end, we develop a probabilistic framework for rank correlation
based on the expectation of random variables, which we demonstrate can also be
used to compute existing evaluation metrics. However, the true value of our frame-
work lies in its potential for creating new, information-theoretic meta-evaluation
tools that can be, hopefully, be more easily unified with evaluation.

In Section 5.1, we motivate and define our new framework and explore it’s rela-
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tionship with traditional evaluation and rank correlation measures. In Section 5.2,
we demonstrate a practical application of re-interpreting these kinds of analyses
information-theoretically, namely that two ranked lists can be compared condition-
ally with respect to a third. In Section 5.3, we define a new evaluation measure,
Relevance Information Correlation, which is defined within our framework. In
Section 5.4, we demonstrate another practical application of re-interpreting these
kinds of analyses information-theoretically, namely that multiple ranked lists, and,
hopefully, in the future, multiple QRELs, can be considered jointly.

5.1 A Probabilistic Interpretation of Rank Correlation
In this section, we define our probabilistic framework for evaluation and meta-
evaluation. We begin by deriving our framework from traditional rank correlation
in Section 5.1.1. In Section 5.1.2, we demonstrate how to compute traditional eval-
uation measures in our probabilistic framework. In Section 5.1.3, we prove that
our information-theoretic interpretation of our framework is equivalent to the tra-
ditional rank correlation measures from which it was derived.

5.1.1 Derivation from Traditional Rank Correlation

Mathematically, one can view a search system as providing a total ordering of the
documents ranked and a partial ordering of the entire collection, where all ranked
documents are preferred to unranked documents but the relative preference among
the unranked documents is unknown. Similarly, one can view the relevance assess-
ments as providing a partial ordering of the entire collection: in the case of binary
relevance assessments, for example, all judged relevant documents are preferred
to all judged non-relevant and unjudged documents, but the relative preferences
among the relevant documents and among the non-relevant and unjudged doc-
uments is unknown. Thus, mathematically, one can view retrieval evaluation as
comparing the partial ordering of the collection induced by the search system with
the partial ordering of the collection induced by the relevance assessments.

To formalize and instantiate a framework for comparing such partial orderings,
consider the simplest case where we have two total orderings of objects, i.e., where
the entire “collection” of objects is fully ranked in both “orderings.” While such
a situation does not typically arise in search system evaluation (since not all doc-
uments are ranked by the retrieval system nor are they fully ranked by relevance
assessments), it does often arise when comparing the rankings of systems induced by
two (or more) evaluation metrics; here Kendall’s τ is often the metric used to com-
pare these (total order) rankings. In what follows, we define a probabilistic framework
within which to compare two total orderings, and we show how traditional metrics
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(such as Kendall’s τ ) are easily cast within this framework.

Consider two total orderings of n objects. There are
(
n
2

)
(unordered) pairs of

such objects. A pair is said to be concordant if the two orderings agree on the relative
rankings of the objects and discordant if the two orderings disagree. Let c and d be
the number of concordant and discordant pairs, respectively. Then Kendall’s τ is
defined as follows:

τ =
c− d
c+ d

. (5.1)

If we let C and D denote the fraction of concordant and discordant pairs then
Kendall’s τ is defined as

τ = C −D. (5.2)

Note that c+ d 6=
(
n
2

)
if there are ties.1

We define our probabilistic framework in terms of three things: (1) a sample
space of objects, (2) a distribution over this sample space, and (3) random variables
over this sample space. Let our sample space Ω be all possible 2 ·

(
n
2

)
ordered pairs

of distinct objects, and consider a uniform distribution over this sample space. For a
given ranking R, define a random variable XR : Ω→ {−1,+1} that outputs +1 for
any ordered pair concordant with R and −1 for any ordered pair discordant with
R.

XR [(di, dj)] =

+1 if di appears before dj in R.

−1 otherwise.
(5.3)

We thus have a well-defined random experiment: draw an ordered pair of objects
at random and output +1 if that ordered pair agrees with R’s ranking and −1

otherwise. Since all ordered pairs of objects are considered uniformly, the expected
value E[XR] of this random variable is zero.

Given a second ranked list S, one can similarly define an associated random
variable XS . Now consider the random experiment of multiplying the two random
variables: the productXR ·XS will be +1 precisely when the pair is concordant—i.e.
both lists agree that the ordering of the objects is correct (+1) or incorrect (−1), and
the product will be −1 when the pair is discordant—i.e. the lists disagree. In this
probabilistic framework, Kendall’s τ is the expected value of the product of these

1Kendall defined two means by which τ can account for ties, depending on the desired behav-
ior. Imagine comparing two ranked lists, one of which is almost completely composed of ties. τA,
defined above, approaches +/ − 1. τB includes the number of ties in the denominator, and there-
fore approaches 0. We believe that the former approach is appropriate in this context. Since QRELs
are almost exclusively composed of ties (recall that all pairs of unjudged documents in the corpus
are considered to be tied), using the latter would mean that effect of the relatively rare meaningful
comparisons would be negligible.
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random variables:
τ = E[XR ·XS ]. (5.4)

The real power of this framework is in the definition of these random variables
and the ability to manipulate the probability distriubtion. This gives us the ability:
(1) to generalize such that we can comparing partial orderings as they arise in sys-
tem evaluation, and (2) to measure the correlation of these random variables using
information-theoretic techniques.

5.1.2 Traditional Evaluation Measures in Our Probabilistic Framework

In this section, we demonstrate how to compute AP and nDCG in our probabilis-
tic framework. To compute average precision,2 recall the observation by Yilmaz
and Aslam [87] that average precision can be formulated as the expectation of the
random experiment described in Table 2.2. To compute this expectation in our
framework, let Ω = {(di, dj)} be the set of all ordered pairs of documents. With
respect to a ranked list R, define the random variable XR : Ω→ {0, 1} as

XR [(di, dj)] =

1 if dj appears before di in R.

0 otherwise.
(5.5)

Define a QREL variable Q : Ω→ {0, 1} as

Q [(di, dj)] =

1 if dj is relevant.

0 otherwise.
(5.6)

To compute AP, we must define the probability distribution in terms of the ranked
list. Let
PR = U

I({(di,dj)|di is relevant, dj appears before di}), i.e. the uniform distribution
over all such pairs of documents, be the probability distribution associated with
the list R, then

AP = EPR [XR ·Q]. (5.7)

To compute nDCG@k, let Ω = {di} be the set of all documents. With respect to
a ranked list R, define the random variable XR : Ω→ {0, 1} as

XR(di) =
1

lg(ri + 1)
(5.8)

2Our formulation can be extended to GAP. We restrict our discussion to binary relevance for the
sake of clarity.
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where ri is the rank of document di in R. Define a QREL variable Q : Ω→ {0, 1} as

Q(di) = k(2gi − 1) (5.9)

where gi is the relevance grade of document di. If we Let PR = UI(ri≤k) be the
probability distribution associated with the list R, then

DCG@k = EPR [XR ·Q]. (5.10)

To compute nDCG, we simply compute the DCG of the ideal list as above, and
normalize.

5.1.3 Correspondance with Traditional Rank Correlation

In Section 5.1.1, we defined Kendall’s τ as the expected product of random vari-
ables. The following theorem allows us to restate Kendall’s τ equivalently as the
mutual information between those random variables.

Theorem 5.1. I(XR;XS) = 1+τ
2 log(1 + τ) + 1−τ

2 log(1− τ).

Proof. Denote XR and XS as X and Y . Consider the following joint probability
distribution table.

Y

X

−1 +1

−1 a b

+1 c d

Observe that: a+ b+ c+ d = 1; C = a+ d, D = b+ c. Therefore τ = a+ d− b− c;
and since document pairs appear in both orders, a = d and b = c.

The joint probability distribution can be rewritten as follows.

Y

X

−1 +1

−1 C
2

D
2

+1 D
2

C
2

Observe that, sinceC+D = 1, the marginal probabilityP (X) = P (Y ) =
(
C
2 + D

2 ,
C
2 + D

2

)
=(

1
2 ,

1
2

)
.
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Recall that

I(X;Y ) = KL(P (X,Y )||P (X)P (Y ))

=
∑
x,y

p(x, y) lg
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y) lg p(x, y) +
∑
x,y

p(x, y) lg
1

p(x)p(y)
. (5.11)

Since P (X,Y ) =
(
C
2 ,

D
2 ,

C
2 ,

D
2

)
and P (X)P (Y ) =

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
,

I(X,Y ) = 2 · C
2

lg
C

2
+ 2 · D

2
lg
D

2
+ 2 · C

2
lg 4 + 2 · D

2
lg 4

= C lg
C

2
+D lg

D

2
+ 2C + 2D

= C lgC − C +D lgD −D + 2C + 2D

= C lgC +D lgD + 1

= C lgC + (1− C) lg(1− C) + 1 (5.12)

Since C + D = 1 and τ = C − D, we have that τ = 2C − 1, C = 1+τ
2 and D =

1− C = 1−τ
2 .

In terms of C, if H2 represents the entropy of a Bernoulli random variable,3

I(X;Y ) = −H2(C) + 1

= −H2

(
1 + τ

2

)
+ 1

=
1 + τ

2
lg

1 + τ

2
+

1− τ
2

lg
1− τ

2
+ 1

=
1 + τ

2
lg(1 + τ)− 1 + τ

2
+

1− τ
2

lg(1− τ)

−1− τ
2

+ 1

=
1 + τ

2
lg(1 + τ) +

1− τ
2

lg(1− τ) (5.13)

Corollary 5.1. For two ranked lists R and S, I(XR;XS) = 1−H2(K) where K = 1−τ
2

is the normalized Kendall’s τ distance between R and S.

3H2(p) = −p lg p− (1− p) lg(1− p). Note that H2(p) = H2(1− p).
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Figure 5.1: Information τ as a function of Kendall’s τ . Note that the function is bijective for
τ ≥ 0.

Unlike Kendall’s τ , the mutual information between ranked lists ranges from 0 on
lists that are completely uncorrelated to 1 on lists that are either perfectly correlated
or perfectly anti-correlated.

