
Checking Pedigree Consistency with PCS?

Panagiotis Manolios, Marc Galceran Oms, and Sergi Oliva Valls

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0280 USA
{manolios,mgalceran3,soliva3}@gatech.edu

Abstract. Many important problems in bioinformatics and genetics re-
quire analyses that are NP-complete. For example, one of the basic prob-
lems facing researchers that analyze pedigrees—data that represents rela-
tionships and genetic traits of a set of individuals—is evaluating whether
they are consistent with the Mendelian laws of inheritance. This problem
is NP-complete and several specialized algorithms have been devised to
solve the types of problems occurring in practice efficiently. In this pa-
per, we present PCS, a tool based on Boolean Satisfiability (SAT) that
is orders of magnitude faster than existing algorithms, and more general.
In fact, PCS can solve real pedigree checking problems that cannot be
solved with any other existing tool.

Key words: Boolean satisfiability, SAT, Pedigree Consistency checking,
bioinformatics, genetics, computational biology

1 Introduction

Computational methods have become increasingly important in the fields of
biology and genetics. In fact, the computational needs of these fields have led
to grand challenge problems in computing, such as solving the protein folding
problem, one of the main motivations behind IBM’s Blue Gene project. Many
of the problems in these domains turn out to be NP-complete, and therefore
reducible to Boolean satisfiability (SAT). Given the recent improvements in SAT-
solving technology, a natural question is whether SAT-based methods can be
used to solve important problems arising in biology and genetics. In this paper,
we provide evidence that this is in fact likely.

We focus on the pedigree consistency checking problem, a well studied and
important problem. Pedigrees describe genotype information about a collection
of related individuals. When we say that a pedigree is consistent, we mean that
it is consistent with the laws of Mendelian inheritance. Pedigree checking is
important for numerous reasons. For example, it turns out that inconsistent
pedigree data can adversely affect linkage analysis, the process by which human
genes are linked to traits such as the predisposition to various diseases [10, 1].
? This research was funded in part by NSF grants CCF-0429924, IIS-0417413, and

CCF-0438871.



2 Panagiotis Manolios, Marc Galceran Oms, and Sergi Oliva Valls

The consistency checking problem for pedigrees is NP-complete [1] and has
been tackled in essentially two different ways. The first approach is based on
specialized algorithms. This includes algorithms for dealing with the simpler
“non-looping” pedigrees, e.g., by K. Lange and T. Goradia [3] and algorithms
for loop-breaking, which reduce the problem to the simpler non-looping case.1

The Pedcheck tool, developed by J. O’Connell and E. Weeks, is the best known
example of this approach [8, 9]. Secondly, there is another, very recent approach
by de Givry et al. that is based on the use of weighted constraint satisfaction
techniques. MendelSoft is a tool implementing this approach [2].

In this paper, we describe PCS, a SAT-based tool that leads to orders of
magnitude performance improvements over existing tools for checking pedigrees.

2 Pedigree Consistency

A pedigree represents family relationships among a set of individuals, as well
as genotype information on the individuals. The genotype information consists
of a pair of alleles, DNA codings appearing in given positions on chromosomes.
Alleles are DNA stands that correspond to a gene, the basic unit of heredity. The
pedigree is consistent, with the Mendelian laws of inheritance, if every individual
inherits exactly one allele from each of its parents.

Existing systems require that all individuals in pedigrees have either two
or no parents and, similarly, two or no alleles. In PCS, we can also handle
pedigrees containing partial information, e.g., individuals with one unknown
parent and/or one undefined allele are allowed. These extensions were easy to
implement due to the flexibility of our approach, which involves translating the
pedigree consistency checking problem to a satisfiability problem.

3 Tool Description

In this section, we give a brief overview of the internals of PCS [4] and also de-
scribe how PCS is used. PCS can be downloaded from http://www.cc.gatech.
edu/~manolios/pcs/. The input to PCS is linkage-format data given in the for-
mats describe at http://linkage.rockefeller.edu/soft/linkage/. In brief,
the information for a member of the pedigree appears on one line as a sequence
of integers. These integers indicate the family identifier, the member identifier,
the father identifier, the mother identifier, the sex (1 for male and 2 for female),
the first allele number, and the second allele number.

The pedigree data is preprocessed to rule out simple errors, e.g., we check
that every member’s father is a male and every member’s mother is a female.
We also check that in case the data is declared to be sex-linked, all males are
homozygots, which means that all males have only one allele.
1 Loops in pedigrees arise when there is a loop in the graph of mates, a graph whose

nodes are individuals and whose edges encode the mating relationship. For example,
marriage loops are formed when one individual mates with two siblings.



Checking Pedigree Consistency with PCS 3

The main phase of PCS is the translation of the consistency problem into a
SAT problem. We cannot describe the details of this translation here, but we note
that we make essential use of the BAT tool [6, 5]. BAT implements a decision
procedure for the BAT language, a powerful hardware description language. This
allows us to express the consistency problem in a high-level language and to leave
the details of generating reasonable CNF to BAT.

