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Abstract. The ACL2 Sedan theorem prover (ACL2s) is an Eclipse plug-
in that provides a modern integrated development environment, supports
several modes of interaction, provides a powerful termination analysis
engine, and includes fully automatic bug-finding methods based on a
synergistic combination of theorem proving and random testing. ACL2s
is publicly available and open source. It has also been used in several
sections of a required freshman course at Northeastern University to
teach over 200 undergraduate students how to reason about programs.

1 Introduction

ACL2 is a powerful system for integrated modeling, simulation, and theorem
proving [5, 4, 6]. Think of ACL2 as a finely-tuned racecar. In the hands of experts,
it has been used to prove some of the most the complex theorems ever proved
about commercially designed systems. Novices, however, tend to have a different
experience: they crash and burn. Our motivation in developing ACL2s, the ACL2
Sedan, was to bring computer-aided reasoning to the masses by developing a
user-friendly system that retained the power of ACL2, but made it possible for
new users to quickly, easily learn how to develop and reason about programs.

Usability is one of the major factors contributing to ACL2’s steep learning
curve. To address the usability problem, ACL2s provides a modern graphical in-
tegrated development environment. It is an Eclipse plug-in that includes syntax
highlighting, character pair matching, input command demarcation and classifi-
cation, automatic indentation, auto-completion, a powerful undo facility, various
script management capabilities, a clickable proof-tree viewer, clickable icons and
keybindings for common actions, tracing support, support for graphics develop-
ment, and a collection of session modes ranging from beginner modes to advanced
user modes. ACL2s also provides GUI support for the “method,” an approach
to developing programs and theorems advocated in the ACL2 book [5]. Most of
these features have been described previously, so we will not dwell on them any
further [3].

The other major challenge new users are confronted with is formal reasoning.
A major advantage of ACL2 is that it is based on a simple applicative program-
ming language, which is easy to teach. What students find more challenging is
the ACL2 logic. The first issue they confront is that functions must be shown
to terminate. Termination is used to both guarantee soundness and to introduce
induction schemes. We have developed and implemented Calling-Context Graph



termination analysis (CCG), which is able to automatically prove termination
of the kinds of functions arising in undergraduate classes [7]. However, begin-
ners often define non-terminating functions. A new feature of ACL2s is that it
provides support for the interactive use of CCG analysis. In particular, we pro-
vide termination counterexamples and a powerful interface for users to direct
the CCG analysis. This is described in Section 2.

Once their function definitions are admitted, new users next learn how to rea-
son about such functions, which first requires learning how to specify properties.
We have seen that beginners often make specification errors. ACL2s provides a
new lightweight and fully automatic synergistic integration of testing and the-
orem proving that often generates counterexamples to false conjectures. The
counterexamples allow users to quickly fix specification errors and to learn the
valuable skill of generating correct specifications. This works well pedagogically
because students know how to program, so they understand evaluation. Inval-
idating a conjecture simply involves finding inputs for which their conjecture
evaluates to false. This is similar to the unit testing they do when they develop
programs, except that it is automated. An overview of our synergistic integration
of testing and theorem proving is given in Section 3.

ACL2s has been successfully used to teach novices. We have used ACL2s at
Northeastern University to teach eight sections of a required second-semester
freshman course entitled “Logic and Computation.” The goal of the class is to
teach fundamental techniques for describing and reasoning about computation.
Students learn that they can gain predictive power over the programs they write
by using logic and automated theorem proving. They learn to use ACL2s to
model systems, to specify correctness, to validate their designs using lightweight
methods, and to ultimately prove theorems that are mechanically checked. For
example, students reason about data structures, circuits, and algorithms; they
prove that a simple compiler is correct; they prove equivalence between various
programs; they show that library routines are observationally equivalent; and
they develop and reason about video games.

ACL2s is freely available, open-source, and well supported [1]. Installation
is simple, e.g., we provide prepackaged images for Mac, Linux, and Windows
platforms. In addition, everything described in this paper is implemented and
available in the current version of ACL2s.

2 Termination Analysis using Calling Context Graphs

Consider the function definitions in Figure 1, where zp is false iff its argument
is a positive integer and expt is exponentiation.

This program was generated by applying weakest precondition analysis to a
triply-nested loop. An expert with over a decade of theorem proving experience
spent 4–6 hours attempting to construct a measure function that could be used
to prove termination, before giving up. Readers are encouraged to construct
a measure and to mechanically verify it. (It took us about 20 minutes.) We
also tried our CCG termination analysis, as implemented in ACL2s: it proved
termination in under 2 seconds, fully automatically with no user guidance.