5.2 Meta-Evaluation Application #1: Conditional Rank Cor-
relation

In Section 5.1.1, we defined Kendall’s τ as the expected product of random vari-
ables. In Section 5.1.3, we proved Theorem 5.1, allowing us to restate Kendall’s τ
equivalently as the mutual information between the random variables. If we re-
strict our attention to pairs of lists that are not anti-correlated, then the relationship
is bijective (see Figure 5.1). Given this fact, we define a variant of Kendall’s τ ,
information τ :

τI(R,S) = I(XR;XS) (5.14)

whereXR is the ranked list random variable defined in Equation 5.3 observed with
respect to the uniform probability distribution over all pairs of distinct objects. By
reframing Kendall’s τ equivalently in terms of mutual information, we immedi-
ately gain access to a large number of powerful theoretical tools. For example, we
can define a conditional information τ between two lists given a third. For lists R
and S given T ,

τI(R,S | T ) = I(XR;XS | XT ). (5.15)

Kendall’s τ can tell you whether two sets of rankings are similar, but it cannot
tell you why. Information τ can be used as a meta-evaluation tool to find the un-
derlying cause of correlation between measures. We demonstrate the use of infor-
mation τ as a meta-evaluation tool by using it to analyze measures of the diversity
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of information retrieval systems. As we discussed in Chapter 3, diversity measures
conflate several factors including: a diversity model that rewards novelty and pe-
nalizes redundancy, and a measure of ad hoc performance that rewards systems
for retrieving highly relevant documents. We wish to know not only whether two
diversity measures are correlated, but also the similarity between their component
diversity models. Using Kendall’s τ , we can observe whether the rankings of sys-
tems by each measure are correlated. But even if they are correlated, this could still
be for one of two reasons: either both the diversity and the performance compo-
nents evaluate systems similarly; or else one of the components is similar, and its
effect on evaluation is dominant. However, if the measures are correlated when
conditioned on their underlying performance components, then this must be due
to similarities in their models of diversity.

Figure 5.2: Per-query information τ (conditional rank correlation) between the TREC and
NTCIR gold standard diversity measures conditioned on their underlying performance
measures.
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TREC 2010 TREC 2011

τI (ERR-IA ; α-nDCG) 0.8929 0.8375

τI (ERR-IA ; α-nDCG | nDCG) 0.4860 0.4434

τI (ERR-IA ; α-nDCG | ERR) 0.2499 0.3263

τI (ERR-IA ; α-nDCG | nDCG, ERR) 0.2451 0.2805

τI (ERR-IA ; D#-nDCG) 0.6390 0.5545

τI (ERR-IA ; D#-nDCG | nDCG) 0.3026 0.1728

τI (ERR-IA ; D#-nDCG | ERR) 0.1222 0.1442

τI (ERR-IA ; D#-nDCG | nDCG, ERR) 0.1239 0.1003

Table 5.1: TREC 2010 and 2011 information τ (conditional rank correlation) between diver-
sity measures conditioned on ad hoc performance measures.

We measured this effect on the the TREC 2010 and 2011 Web collections [29,30].
Note that the performance measures are evaluated using graded relevance, while
the diversity measures use binary judgments for each subtopic. All evaluations
are performed at rank 20. Figure 5.2 shows the rank correlation between ERR-IA
and D#-nDCG, the primary measures reported by TREC and NTCIR [76], when
conditioned on their underlying performance models. Each query is computed
separately, with each datapoint in the figure corresponding to a different query.
Table 5.1 shows the results of conditioning additional pairs of diversity measures
(now averaged over queries in the usual way) on their performance models. The
results in Figure 5.2 are typical of all choices of measure on a per-query basis. For
additional choices, see Appendix A.3.

Our results confirm that while diversity measures are very highly correlated,
most of this correlation disappears when one conditions on the underlying perfor-
mance model. This indicates that most of the correlation is due to the similarity
between the performance components and not the diversity components. For ex-
ample, in TREC 2010, ERR-IA and α-nDCG have an information τ of almost 0.9.
However, when conditioned on ERR, the similarity falls to only 0.25. This means
that while these two measures are mostly ranking systems for the same reason,
that reason is simply ERR. However, of the 0.9 bits that are the same, 0.25 are due
to some factor other than ERR. This other factor must presumably be the similarity
in their diversity models.
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5.3 Evaluation within our Framework
In Section 5.1, we demonstrated a probabilistic framework for evaluation based on
the correlation between a system and the incomplete ranking generated by a set
of relevance judgments. In this section we define an information-theoretic evalu-
ation measure, relevance information correlation. We define the measure in Sec-
tion 5.3.1. In Section 5.3.2, we demonstrate that our measure is consistent with
existing measures.

5.3.1 Relevance Information Correlation

To use our probabilistic framework, we must define a sample space, a probability
distribution, and random variables. Let the sample space, Ω = {(di, dj)}, be the
set of all ordered pairs of judged documents. This means that we are ignoring un-
judged documents, rather than considering them non-relevant. This is equivalent
to computing an evaluation measure on the condensed list [61] created by removing
all non-judged documents from the list. We define the probability distribution in
terms of the QREL to ensure that all ranked lists will be evaluated using the same
random experiment. Initially, let P = U |I(gi 6=gj), where gi represents the relevance
grade of document di, be the uniform probability distribution over all pairs of doc-
uments whose relevance grades are not equal.4

We define a QREL variable Q over ordered pairs of documents as

Q [(di, dj)] =

1 if gi > gj

0 otherwise.
(5.16)

Note that this definition can be applied to both graded and binary relevance judg-
ments.

We now turn our attention to defining a ranked list random variable over or-
dered pairs of documents (di, dj). If both document di and dj appear in the ranked
list, than our output can simply indicate whether di was ranked above dj . If doc-
ument di appears in the ranked list and dj does not, then we will consider di as
having been ranked above dj , and vice versa. If neither di nor dj is ranked, we will
output a null value. If we were to instead restrict our attention only to judged doc-
ument pairs where at least one document is ranked, then a ranked list consisting of
a single relevant document followed by some number of non-relevant documents
would have perfect mutual information with the QREL since all of the ranked rele-

4This distribution is sufficient for performing traditional, recall-oriented evaluation. We will in-
troduce a different probability distribution later which will be used for precision-oriented evaluation
at arbitrary ranks.
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vant documents appear before all of the ranked non-relevant documents. However,
this system must be penalized for preferring all of the ranked non-relevant docu-
ments to all of the unranked relevant documents. If we instead use a null value,
our example ranked list would almost always output null. This behavior would be
independent of the QREL, meaning the two variables will have almost no mutual
information. In effect, the null value creates a recall component for our evaluation
measure; no system can have a large mutual information with the QREL unless it
retrieves most of the relevant documents.

Another problem we must consider is that mutual information is maximized
when two variables are completely correlated or completely anti-correlated. Con-
sider an example ranked list consisting of a few non-relevant documents followed
by several relevant documents and then many more non-relevant documents. Since
this example ranked list will disagree with the QREL on almost all document pairs,
its random variable will have a very high mutual information with the QREL
variable. The system is effectively being rewarded for finding the subset of non-
relevant documents that happen to be present in the QREL. To address this, we
truncate the list at the last retrieved relevant document prior to evaluation.

Let ri represent the rank of document di in the truncated list S. Then the ranked
list variable RS is defined as

RS [(di, dj)] =


1 if ri < rj

0 if neither di nor djwere retrieved

−1 otherwise.

(5.17)

We define our new measure, Relevance Information Correlation, as the mutual
information between the QREL variable Q and the ranked list variable R:

RIC(System) = I(RSystem;Q) (5.18)

RIC is computed separately for each query, and then averaged, as with mean av-
erage precision. In order to compute RIC we must estimate the joint probability
distribution of document preferences over Q and R. This could be done in various
ways. In this work, we use the maximum likelihood estimate computed separately
for each query. We also note that RIC has no explicit rank component, and would
therefore seem to treat all relevant documents equally independent of the rank at
which they were observed. However, there is an implicit rank component in that a
relevant document that is not retrieved early in the list must be incorrectly ranked
below many non-relevant documents. This argument is similar in spirit to BPref.
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Precision-Oriented Evaluation

The discussion above is inherently recall-oriented. Our precision-oriented ver-
sion, RIC@k, differs from RIC in two ways. First, we normalize with respect to
the maximum possible RIC@k of an ideal ranked list, as with nDCG. Second, we
alter the probability distribution so as to give more weight to documents with
higher relevance grades. To do so, we begin by observing that evaluation met-
rics can be viewed as inducing probability distributions over ranks. For example,
Carterette [20] derives the probability of stopping at a rank k from to nDCG as

PDCG(k) =
1

log2(k + 1)
− 1

log2(k + 2)
. (5.19)

Imagine a QREL with Rgmax documents relevant at the highest grade. According
to the QREL these documents are equally likely to appear at ranks one through
Rgmax, but have zero probability of appearing anywhere else. Therefore, in any
ideal ranked list, the probability associated with one of these documents will be
PDCG(k) for some k with 1 ≤ k ≤ Rgmax. We define the probability of a document
as the average probability of the ranks at which the document can appear in an
ideal list. If Rg is the number of documents that are relevant at grade g, then for a
document d such that rel(d) = g, the minimum rank for this document in an ideal
list

kmin =

gmax∑
i=g+1

Ri, (5.20)

i.e. after all of the documents with higher relevance grades, and the maximum rank
is

kmax = kmin +Rg. (5.21)

Then the probability associated with the document is

P (d) = α

kmax∑
i=kmin

1
log2(i+1) −

1
log2(i+2)

Rg

= α

1
log2(kmin+1) −

1
log2(kmax+2)

Rg
, (5.22)

where α is a normalizing constant. Note that the probability of non-relevant docu-
ments is non-zero, and that this definition can also be used for binary relevance.