The generated CNF file can then be given to any standard SAT solver. If
a satisfying assignment is found, then the problem is consistent. If the formula
is unsatisfiable, then there are incompatibilities in the pedigree. In this case, it
is absolutely necessary to determine the problem and to communicate it to the
user. We do this by extracting an unsatisfiable core, an unsatisfiable subset of the
clauses that will become satisfiable if any of its clauses are removed. In the worst
case, this includes the set of all clauses, but in practice this is highly unlikely. By
extracting an unsatisfiable core, we can determine which set of members have
inconsistent genomic information and why. Instead of reporting one such error at
a time, PCS iteratively generates unsatisfiable cores and removes the genotype
information of the individuals involved until we reach a fixed point. When the
fixed point is reached, we have a satisfiable problem and PCS generates a report
outlining all of the inconsistencies found.

4 Results

We compare the performance of our approach with Pedcheck, the most widely
used program for Pedigree Checking [8, 9] and with MendelSoft [2], a tool that is
based on a new approach involving weighted constraint satisfaction techniques.

We use the zchaff SAT-solver [7] for satisfiability testing and for extracting
unsatisfiable cores [11]. All experiments were run on an Intel 3.06GHz Xeon
machine, with 512 KB of L2 cache running on a GNU/Linux OS with kernel
version 2.6.9.

We used both randomly generated benchmarks and actual pedigree problems
from various domains. PCS detected the same errors as Pedcheck and Mendel-
Soft, but it was two to three orders of magnitude faster than Pedcheck and one
to two orders of magnitude faster than MendelSoft.

One of the most complicated examples we used consisted of actual pedi-
gree data from sheep. This data was obtained from a repository provided by
the authors of the MendelSoft system [2]. After some preprocessing, this data
set consists of 8,920 members. The data could not be handled directly by nei-
ther MendelSoft nor PedCheck. Therefore, it was partitioned into four smaller
problems, entitled sheep4r 4 0, . . ., sheep4r 4 3. PedCheck took over 10 hours
to solve the subproblems and MendelSoft tool over an hour. PCS was able to
solve all four problems in under 20 seconds. This includes the total time required
by BAT, the SAT solver, and the unsatisfiable core generator. In addition, PCS
can deal with the whole pedigree, sheep4r directly, without having to partition
the problem into subproblems (which was done by removing parent child rela-
tionships, something that can mask inconsistencies). PCS was able to correctly



4 Panagiotis Manolios, Marc Galceran Oms, and Sergi Oliva Valls

solve this problem, which was not solvable by any other existing tool, in under
a minute.

5 Conclusions

We introduced PCS, a SAT-based tool for checking the consistency of pedigrees.
PCS is orders of magnitude faster than the most efficient existing algorithms.
It is also more general and it is capable of easily solving real pedigree checking
problems that cannot be solved with existing tools. Our work benefited greatly
from the use of BAT’s high-level language and the BAT decision procedure. The
high-level language allowed us to think and operate at a much higher level than
CNF without sacrificing efficiency, as the BAT decision procedure was able to
quickly generate compact CNF optimized for current SAT solvers. Encouraged
by our results, we believe that SAT-based methods should be applied to other
hard problems in computational biology.

References

[1] L. Aceto, J. A. Hansen, A. Ingólfsdóttir, J. Johnsen, and J. Knudsen. The com-
plexity of checking consistency of pedigree information and related problems. In
Proceedings of the Eighth Italian Conference on Theoretical Computer Science
(ICTCS’03), pages 174–187, 2003.

[2] S. de Givry, I. Palhiere, Z. Vitezica, and T. Schiex. Mendelian error detection in
complex pedigree using weighted constraint satisfaction techniques. In ICLP-05
workshop on Constraint Based Methods for Bioinformatics, Sitges, Spain, 2005.

[3] K. Lange and T. Goradia. An algorithm for automatic genotype elimination.
American Journal of Human Genetics, 40(3):250–256, 1987.

[4] P. Manolios, M. G. Oms, and S. O. Valls. PCS: Pedigree Checking with SAT.
2007. Available from http://www.cc.gatech.edu/∼manolios/pcs/.

[5] P. Manolios, S. K. Srinivasan, and D. Vroon. Automatic memory reductions
for RTL-level verification. In ACM-IEEE International Conference on Computer
Aided Design (ICCAD 2006), November 2006.

[6] P. Manolios, S. K. Srinivasan, and D. Vroon. BAT: The Bit-level Analysis Tool.
2006. Available from http://www.cc.gatech.edu/∼manolios/bat/.

[7] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Design Automation Conference (DAC’01),
pages 530–535, 2001.

[8] J. R. O’Connell and D. E. Weeks. Pedcheck: A program for identification of geno-
type incompatibilities in linkage analysis. American Journal of Human Genetics,
63(1):259–266, 1998.

[9] J. R. O’Connell and D. E. Weeks. An optimal algorithm for automatic genotype
elimination. American Journal of Human Genetics, 65(6):1733–1740, 1999.

[10] E. Sobel, J. C. Papp, and K. Lange. Detection and integration of genotyping
errors in statistical genetics. American Journal of Human Genetics, 70:496–508,
2002.

[11] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In Proceedings
of the Design and Test in Europe Conference, pages 10880–10885, March 2003.