We have found that if beginners write a terminating function, our CCG
analysis will almost certainly prove termination automatically. Unfortunately,



(defun f1 (w r z s x y a b zs)

(if (not (zp z))

(f2 w r z 0 r w 0 0 zs)

(= w (expt r zs))))

(defun f2 (w r z s x y a b zs)

(if (not (zp x))

(f3 w r z s x y y s zs)

(f1 s r (- z 1) 0 0 0 0 0 zs)))

(defun f3 (w r z s x y a b zs)

(if (not (zp a))

(f3 w r z s x y (- a 1) (+ b 1) zs)

(f2 w r z b (- x 1) y 0 0 zs)))

Fig. 1. An interesting termination problem.

beginners often write non-terminating programs, and then want to know why
termination analysis failed. This lead us to develop an algorithm that generates
a simplified version of the user’s program that highlights the reason for the
failure. We call the simplified program that is generated a termination core, and
it corresponds to a single simple cycle of the original program which the CCG
analysis was unable to prove terminating.

The termination core can be seen as an explanation of why the CCG analysis
failed. After examining the termination core, a user has three options. First, the
user can change the function definition. This is the logical course of action if
the loop returned by CCG reveals that the program as defined is really not
terminating. Second, the user can guide the CCG analysis by providing hints
that tell the CCG analysis what local measures to consider. We provide a hint
mechanism for doing this. The user can provide either the CONSIDER hint or
the CONSIDER-ONLY hint. The former tells CCG to add the user-provided local
measures to the local measures it heuristically guesses, while the latter tells CCG
to use only the user-provided local measures. This is an effective means of guiding
CCG if its heuristics fail to guess the appropriate local measures, and is much
simpler than the previous alternative which was to construct a global measure.
Finally, it may be the case that the CCG analysis guessed the appropriate local
measures but was unable to prove the necessary theorems to show that those
measures decrease from one step to the next. In this case, the user can prove the
appropriate lemmas.

The result of integrating CCG with ACL2s is a highly automated, intuitive,
and interactive termination analysis that eases the steep learning curve for new
users of ACL2 and streamlines the ACL2 development process for expert users.
The ACL2 Sedan includes extensive documentation of CCG analysis.

3 Random Testing and Proving: Synergistic Combination

Users of ACL2 spend much of their time and effort steering the theorem prover
towards proofs of conjectures. During this process users invariably consider con-
jectures that are in fact false. Often, it is difficult even for experts to determine
whether the theorem prover failed because the conjecture is not true or because
the theorem prover needs further user guidance.

ACL2s provides a lightweight method based on the synergistic combination
of random testing [2] and theorem proving, for debugging and understanding



conjectures. This has turned out to be invaluable in helping beginners become
effective users of formal methods. We have integrated random testing into ACL2s
in a deep way: it is enabled by default and requires no special syntax so that
users get the benefit of random testing without any effort on their part.

Since ACL2 formulas are executable, random testing in ACL2 involves ran-
domly instantiating the free variables in a formula and then evaluating the result.
This is a small part of the picture because this naive approach is unlikely to find
counterexamples in all but the simplest of cases. This is especially true in a theo-
rem prover for an untyped logic, like ACL2, where every variable can take on any
value. As might be expected, conjectures typically contain hypotheses that con-
strain variables. Therefore, we randomly instantiate variables subject to these
constraints. We do this by introducing a flexible and powerful data definition
framework in ACL2s which provides support for defining union types, product
types, list types, record types, enumeration types, and mutually-recursive data
definitions. It allows the use of macros inside definitions and supports custom
data definitions (e.g., primes). The data definition framework is integrated with
our random testing framework in several important ways. For example, we guar-
antee that random testing will automatically generate examples that satisfy any
hypothesis restricting the type of a variable.

Complex conjectures often involve many variables with many hypotheses and
intricate propositional structure involving complex hierarchies of user-defined
functions. Testing such conjectures directly is unlikely to yield counterexamples.
We address this by integrating our testing framework with the core theorem
proving engine in a synergistic fashion, using the full power of ACL2 to simplify
conjectures for better testing. The main idea is to let ACL2 use all of the proof
techniques at its disposal to simplify conjectures into subgoals, and to then test
the “interesting” subgoals. This winds up requiring lots of care. For example,
ACL2 employs proof techniques that can generate radically transformed sub-
goals, where variables disappear or are replaced with new variables that are
related to the original variables via certain constraints. Finally, our analysis is
sound, i.e., any counterexamples generated truly are counterexamples to the
original conjecture.
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