RIC requires us to define a probability distribution over document pairs, whereas
Equation 5.22 defines a probability for documents. To create the appropriate distri-
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bution, we assume that each document in the pair is chosen independently,

P (di, dj) = βP (di)P (dj) (5.23)

where β is a normalizing constant that ensures that P (di, dj) forms a distribution.

We define RIC@k by normalizing by the ideal ranked list, as in nDCG, and
computing mutual information with respect to the probability distribution defined
in 5.23.

RIC@k(S) =
I(RS ;Q)

I(Rideal;Q)
(5.24)

5.3.2 Correlation with Existing Measures
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Figure 5.3: Correlation between RIC and AP (top) and nDCG (bottom). TREC 8 (left) uses
binary relevance judgments. TREC 9 (right) uses graded relevance judgments.

Our measure is quite novel in its formulation, and makes many non-standard
assumptions about information retrieval evaluation. Therefore it is necessary to
validate experimentally that our measure prefers the same retrieval systems as ex-
isting measures. Note that for two evaluation measures to be considered com-
patible, it is sufficient that they rank systems in the same relative order; it is not
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Figure 5.4: Correlation between (G)AP and nDCG. TREC 8 (left) uses binary relevance
judgments. TREC 9 (right) uses graded relevance judgments.
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Figure 5.5: Correlation between RIC and nDCG at rank k=20. TREC 8 (left) uses binary
relevance judgments. TREC 9 (right) uses graded relevance judgments.
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Figure 5.6: Correlation between nDCG and ERR at ranks 5, 10, and 20 on Trecs 2010 (left)
and 2011 (right)

necessary that they always assign systems similar absolute scores. For example, a
system’s nDCG is often higher than its average precision.

To show that the recall-oriented version of RIC is consistent with AP and nDCG,
we computed the RIC, AP, and nDCG5 of all systems submitted to TRECs 8 and
9 [83, 84] (see Figure 5.3). TREC 8 uses binary relevance judgments. TREC 9 uses
graded relevance judgments, requiring the use of graded average precision. Inset

5nDCG is computed at rank 1000.
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Figure 5.7: Correlation between RIC and ERR at ranks 5, 10, and 20 on Trecs 2010 (left) and
2011 (right)

into each plot is the output of the measures on the top ten systems as computed
by the measure we are comparing RIC against. For each experiment, we report the
Kendall’s τ and Spearman’s ρ [78] rank correlations for all systems, and for the top
ten systems. With Kendall’s τ values of at least 0.799 on all systems and 0.644 on
top ten systems, the ranking of systems by RIC is still highly correlated with those
of both AP and nDCG, although RIC is not as highly correlated with either AP or
nDCG as AP and nDCG are with each other (see Figure 5.4).
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Figure 5.8: Correlation between RIC and nDCG at ranks 5, 10, and 20 on Trecs 2010 (left)
and 2011 (right)

To show that the precision-oriented version, RIC@k, is consistent with existing
measures, we computed the RIC and nDCG of all systems submitted to TRECs 8
and 9 at rank 20 (see Figure 5.5), as well as the RIC, nDCG and ERR of the systems
submitted the the TREC 2010 ad hoc task and to TREC 2011 at ranks 5, 10, and
20 (see Figures 5.6, 5.7, and 5.8.) Considering TRECs 8 and 9, we see that, with
a minimum τ of 0.79, RIC@20 is consistent with nDCG@20 overall. However, we
do observe that, while RIC@20 and nDCG@20 agree about the best two systems,
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and that the next 8 systems are better than the other systems, the two do not order
systems 3 through 10 consistently, causing the τ of the top ten systems to fall all the
way to 0.16.

Unfortunately, the rank correlation between measures is much lower on TRECs
2010 and 2011. The correlation between our measure and existing measures can be
even smaller, with a minimum Kendall’s τ of 0.45, which is halfway between per-
fect correlation and random noise. However, it is less clear on what is a “correct”
ordering for TRECs 2010 and 2011 than on TRECs 8 and 9, as evidenced by the fact
that the correlation between ERR and nDCG, two measures trusted by the commu-
nity, can have a correlation as low as a Kendall’s τ of 0.71. However the accuracy
of our measure on these collections is still questionable. In future work, we believe
it will be possible to improve upon this result by better estimating the underlying
random variables, for example by employing smoothing or sampling techniques.
However, we demonstrate in other sections that this level of accuracy is sufficient
for myriad, novel, useful applications of our framework.

TREC 8 TREC 9

(G)AP 0.716 0.648

nDCG 0.713 0.757

RIC 0.719 0.744

Table 5.2: Discriminative power of (graded) AP and nDCG vs. RIC for Recall-Oriented
Experiments.

To further validate our measure, we also compute the discriminative power [60] of
the various measures. Our results are displayed in Tables 5.2 and 5.3. As measured

TREC 8 TREC 9

nDCG@20 0.665 0.643

RIC@20 0.656 0.451

TREC 2010 TREC 2011

ERR@20 0.453 0.451

nDCG@20 0.529 0.516

RIC@20 0.114 0.275

Table 5.3: Discriminative power of nDCG vs. RIC for Precision-Oriented Experiments.
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by discriminatory power, we see that, in a recall-oriented setting, RIC is at least
as sensitive, if not more so, than AP and nDCG. Unfortunately, RIC is not very
discriminative in a precision-oriented context.

5.4 Meta-Evaluation Application #2: Upper Bound on Metasearch
In Section 5.3, we defined an evaluation measure in terms of mutual information.
One advantage of this approach is that collections of systems can be evaluated
directly by considering the output of their random variables jointly, without their
needing to be combined.The relevance information correlation for a collection of
systems, denoted S1 through Sn, can be defined as

RIC(S1, . . . , Sn) = I(RS1 , . . . , RSn ;Q) (5.25)

In this section, we will show that this produces a natural upper bound on metasearch
performance that is consistent with other upper bounds appearing in the literature.

We compare our upper bound against those of Montague [51]. Montague de-
scribes metasearch algorithms as sorting functions whose comparators, as well as
the documents to be sorted, are defined in terms of collections of input systems.
By also using the QREL as input, these algorithms can estimate upper bounds on
metasearch performance. These bounds range from the ideal performance that can-
not possibly be exceeded by any metasearch algorithm, to descriptions of reason-
able metasearch behavior that should be similar to the performance of any quality
metasearch algorithm.

Montague defines the following upper bounds on metasearch:

1. Naive: Documents are sorted by comparison of relevance judgments, i.e. the
naive upper bound is created by returning all relevant documents returned
by any system in the collection above any non-relevant document. Relevant
documents not retrieved by any system are not ranked.

2. Pareto: If document A is ranked above document B by all systems, then docu-
ment A is considered “greater” than document B. Otherwise, the documents
are sorted by comparison of relevance judgments.

3. Majoritarian: If document A is ranked above document B by at least half
of the systems, then document A is considered “greater” than document B.
Otherwise, the documents are sorted by comparison of relevance judgments.

We will compare our direct joint evaluation with these upper bounds, and sev-
eral metasearch algorithms commonly used as baselines in the IR literature: the
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τ ρ RMSE

anz 0.221 / 0.147 / 0.221 0.330 / 0.213 / 0.327 0.481 / 0.533 / 0.516

condorcet 0.519 / 0.393 / 0.540 0.689 / 0.549 / 0.737 0.362 / 0.403 / 0.398

mnz 0.587 / 0.395 / 0.543 0.764 / 0.551 / 0.733 0.351 / 0.385 / 0.382

majoritarian 0.552 / 0.436 / 0.541 0.735 / 0.605 / 0.731 0.340 / 0.370 / 0.367

pareto 0.657 / 0.311 / 0.423 0.836 / 0.445 / 0.590 0.044 / 0.079 / 0.079

naive 0.788 / 0.579 / 0.661 0.931 / 0.762 / 0.849 0.039 / 0.093 / 0.096

Table 5.4: Correlation between joint distribution and metasearch algorithms. Results are
for Trec 8 / Trec 9 with binary relevance judgments / Trec 9 with graded relevance judg-
ments.

CondorcetFuse metasearch algorithm [52] and the Comb family of metasearch al-
gorithms [70]. We examined the direct evaluation and metasearch performance
of collections of ten randomly selected systems. Experiments were performed on
TREC 8 and TREC 9 with both binary and graded relevance judgments.

Figure 5.9 shows the RIC of the system output by a metasearch algorithm plot-
ted against the joint RIC of the input systems, and Table 5.4 shows various mea-
sures of their correlation. Montague found that combANZ is inferior to CondorcetFuse
and combMNZ, CondorcetFuse and combMNZ perform comparably to the Ma-
joritarian bound, and the Naive bound is not appreciably better than the Pareto
bound. If direct evaluation and the Naive bound are both reasonable estimates of
the actual upper bound, then these results should be confirmed by Figure 5.9 and
Table 5.4, as indeed they are. Note that there is almost no correlation between the
joint evalution and the weakest metasearch algorithm, combANZ: combANZ does
not approximate the upper bound on metasearch. The correlation improves as the
quality of the metasearch algorithm improves, and it does so in a manner consis-
tent with Montague. The correlations between the joint evaluation and the output
of combMNZ, CondorcetFuse, and the Majoritarian bound are similar; while they
are still biased as estimators, the correlation is beginning to approach monotonic-
ity. Finally, with a root mean square error of 0.039 on TREC 8, the joint evaluation
estimation of the upper bound is essentially identical to that of the Naive upper
bound. If the Naive upper bound is a reasonable estimate of the upper bound on
metasearch performance, then so is the joint evaluation of the input systems.
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5.5 Summary
In this chapter, we developed a probabilistic framework for the analysis of informa-
tion retrieval systems based on the correlation between a ranked list and the pref-
erences induced by relevance judgments. Our framework is based on the choice
of sample space, probability distribution, and random variables. Using this frame-
work allows us access to information-theoretic tools which can be used to better
understand information retrieval systems. For example, by considering rank cor-
relation information-theoretically, which we call information τ , we can measure the
correlation between two lists conditioned on a third. We demonstrated the value
of this by showing that the correlation between diversity measures is primarily
due to the underlying impact of performance. We also demonstrated that by ap-
propriately defining our random variables we develop a new evaluation measure,
relevance information correlation. By appropriately defining the probability distribu-
tion, this measure can be be used for precision- and recall-oriented experiments.
Since this measure is computed information-theoretically, we show how it can be
used to evaluate a collection of systems simultaneously, which provides a natural
upper bound on metasearch performance.
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Figure 5.9: RIC of systems output by metasearch algorithms (Fuse) versus RIC of systems
computed directly (S1, . . . , S10) without combining.
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Chapter 6

Information Difference

Imagine that you are attempting to improve an existing ranker. On what basis
do you decide whether or not your changes are beneficial? One typically evalu-
ates both systems on a number of queries, and measure the difference in average
performance. If one system outperforms the other, whether you have made an
improvement is clear. But what happens when the systems perform similarly? It
could be that your new system is essentially unchanged from your old system, but
it is also possible that the two systems chose highly different document sets that
just happened to have very similar evaluation scores. In the latter case, it may be
possible to create a new, better system based on a combination of the two existing
systems.

We propose a measure of the magnitude of the difference between systems in
their ranking of documents for which we have relevance information, rather than
the magnitude of the difference between their performance. We denote this quan-
tity as the information difference between systems. We define and experimentally
validate information difference in Section 6.1. In Section 6.2, we demonstrate the
utility of information difference as a meta-evaluation tool by comparing the rel-
ative impact of retrieval models and parameter tuning. In Section 6.3, we show
another practical application of information difference, namely that it can be used
to find the best systems to merge for metasearch.

6.1 Definition

In this section, we define our notion of information difference, and then demon-
strate empirically that it can be used to determine whether two systems with simi-
lar performance have similar behavior, i.e. that they rank documents consistently.

Our definition of information difference is inspired by the Boolean algebra sym-
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System 1 System 2

QREL

Figure 6.1: Information difference corresponds to the symmetric difference between the
intersections of the systems with the QREL in information space (red portion of the Venn
diagram).

metric difference operator as applied to information space (see Figure 6.1).

id(S1, S2) = I(RS1 ;Q | RS2) + I(RS2 ;Q | RS1) (6.1)

with Q and R defined as in Equations 5.16 and 5.17 respectively, and using a uni-
form distribution over all pairs of documents with different relevance grades. We
also define id@k by using the probability distribution described in Equation 5.23.

As a preliminary validation of information difference, we analyzed pairs of sys-
tems submitted to TREC 8, selected at random (see Figure 6.2). The x-axis shows
the magnitude of the change in AP, and the y-axis shows the information differ-
ence. The two are roughly correlated. This corresponds with our intuition that, in
general, systems that rank documents similarly should be expected to have similar
performance.

To demonstrate the utility of information difference, we demonstrate that it can
be used to detect whether systems are similar. As a proxy for similarity, we sort a
collection of systems by performance, and separate them into twenty equal-sized
bins. By definition, each bin contains systems with small differences in perfor-
mance. We will consider two systems within the same bin to be “similar” if they
were submitted by the same research group. It is reasonable to assume that the ma-
jority of these systems were different instantiations of the same underlying technol-
ogy, although there will be many instances where this is not the case at all. Within
each bin, we compare each pair of systems to determine which pairs are similar
according to our proxy. For example, Table 6.1 shows the pairs of systems submit-
ted to TREC 8 that had the smallest information difference. When the system pairs
were sorted by their information difference, the first 27 pairs meet our proxy for
similarity. This is not the case when we sort by |∆ AP|.
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Figure 6.2: Scatter plot of information difference and the magnitude of change in AP of
random pairs of TREC 8 systems.

Rank System 1 System 2 id |∆ AP|

1 blueUB99T blueUB99SW 0.010 0.005
2 blueunc8al32 blueunc8al42 0.012 0.002
3 bluefub99tt bluefub99tf 0.017 0.000
4 bluenttd8al bluenttd8alx 0.023 0.002
5 blueibmg99a blueibmg99b 0.027 0.012

...

28 blueisa25t redcirtrc82 0.084 0.004
29 blueCL99SD blueCL99SDopt2 0.086 0.000
30 blueok8amxc blueok8alx 0.086 0.006
31 bluetno8d4 redMITSLStd 0.088 0.016
32 blueuwmt8a2 blueuwmt8a1 0.089 0.002

Table 6.1: The systems from TREC 8 were binned by average precision. Information differ-
ence and ∆ AP were computed for all system pairs within each bin. Sorting by information
difference, the first 27 pairs match our proxy for similarity.

To determine the quality of information difference as a similarity classifier, we
compare it’s ROC curve to those of the following baselines:

1. Mutual Information: I(RS1 ;RS2)—Computing information difference requires
relevance judgments. This comparison allows us to measure how much these
judgments increase our ability to classify systems. Recall that, in the base case
where both systems totally order the same set of documents, this is equiva-
lent to Kendall’s τ . Note that since we are not using relevance judgments,
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Figure 6.3: The maximum likelihood estimate versus a bootstrapped estimate of the mutual
information between 60 pairs of systems submitted to TREC 8. Systems are truncated at
rank 100. The bootstrapped estimate is computed over 100 samples, each of which consists
of 100 pairs of documents chosen at (uniformly) random.

we cannot truncate our ranked lists at the last relevant document. We found
that, in recall-oriented experiments, this could produce a quite large number
of additional document pairs, greatly increasing runtime. Fortunately, we
found simple bootstrap estimates to be highly accurate (see Figure 6.3).

2. Jaccard Coefficient: S1∩S2
S1∪S2

—This is a set-based measure, rather than a list-
based measure, i.e. it determines whether two systems ranked the same set of
documents, independent of order. This comparison allows us to determine
whether document order is necessary to classify systems, or whether docu-
ment selection alone is sufficient.

We performed our experiments on TRECs 8 & 9 at ranks 20 and 1000, as well
as the systems submitted to the TREC 2010 ad hoc and diversity tasks, and TREC
2011. For each collection, we compute the ROC curves of information difference,
mutual information and Jaccard coefficient when used to classify systems as simi-
lar, as well as the average Jaccard coefficient between all pairs of systems that were
compared. Figure 6.4 shows all computed AUC scores as a function of average
Jaccard coefficient. Figure 6.5 shows the ROC curves of each classifier on each col-
lection. We observe that when the average Jaccard coefficient is high, similarity
detection becomes trivial. This is plausible. If the average Jaccard coefficient is
high, then the majority of documents chosen by the majority of the systems are the
same. Any deviation from this set of common documents can be used to classify
systems accurately, i.e. if two systems each chose the same rare document, then they
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are very highly likely to be similar. However, when the average Jaccard coefficient
is lower, the problem becomes more difficult. For example, on TREC 8 at rank 20,
with an average Jaccard coefficient of 0.687, the Jaccard coefficient classifier has an
AUC of 0.82, and our mutual information classifier has an AUC of 0.8. However,
when we take both ranking information and relevance judgments into account, our
information difference classifier is able to achieve an AUC of 0.963. From this we
conclude that information difference is a better similarity classifier than our base-
line models of mutual information and Jaccard coefficient.

0.65 0.70 0.75 0.80
Avg Jaccard Coefficient

0.80

0.85

0.90
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1.00

A
U

C

ID

MI

Jaccard

Figure 6.4: AUC as a function of average Jaccard coefficient. When the average Jaccard
coefficient is high, similar systems are easy to detect. When the average Jaccard coefficient
is smaller, only information difference is able to detect similar systems.

6.2 Application #1: Quantifying the Impact of Parameter
Tuning and Retrieval Model Selection

At the heart of a search engine is a retrieval model, a function that takes a doc-
ument and a query and returns a number which the search engine uses to rank
documents. Different retrieval models have can have many theoretical differences,
but they also tend to have a large number of theoretical similarities as well. It
would be interesting to know which has more impact, the theoretical similarities
or the differences. Do different models tend to behave similarly? The usual way to
approach this question would be to observe their performance. In practice, well-
tuned, well-implemented retrieval models tend to have similar performance. Does
this imply that different models are similar? In this section, we use information
difference to show that different retrieval models really are simpler by demonstrat-
ing that the choice of retrieval model has smaller impact on the behavior (rather
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Figure 6.5: ROC curves of information difference, mutual information, Kendall’s τ , and
Jaccard coefficient as similarity classifiers. When the average Jaccard coefficient is high,
similar systems are easy to detect. When the average Jaccard coefficient is smaller, only
information difference is able to detect similar systems.
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than the performance) of a search engine than does implementation details such as
parameter tuning. We discuss the retrieval models used in our experiments, and
their similarities, in Section 6.2.1. In Section 6.2.2 we present our experiments.

6.2.1 Retrieval Models

i a term
Q a query
D a document
fi the frequency of the term i in the document
qfi the frequency of the term i in the query
cfi the frequency of the term i in the collection
N the number of documents in the collection
ni the number of documents in the collection that contain the term i
dl the length of document D
avdl the average length of the documents in the collection
C the number of word occurrences in the collection
Ci the number of times the term i appears in the collection
rank
=

rank equivalent, i.e. two functions are rank equivalent if they
induce the same partial ordering on their domain

Table 6.2: Notation used in retrieval models.

In this section, we briefly describe the retrieval models we are analyzing and
their theoretical similarities. The first model we discuss is BM25, which we will
describe, fairly accurately, as an empirically-derived tf.idf vector space-like model.
tf.idf models treat documents and queries as elements of a vector space whose
basis is formed by the collection’s vocabulary. A document or query is represented
as a vector whose components are comprised of weights computed by multiplying
the term frequency (tf)—the contribution of the term based on the frequency of the
term in the document, by the inverse document frequency (idf)—the contribution
of the term based on the scarcity of the term in the collection. The document’s
score is computed by taking something like an inner product between the query
vector and the document vector. Using notation described in Table 6.2, the “inner
product” computed by BM25 is:

BM25(d, q) =
∑
t∈q

log
1

ni−0.5
N−ni+0.5

· (k1 + 1)fi
K + fi

· (k2 + 1)qfi
k2 + qfi

(6.2)
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where
K = k1

(
(1− b) + b

dl

avdl

)
. (6.3)

Common choices for the free parameters are to set k1=1.2, b = 0.75, and k2=100.

Language models (LM) are generative models of text widely used throughout
natural language processing. The most simple models are unigram or bag-of-word
models, which are simply probability distributions over the collection’s vocabulary,
where terms are assumed to be independent. In this model, we build a language
model for each document and then rank documents by query likelihood, how likely
the query is given the document.

P (Q | D) =

n∏
i=1

P (qi | D) (6.4)

The difficulty lies in estimating P (qi | D). If we simply use the maximum likeli-
hood estimate P (qi | D) ≈ fi

dl then the probability of any document that does not
contain all of the query terms would be zero. A more fundamental issue is the prob-
lem of data sparsity. It is difficult to properly estimate probabilities from as few
examples as can be gleaned from a single document. Therefore, we smooth our
probability estimates by supplementing the evidence provided by the document
with the evidence provided by the collection as a whole. One common model used
for smoothing is known as Jelinek-Mercer smoothing. In Jelinek-Mercer smooth-
ing, we interpolate linearly between the prevalence of the term in the document
and the prevalence of the term in the collection as a whole:

P (qi | D) ≈ (1− λ)
fi
dl

+ λ
Ci
C

(6.5)

where λ controls the weight given to the evidence provided by the document as
opposed to the collection. In practice, to increase accuracy, we usually compute
the log-likelihood of the query. Therefore, applying smoothing to Equation 6.4 and
taking the log of each side, we get:

logP (Q | D) =

n∑
i=1

log

(
(1− λ)

fi
dl

+ λ
Ci
C

)
. (6.6)

The smoothing model that we investigate in Section 6.2.2 is known as Dirichlet
smoothing. In Dirichlet smoothing, we allow the weight assigned to the document
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to be a function of the documents length:

λ =
µ

dl + µ
. (6.7)

The ranking formula for a language model with Dirichlet smoothing is

logP (Q | D) =

n∑
i=1

log
fi + µCiC
dl + µ

. (6.8)

A common range for µ is between 1000 and 2000.

While the intuition behind tf.idf models such as BM25 and language models
is quite different, their performance tends to be quite similar in practice. The fol-
lowing argument, due to Croft et al. [35], shows that in fact language models with
Jelinek-Mercer smoothing are quite similar to tf.idf models.

logP (Q | D) =
n∑
i=1

log(1− λ)
fi
dl

+ λ
Ci
C

=
∑

i : fi>0

log(1− λ)
fi
dl

+ λ
Ci
C

+
∑

i : fi=0

log λ
Ci
C

=
∑

i : fi>0

log
(1− λ)fidl + λCiC

λCiC
+

n∑
i=1

log λ
Ci
C

rank
=

∑
i : fi>0

log
(1− λ)fidl
λCiC

+ 1 (6.9)

where in the third line we add
∑

i : fi>0

λCiC to the second term and subtract it from

the first. This demonstrates that the similarity between a document and a query
is some function that is similar to an “inner product” between term frequency and
inverse document frequency vectors, as in a tf.idf models.

Our final class of retrieval models is the divergence from randomness (DFR)
model, which we present here very briefly. We direct the interested reader to Am-
ati [2] for more details. DFR models attempt to recognize those documents in which
query terms appear disproportionately from what would be expected given the col-
lection as a whole. A DFR is specified by the choice of 1) a term frequency normal-
ization factor, 2) the “first normalization” which functions similarly to smoothing
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in language models, and 3) a model of randomness. In general, a DFR is defined as

DFR(D,Q) =
∑
i∈Q

qfi
max(qf)

· w(i,D) (6.10)

where w(i,D) represents the extent to which the term i differs from what it should
be “randomly” in document D. In all of our DFR instantiations, we use the follow-
ing term frequency normalization:

tfn = fi · log

(
1 + c · avdl

dl

)
(6.11)

where c is a free parameter commonly set to 1.

In this work we focus on two DFR models. The first is IneB2, which we use for
recall-oriented evaluation. IneB2 uses an Inverse Expected Document Frequency
model of randomness and a ratio of two Bernoulli’s processes as the first normal-
ization.

IneB2 : w(i,D) =
Ci + 1

ni · (tfn+ 1)

(
tfn · log

N + 1

ne + 0.5

)
(6.12)

where
ne = N(1− (1− ni/N)Ci). (6.13)

The second model is PL2, which we use for evaluation at rank 20. PL2 uses a
Poisson approximation as a model of randomness and a Laplace model for the first
normalization.

PL2 : w(i,D) =
1

tfn+ 1

(
tfn · log

tfn

λ
+ (λtfn) · log e+ 0.5 · log(2π · tfn)

)
(6.14)

where λ is the variance and mean of a Poisson distribution. It is given by Ci
N . Note

that Ci is much smaller than N .

While these models are also theoretically dissimilar from those already dis-
cussed, it is possible to derive BM25, along with common choices for parameters,
from a particular instantiation of the DFR model. As the derivation is not particu-
larly enlightening, we again direct the interested reader to Amati [2] for details.

6.2.2 Experiments

To maximize the effect of retrieval models, we utilize highly simple search engines,
i.e. without query expansion, pseudo-relevance feedback, etc. We build these mod-
els using a standard, state-of-the-art search engine, in this case the Terrier search
engine [55]. We will analyze these systems as they are run over TRECs 8 and 9,
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since they are relatively well-judged, and therefore more reusable than TRECs 2010
and 2011. We compare the previously discussed models,

1. a query-prediction language model (LM) with Dirichlet smoothing,

2. BM25, and

3. Divergence from Randomness (DFR) models,

across a range of 21 different, evenly spaced, “reasonable” parameter values (see
Figure 6.6), and the “best” of these observed parameter values which achieves the
maximum performance (see Table 6.3).1

0.2 0.4 0.6 0.8 1.0 1.2 1.4
b

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

R
IC

BM25

TREC8

TREC8@20

TREC9

TREC9@20

0 1000 2000 3000 4000 5000
µ

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

R
IC

LM

TREC8

TREC8@20

TREC9

TREC9@20

0 5 10 15 20
c

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

R
IC

DFR

TREC8

TREC8@20

TREC9

TREC9@20

Figure 6.6: Performance as a function of retrieval model parameters—For BM25 we tune
the parameter b. For LM we tune the parameter µ. For DFR we tune the parameter c.

As we can see from Table 6.3, the three models perform relatively consistently
with one another. We also observe (Figure 6.6) that, with the exception of BM25
and DFR at rank 20, each model has reasonably consistent performance with itself
as parameters are tuned. Therefore, at this point, using only performance delta as

1Our goal is to compare search engines during the evaluation phase, when relevance assessments
have already been used. Therefore we employ the best parameters for these queries, rather than
optimal parameters applicable to future queries.
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RIC TREC8 TREC8@20 TREC9 TREC9@20

BM25 0.292 0.325 0.344 0.295
LM 0.314 0.294 0.358 0.277
DFR 0.323 0.302 0.349 0.296

Table 6.3: Best observed performance of standard retrieval models.

our guide, it seems that all models are consistent, independent of how well tuned
they are.

ID TREC8 TREC8@20 TREC9 TREC9@20

LM DFR 0.076 0.110 0.088 0.122
LM BM25 0.068 0.149 0.092 0.127
BM25 DFR 0.077 0.091 0.108 0.056

Table 6.4: Information difference between standard retrieval models with “best” parame-
ters.

Using information difference we can now measure the similarity of these mod-
els are in terms of their behavior, rather than their performance. Recalling that a small
information difference implies a high degree of similarity, consider Table 6.4, which
shows the information difference between the best performing retrieval models. As
a point of reference, using an information difference threshold of 0.1 would have
achieved a roughly 92% average accuracy on the classification task described in
Section 6.1. Therefore, it is quite likely that information difference would have
failed in this case and considered these retrieval models to be the same system.

Now we consider the difference between instantiations of a single model. We
instantiate each model with all 21 parameter values and compute the information
difference between each pair of instantiations. Figure 6.7 shows cumulative his-
tograms of the information difference between all

(
21
2

)
pairs of these model instan-

tiations. These histograms show that there is far more difference in behavior within
a model across parameterizations than their is across models with the best parame-
terization. For example, consider the largest information difference between mod-
els, which is between our language model and BM25 on TREC 8 at rank 20. The
information difference of 0.149 is smaller than roughly 40% of the pairs of BM25
models. The smallest information difference is between BM25 and DFR on TREC
9 at rank 20. The information difference of 0.056 is smaller than all but roughly
45% of the pairs of LM models. Our information difference classifier is once again
likely to fail and consider these systems as different, even though they are merely
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Figure 6.7: Cumulative histograms of information difference between parameterizations
of a standard retrieval model.
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different instantiations of the same retrieval model. Since our non-performance,
behaviorally based classifier would have considered different retrieval models to
be the same system and different instantiations of the retrieval models to be differ-
ent, we conclude that parameter tuning actually has a larger effect on the behavior
of search engines than does the underlying retrieval model.

6.3 Application #2: Selecting Systems for Metasearch
When performing metasearch, the common wisdom is that one should fuse the best
systems that are the most dissimilar from one another. However, this is a difficult
assumption to test: how does one measure dissimilarity? Even if one could mea-
sure dissimilarity, how would one determine which are the best systems? If you
had access to relevance judgments, there would be no need to perform metasearch,
and without relevance judgments how would you determine which systems are
best?

We do know that the choice of systems has a profound impact on metasearch
performance. For example, it is known [81] that the best results are achieved by
fusing a small number of high quality systems. Consider Figure 6.8, which shows
the average precision of metasystems created using CombMNZ. New systems are
added in order, from best to worst as measured by AP, and at random. We can
see that when added in best to worst order the initial improvement is quite large
for the first five systems, after which performance steadily decreases to well below
the performance of the best system pre-fusion. When added in a random order,
performance is never as high as that of the best pre-fusion systems.

In this section, we demonstrate that, by using our information-theoretic frame-
work to measure the similarity between systems, we can intelligently select sys-
tems to fuse. We do so without utilizing relevance judgments, achieving perfor-
mance improvements over fusing all systems, and significant performance im-
provements over choosing at random. We describe our selection methodology in
Section 6.3.1 and present our experimental results in Section 6.3.2.

6.3.1 Methodology

In order to facilitate the description of our methodology, we begin by assuming
that we have access to relevance judgments. In Section 6.3.2, we will show that
in this case our methodology does not outperform simply fusing the best systems.
However, determining which systems are best is equivalent to evaluation, and this
cannot be done without acquiring costly relevance judgments.

Given relevance judgments, measuring system quality and system similarity
can be done using standard evaluation tools and our framework, specifically infor-
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Figure 6.8: Performance of CombMNZ fusion algorithm as systems are added in AP-sort
order. The plot on the left focuses on the 20 best systems. The plot on the right shows
all submitted systems added in both AP-sort order, and in a randomly selected arbitrary
order. Notice that, in AP-order, performance initially increases sharply as the best systems
are fused, and then suffers as additional systems are added. When added in a random
order, performance starts out weak and gradually increases until reaching a steady state.

mation difference. The question is how to merge the two. We follow the framework
utilized by Zuccon et al. [98] to diversify systems. Zuccon et al. interpreted the di-
versification problem within the framework of Facility Location Analysis (FLA) from
Operations Research [42]. In FLA, one is given a set of customer “locations” D and
is tasked with finding the (in our case) subset S ⊂ D of k “facilities” that opti-
mizes some objective incorporating the “cost” associated with each facility and the
“distance” between the facilities and their customers.

Interpreted in terms of FLA, the Maximal Marginal Relevance (MMR) method [16]
becomes a greedily approximate solution to the Obnoxious Facility Dispersion (OFD)
problem. Imagine that one wishes to determine where to locate k nuclear-waste
storage facilities. One wishes to find the k sites that will have the minimum cost
to operate yet will also be the furthest from the general population. This metaphor
is rather tortured for us, since our facilities and our customers are drawn from the
same set of documents, but the intuition holds. The MMR method dictates that we
select the documents that are most relevant (minimal operational cost) and least
similar (maximal distance from the general population). This can be formalized
into the following heuristic: given a set of previously retrieved documents S and a
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candidate document d,

h(d, S) = λr(d) + (1− λ) min
d′∈S

w(d, d′)

or

h(d, S) = λr(d)− (1− λ) max
d′∈S

s(d, d′) (6.15)

where r is some notion of document quality, s is some notion of document sim-
ilarity, and w is some notion of distance between documents. The similarity fo-
rumlation of Equation 6.15 is exactly the ranking formula used in MMR. Given
this objective function, Algorithm 6.1 performs a greedy best-first search to find an
approximate solution.

Algorithm 6.1 Greedy Best-First Search for Obnoxious Facility Dispersion

1: procedure OBNOXIOUSFACILITYDISPERSION(D, k, r, h)
2: d1 = argmaxd∈D r(d)
3: S ← d1

4: for i = 2, . . . , k do
5: d∗ = argmaxd∈D\s h(d, S)
6: S ← S ∪ {d∗}
7: return S

The primary contribution of Zuccon et al. is the observation that diversification
is better modeled in terms of the Desirable Facility Placement (DFP) problem. Imag-
ine that you wish to decided where to place k hospitals. You wish to find the k
locations that:

1. minimize the total cost of maintaining those facilities, and

2. minimize the distances from the customer locations to their closest facilities.

This is easiest to describe in terms of minimizing cost and distance. However,
we find it easiest to formulate our heuristic in terms of maximizing benefits and
similarities instead.

f(S) = λ
∑
d∈S

r(d)− (1− λ)
∑

d∈D\S

(
min
d′∈S

w(d, d′)

)
or

f(S) = λ
∑
d∈S

r(d) + (1− λ)
∑

d∈D\S

(
max
d′∈S

s(d, d′)

)
(6.16)

where r, s, and w are again notions of document quality, similarity, and distance.
Observe that here our “customers” are the non-retrieved documents, in contrast to
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OFD, where the “customers” were the previously retrieved documents.
Finding the set of documents S that maximizes our heuristic f is NP-Complete

(consider a reduction from e.g. the set cover problem). Algorithm 6.2 performs a
greedy local search for an approximate solution. Note that, unlike the algorithm

Algorithm 6.2 Greedy Local Search for Desirable Facility Placement

1: procedure DESIRABLEFACILITYPLACEMENT(D, k, r, f )
2: for i = 1, . . . , k do
3: d∗ = argmaxd∈D\S r(d)
4: S ← S ∪ {d∗}
5: repeat
6: for d ∈ S do
7: for d′ ∈ {D\S} do
8: S′ ← (S\{d}) ∪ {d′}
9: if f(S′) > f(S) then

10: S ← S′

11: until S does not change
12: return S

for OFD, that if we search for S1 of size k and S2 of size k + 1 that |S1 ∩ S2| ≤ k, i.e.
it is possible that S1 and S2 will contain an entirely different set of documents.

Given the presence of relevance assessments, it is clear how to use this frame-
work to choose systems for fusion. If we interpret our locations and customers
as systems, rather than documents, we may use the evaluation measure of our
choice for r, information difference or mutual information forw and s, respectively,
and apply the algorithms above to merge the two. The question of how can we
make use of this framework in practice, where we have no relevance information,
is harder to answer. While we can compute the distance between systems by using
their mutual information rather than their information difference, the difficulty lies
in determining which systems are “best.”

Determining which systems are best is equivalent to performing evaluation.
Previous work [9, 75] has shown that in the absence of relevance judgments, it is
possible to determine which systems are worst by sorting them by their consensus
with the majority of other systems. However, we wish to determine which sys-
tems are best. For inspiration, we turn to very early research into the metasearch
problem. For example, works such as Yuwono and Lee [92] and Lu et al. [49] in-
corporated models of system quality into their fusion algorithms. As a proxy for
system quality, these algorithms explicitly computed similarity scores between the
query and the top documents retrieved by the system. In essence, these early algo-
rithms evaluated the systems being used in metasearch with regards to a privileged
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system treated as a gold standard. We adopt this practice for our purposes, using
either systems created specifically for this purpose, or by averaging multiple sub-
mitted systems, held out appropriately, chosen at random.

6.3.2 Experiments

In this section, we present our results employing the framework described in the
previous section. We begin by analyzing our results when we have access to rel-
evance judgments. In this hypothetical situation, we are analyzing the heuristic
itself: is it best to choose the highest quality, most dissimilar systems? To answer
this question, we choose systems to fuse using the Desirable Facility Placement
(dfp) strategy (Algorithm 6.2), the Obnoxious Facility Dispersion (ofd) strategy
(Algorithm 6.1), and a simple best-first (best) strategy. All metasystems are cre-
ated using the CombMNZ metasearch algorithm. Figure 6.9 shows the results of
this experiment as we increase the number of systems to fuse. λ, which varies from
the equivalent of a clustering algorithm when λ = 0, to a best-first strategy when
λ = 1, is fixed at 0.5. These results show that while there may be some minimal
improvement using the MMR-like ofd strategy, the key to metasearch is simply in
determining which systems are best. Figures 6.10, 6.11, and 6.12 show the results
of tuning λ when choosing 3, 5, and 10 systems. The strategies’ performance in-
creases dramatically as λ approaches 1, when these strategies become equivalent
to the best-first approach.

These results demonstrate that the best way to approach metasearch is to fuse
the best systems. However, how does one determine which systems are best if one
does not have access to relevance judgments? It is possible to generate some prior
belief about system quality by treating a specific “control” system as some kind of
gold standard by which to judge the others. This will certainly be better than ran-
dom, but will not be accurate enough. Going back to the works by Soboroff et al.
[75] and Aslam and Savell [9], we know that the better (though not necessarily the
best) systems tend to be very similar. In these experiments we hypothesize that by
combining these two imperfect sources of information using our FLA algorithms,
we can improve upon the performance of simply fusing all systems, picking sys-
tems at random, or selecting the “best” systems according to our control-system
prior.

To generate our prior belief in system quality, we must pick a system to act as
a gold standard. For TRECs 8 and 9, we use the BM25 systems we generated in
Section 6.2 with default parameters. For TRECs 2010 and 2011, we picked a system
at random and evaluated our metasearch strategies over the remaining systems,
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Figure 6.9: CombMNZ metasystems created using FLA algorithms, given relevance judg-
ments, with λ = 0.5. There is little to no improvement over simply using the best systems.

with the “control” system removed from the collection. This process was repeated
100 times, and 95% confidence intervals are reported. In both cases, systems were
“evaluated” by summing document scores from the control system over the set
of documents retrieved by both systems. The scores were then normalized to be
between 0 and 1 before being used in the computation of our heuristic functions.
The similarity scores in our heuristic functions are computed using mutual infor-
mation as described in Section 6.1. We also report the performance of fusing all
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Figure 6.10: CombMNZ metasystems created from 3 input systems using FLA algorithms,
given relevance judgments, as λ is varied. There is little to no improvement over simply
using the best systems.

systems, and confidence intervals of the performance over sets of systems chosen
at random, sampled 100 times. Figure 6.13 shows the results of this experiment as
we increase the number of systems to fuse when fixing λ at 0.5. Figures 6.14, 6.15,
and 6.16 show the results of tuning λ when choosing 3, 5, and 10 systems. In all
cases, the dfs strategy shows some amount of improvement over simply fusing all
systems, and significant improvement over all other strategies and simple random
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Figure 6.11: CombMNZ metasystems created from 5 input systems using FLA algorithms,
given relevance judgments, as λ is varied. There is little to no improvement over simply
using the best systems.

chance.

From this we can conclude that when performing metasearch, contrary to com-
mon wisdom, the key is to fuse the best systems; similarity does not play a sig-
nificant role. However, this is not feasible in practice. Using our framework to
compute similarity within the context of facilities location analysis, one can isolate
the most representative systems. While further study is necessary, these preliminary
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Figure 6.12: CombMNZ metasystems created from 10 input systems using FLA algorithms,
given relevance judgments, as λ is varied. There is little to no improvement over simply
using the best systems.

results demonstrate that this may improve upon the typical strategy of simply fus-
ing as many systems as possible.

6.4 Summary

Search engines are usually compared in terms of their performance. However, it
is possible for search engines to have quite different behavior in terms of which
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Figure 6.13: CombMNZ metasystems created using FLA algorithms, without relevance
judgments, with λ = 0.5. There is some improvement over simply fusing all systems.

documents they rank, and in which order, and still have similar performance. In
this chapter we developed information difference, a new tool for comparing search
engines in terms of their behavior by comparing the order in which the systems
rank judged documents. We showed that while it is trivial to determine whether
systems are similar when most engines retrieve the same set of documents, it is
necessary to utilize both document order and relevance judgments when there are
many uniquely retrieved documents.
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Figure 6.14: CombMNZ metasystems created from 3 input systems using FLA algorithms,
without relevance judgments, as λ is varied. There is some improvement over simply
fusing all systems.

Also in this chapter, we developed two novel applications of this technology.
We used information difference to compare retrieval models that appear quite dif-
ferent, yet have deep theoretical connections and often have similar performance in
practice. We found that these models could actually be more similar to one another
than different instantiations of the same model. We also showed that information
difference could be used to find subsets of systems that are representative of the
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Figure 6.15: CombMNZ metasystems created from 5 input systems using FLA algorithms,
without relevance judgments, as λ is varied. There is some improvement over simply
fusing all systems.

whole collection, and that this can be leveraged for metasearch to significantly im-
prove over selecting systems to fuse at random.
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Figure 6.16: CombMNZ metasystems created from 10 input systems using FLA algorithms,
without relevance judgments, as λ is varied. There is some improvement over simply
fusing all systems.
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Chapter 7

Conclusion

The goal of this work is two-fold: to 1) emphasize the need for increased meta-
evaluation in information retrieval research, and to 2) provide a framework with
which this can hopefully be achieved. We describe the utility of meta-evaluation
research in terms of diversity. A search engine’s diversity is necessarily conflated
with its ability to perform ad hoc retrieval and the diversity of the collection. In
this work, we attempted to isolate diversity from those other factors so that we can
begin to understand it. We 1) introduced a meta-evaluation measure of sensitivity
that controls for ad hoc performance, and 2) introduced a new family of measures
that explicitly account for the collection diversity and. Our hypothesis is that these
collection-oriented features, while opaque to the user, are better able to differentiate
between systems, thereby leading to a better overall user experience. To assess
collection difficulty, we developed measures at the topic and subtopic level. At the
topic level, diversity difficulty blends the maximum possible number of subtopics
covered by any ranked list with the number of subtopics covered by the expected
ranked list. At the subtopic level, subtopic miss rate measures the probability of
selecting documents at random and failing to cover subtopics. We showed that α#-
IA measures, which combine the best features of existing evaluation measures and
emphasize difficult topics and subtopics, sometimes rank systems in quite different
orders than existing measures, yet have slightly more discriminative power.

That our measures prefer different systems does not indicate that they prefer
more diverse systems. To show that our new measures preferred more diverse
systems than existing measures, we restricted our attention to artificial ranked lists
with perfect combined precision to show that our measures were less influenced by
ad-hoc performance than existing measures. According to discriminative power,
no measure was able to distinguish between these lists. This led us to introduce
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document selection sensitivity, the coefficient of variation of an evaluation measure
over these artificial ranked lists. According to this measure, α#-IA measures that
explicitly account for collection diversity were far more sensitive to differences in
these lists than existing measures, suggesting that these measures may prefer more
diverse systems. However, while averaging subtopics by their difficulty also led
to higher document selection sensitivity, it was still less than geometric averaging.
This is likely due to limitations of our implementation of difficulty at the subtopic
level.

We believe that these results support our hypothesis that taking a collection-
oriented view of evaluation leads to systems that are preferable to the user. We
contrast this with the user-oriented view of Sakai’s intuitiveness measure [62–64].
We look forward to comparing these two approaches, in terms of correlation with
each other and with the preference of actual users.

We note that our framework accepts any definition of difficulty at the collection
level. In future work, we will explore alternate definitions of, and uses for, diversity
difficulty at the topic and subtopic levels. We also wish to explore the correlation
with diversity difficulty and ad hoc query difficulty. Is one predictive of the other?

There is also the question of incorporating relevance grades and intent proba-
bilities into document selection sensitivity. We briefly suggested one way this can
be done, but surely there are other ways. Would incorporating this information
produce a more useful meta-evaluation?

Finally, recent work has shown that subtopic taxonomy [12], e.g. whether the
subtopic is navigational or informational, has been shown to lead to better perfor-
mance of both diversification algorithms [67] and diversity evaluation measures [62],
since a user is far less tolerant of redundancy for a navigational query than an in-
formational one. In future work, we intend to show the effect of incorporating
subtopic taxonomy into document selection sensitivity and α#-IA measures.

To make it easier for future researchers to combine evaluation and meta-evaluation
analyses, we developed a probabilistic framework for the analysis of information
retrieval systems based on the correlation between a ranked list and the preferences
induced by relevance judgments. Using this framework, we developed powerful
information-theoretic tools for better understanding information retrieval systems.
We introduced several preliminary uses of our framework: (1) a measure of con-
ditional rank correlation, information τ , which is a powerful meta-evaluation tool
whose use we demonstrated on understanding novelty and diversity evalution;
(2) a new evaluation measure, relevance information correlation, which is correlated
with traditional evaluation measures and can be used to (3) evaluate a collection
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of systems simultaneously, which provides a natural upper bound on metasearch
performance.

Additionally, we introduced a measure of the similarity between rankers on
judged documents, information difference, which allows us to determine whether
systems with similar performance are actually different. We used this measure to
demonstrate that properly tuning a retrieval system is more important than select-
ing the right retrieval model. Further, we showed how by using information differ-
ence as a distance measure we were able to select the most representative systems
for meta-search, significantly out-performing choosing systems at random.

We see great promise for this framework in the future. For example, in Sec-
tion 2.3.2 we described the issue of rank correlation between rankings of subsets
that only partially overlap, as well as the issue of aggregating many rankings of
few objects into a single, maximally-consistent ranking. One aspect of comparing
rankings that was not considered is that not all documents are equally important,
i.e. swapping two non-relevant documents is unimportant, whereas swapping a
highly relevant document with a slightly relevant document is. As we showed,
using information difference, our framework can compare systems directly, condi-
tioned on a QREL, and without the need to create a target list. In future work, we
hope to extend this measure to the comparison of ranked lists of systems rather than
ranked lists of documents. Given some notion of the correct ordering of systems, i.e.
some analogue of a QREL, we could compare evaluation measures based on which
systems they preferred, using a system similar to information difference. This is
in contrast to current meta-evaluation measures such as discriminative power and
document selection sensitivity, that compare measures based on how likely they
are to have a preference. The difficulty lies in creating this QREL anologue. Fur-
ther, given this information about the true preference between systems, why would
it be necessary to do further evaluation? One potential application would be in the
analysis of crowdsourced evaluation, in which we have a gold standard ranking
induced by judgments created by trained assessors. Using something akin to in-
formation difference, we could compare alternative evaluation measures to one
another in an IR-motivated way that is sufficiently top-heavy and that accounts for
system quality appropriately.

Another potential application of our framework is to diversity evaluation. Con-
sider the recent work by Chandar and Carterette [23, 24], in which the authors
solicit diversity preferences in the form of document triples. To collect these pref-
erences, users are presented with an initial relevant document, the top document,
and then asked which of two additional relevant documents, the left and right docu-
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ments, they would prefer to see next in a ranked list. These documents are denoted
DT , DL, and DR, respectively. Denote a triple as 〈DL, DR | DT 〉. For a given triple,
Let � denote a user’s preference, e.g. DL � DR means that the user preferred the
left document to the right document. In our framework, we can frame these pref-
erence triples as random variables. Given a triple 〈DL, DR | DT 〉 where DL � DR,
let ri represent the rank of document di in the list S. Then the ranked list variable
RS can be defined along the following lines:

RS(〈DL, DR | DT 〉where DL � DR) =


1 if rT < rL < rR

0 if rT 6< rL or rT 6< rR

−1 if rT < rR ≤ rL

(7.1)

Using such a random variable, along with an appropriate distribution over triples,
we can evaluate systems using these preferences. In those way, our ad hoc evalu-
ation measure can also be used as a diversity measure simply by using a different
set of relevance judgments. Further, comparing this user-driven model of diver-
sity to that of existing measures can help determine whether the current diversity
evaluation paradigm is indeed correlated with user preferences.

Finally, we believe our framework can be applied to the reusability issue inher-
ent to web-scale evaluation. As we discussed in Section 2.3.1, one of the key chal-
lenges in information retrieval as it migrates to the web is the issue of scale. From
1992 to 1999 the various corpora used by TREC contained less than two million
documents and were distributed together on 6 CD-ROMs. While it was not possi-
ble for a human being to judge each of these documents with regards to each topic
in every collection, it was possible to judge a representative sample. The corpus
used from 2009 to 2012, which is insignificant compared to the web itself, contains
over one billion documents and was distributed on two separate three Terabyte
hard drives. Only a relatively insignificant fraction of these documents have ever
been read by humans. Our framework can leverage the relatively large numbers
of noisy assessments created by crowdworkers, as well as the actual user prefer-
ences collected by commercial search engines. Also, search engines themselves, by
their very nature, produce estimated relevance assessments; assuming we had a
gold standard ranker in which we had a great deal of trust, we could estimate the
relevance of any document with regards to any query. Since these different sets of
assessments will only partially overlap, and are very likely to contradict one an-
other, currently, in order to leverage all of these assessments to perform a single
evaluation, it would be necessary to evaluate with regards to each in turn and av-
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erage the results, or else combine them all into a single, unified set of evaluations.
In our framework, just as we evaluated multiple systems simultaneously with re-
spect to a single QREL to find upper bounds on metasearch, we can evaluate a
single system with respect to multiple QRELs.

RIC(S) = I(S;Q1, . . . , Qn) (7.2)

The ability to leverage all possible sources of relevance assessments for evaluation
will be of great use to IR researchers as well as commercial search engines.
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Appendix A

Additional Figures

In this Appendix, we present additional figures that were not included in the main
body of the text.

A.1 Discriminative Power of α#-IA Measures

In Section 4.1, we introduced the family of Intent-Aware cascade #-measures. α#-
IA measures are defined as a linear combination of S-Recall and an intent aware
cascade measure. For example,

α#-nDCG-IA@k = λ× S-Recall@k + (1− λ)

M∑
i=1

wi × α-nDCGi@k. (A.1)

In Section 4.2, we analyzed the sensitivity of α#-IA measures in terms of discrim-
inative power [60] (Section 2.3.3), finding that our measures have slightly higher
discriminative power than existing measures.

With respect to discriminative power, there are four aspects of α#-IA measures
that can be varied: the choice of discount function (Table 2.1), the α and λ pa-
rameters used to model a user’s tolerance for redundancy and the weight given to
S-Recall, respectively, the choice of subtopic normalization (see Table 4.2), and the
rank at which evaluation is performed. In the main body of the text, we focused on
DCG discounting at rank 20. In this appendix we present results for other choices
of discount function and rank. As before, in all experiments, α and λ vary over the
set {0, 0.1, 0.2, . . . , 1}. When using RBP, β is set to 0.8.

Figures A.1 through A.8 show the discriminative power of each evaluation
measure for all values of α and λ, sorted by discount function and then by rank.
We can compare the α#-IA measures to existing measures (with the exception of D#
measures) by carefully considering these plots. For any subtopic average, setting
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λ = 1 (the far-right side in 3D plots) shows S-Recall. Using the cascade average
and setting λ = 0 (the near-left side in 3D plots) shows α-nDCG. Using the micro
average and setting λ = α = 0 (the leftmost corner) shows nDCG-IA. As before,
since the maximum for each year is achieved by cascade averaging, and not on the
near-left or far-right side (i.e. it is achieved with 0 < λ < 1), we can conclude that
the α#-IA measures do have somewhat higher discriminatory power than existing
measures.

Figures A.9 and A.10 show the impact of λ as α is fixed. Figures A.11 and A.12
show the impact of α as λ is fixed. From these it is clear that while the subtopic
averages that emphasize the difficult subtopics—the geometric average (geom) and
the subtopic miss rate-weighted average (smr)—have lower discriminative power
overall, they are comparable when α and λ are appropriately tuned.
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2010

2011

Figure A.1: Discriminative power at rank 5 using ERR discounting as a function of α and
λ.
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2010

2011

Figure A.2: Discriminative power at rank 10 using ERR discounting as a function of α and
λ.
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2010

2011

Figure A.3: Discriminative power at rank 20 using ERR discounting as a function of α and
λ.
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2011

Figure A.4: Discriminative power at rank 5 using DCG discounting as a function of α and
λ.
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2011

Figure A.5: Discriminative power at rank 10 using DCG discounting as a function of α and
λ.
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Figure A.6: Discriminative power at rank 5 using RBP discounting as a function of α and
λ.
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2011

Figure A.7: Discriminative power at rank 10 using RBP discounting as a function of α and
λ.
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2011

Figure A.8: Discriminative power at rank 20 using RBP discounting as a function of α and
λ.
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Figure A.9: Discriminative power of as a function of λ with ERR discounting. α is fixed at
0.3.
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Figure A.10: Discriminative power of as a function of λ with RBP discounting. α is fixed at
0.3.
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Figure A.11: Discriminative power as a function of α with ERR discounting. λ is fixed at
0.5.

2010 2011
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Figure A.12: Discriminative power as a function of α with RBP discounting. λ is fixed at
0.5.
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A.2 Document Selection Sensitivity
In Section 4.1, we introduced the family of Intent-Aware cascade #-measures. α#-
IA measures are defined as a linear combination of S-Recall and an intent aware
cascade measure. For example,

α#-nDCG-IA@k = λ× S-Recall@k + (1− λ)
M∑
i=1

wi × α-nDCGi@k. (A.2)

In Section 4.4, we analyzed the sensitivity of α#-IA measures in terms of document
selection sensitivity (dss; Section 3.1), finding that choosing averaging methodolo-
gies that emphasize difficult topics and subtopics can greatly increase dss.

With respect to dss, there are five aspects of α#-IA measures that can be varied:
the choice of discount function (Table 2.1), the α and λ parameters used to model a
user’s tolerance for redundancy and the weight given to S-Recall, respectively, the
choice of topic average (Table 4.1), the choice of subtopic normalization (Table 4.2),
and the rank at which evaluation is performed. In the main body of the text, we
focused on DCG discounting at rank 20. In this appendix we present results for
other choices of discount function and rank. As before, in all experiments, α and λ
vary over the set {0, 0.1, 0.2, . . . , 1}. When using RBP, β is set to 0.8.

Figures A.13 through A.20 show the dss of each evaluation measure for all val-
ues of α and λ, sorted by discount function and then by rank. We can compare
the α#-IA measures to existing measures (with the exception of D# measures) by
carefully considering these plots. For any subtopic average, setting λ = 1 (the far-
right side in 3D plots) shows S-Recall. Using the cascade average and setting λ = 0

(the near-left side in 3D plots) shows α-nDCG. Using the micro average and setting
λ = α = 0 (the leftmost corner) shows nDCG-IA. Since the maximum is achieved
by geometric subtopic averaging (geom), and not on the far-right side where λ = 1,
we can conclude that the α#-IA measures can have significantly higher document
selection sensitivity than existing measures. As before, we see that dss decreases
with rank.

Figures A.21 and A.22 show the impact of λ as α is fixed. Figures A.23 and A.24
show the impact of α as λ is fixed. These figures show that:

1. geometric (geom) and arithmetic topic averaging are quite similar,

2. diversity difficulty topic weighting (DD) shows marked increases in selection
sensitivity, as does geometric subtopic weighting (geom), and

3. subtopic miss rate weighting (smr) has higher selection sensitivity than subtopic
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intent-weighted (micro) and cascade normalization.
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Figure A.13: Document selection sensitivity at rank 5 as a function of α and λ using ERR
discounting.
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Figure A.14: Document selection sensitivity at rank 10 as a function of α and λ using ERR
discounting.
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Figure A.15: Document selection sensitivity at rank 20 as a function of α and λ using ERR
discounting.
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Figure A.16: Document selection sensitivity at rank 5 as a function of α and λ using DCG
discounting.
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Figure A.17: Document selection sensitivity at rank 10 as a function of α and λ using DCG
discounting.
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Figure A.18: Document selection sensitivity at rank 5 as a function of α and λ using RBP
discounting.
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Figure A.19: Document selection sensitivity at rank 10 as a function of α and λ using RBP
discounting.

127



Avg

Geom

DD

Figure A.20: Document selection sensitivity at rank 20 as a function of α and λ using RBP
discounting.
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Figure A.21: Document Selection Sensitivity as a function of λ with ERR discounting. α is
fixed at 0.3.
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Figure A.22: Document Selection Sensitivity as a function of λ with RBP discounting. α is
fixed at 0.3.
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Figure A.23: Document Selection Sensitivity as a function of α with ERR discounting. λ is
fixed at 0.5.
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Figure A.24: Document Selection Sensitivity as a function of α with RBP discounting. λ is
fixed at 0.5.
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A.3 Information τ

In Section 5.1.3, we proved that the probabilistic formulation of Kendall’s τ pre-
sented in Section 5.1.1 can be interpreted information-theoretically (Theorem 5.1).
In Section 5.2, we defined this as information τ , which we showed can be used to
define the rank correlation between two lists conditioned on a third. We demon-
strated the utility of information τ by investigating the correlation between diver-
sity measures. We found that, while diversity measures induce a highly correlated
ranking of systems, most of this correlation disappears when the correlation due to
the underlying performance measures is removed via conditioning.

We investigated three diversity measures: α-nDCG, D#-nDCG, and ERR-IA,
and their underlying performance measures: nDCG and ERR. In Table 5.1, we
showed the information τ between ERR-IA and both α-nDCG and D#-nDCG when
averaged over all of the queries in the TREC 2010 and 2011 collections before and
after the conditioning on the underlying performance measures. However, the
variation due to topics in IR evaluation is generally quite large. Therefore, in Fig-
ure 5.2, we showed the impact of conditioning on a per-query basis to show that
this effect holds for all queries. We presented the correlation between ERR-IA and
D#-nDCG when conditioned on both ERR and nDCG, as these are the gold stan-
dard measures used at TREC and NTCIR and the results are typical. In this Section,
we show the impact of conditioning between all combinations of measures shows
in Table 5.1. See Figures A.25 through A.29. When visualized, the impact of con-
ditioning is striking. The majority of queries are towards the right in each plot,
showing that, prior to conditioning the rank correlation is high. Most queries have
much larger values on the x-axis than on the y-axis, meaning that much of the cor-
relation disappears when conditioned upon the underlying rank measure. Very
few queries are above the diagonal, indicating that it is very rare for the correlation
to be increased by conditioning.
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Figure A.25: Per-query information τ ERR-IA and D#-nDCG conditioned on nDCG.
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Figure A.26: Per-query information τ ERR-IA and D#-nDCG conditioned on ERR.
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Figure A.27: Per-query information τ ERR-IA and α-nDCG conditioned on nDCG.
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Figure A.28: Per-query information τ ERR-IA and α-nDCG conditioned on ERR.
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Figure A.29: Per-query information τ ERR-IA and α-nDCG conditioned on ERR and
nDCG.
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