
A Model-Based Framework for Analyzing the Safety of System
Architectures

Panagiotis Manolios, PhD, Northeastern University

Kit Siu, GE Global Research

Michael Noorman, GE Aviation Systems

Hongwei Liao, PhD, Netflix

Key Words: fault trees, model-based design, safety analysis, safety-critical systems

SUMMARY & CONCLUSIONS

We introduce a compositional, model-based framework
for modeling, visualizing and analyzing the safety of system
architectures for safety-critical cyber-physical systems. Our
work provides a unified, end-to-end, framework that
encompasses high-level models, fault trees and qualitative and
quantitative safety analyses in one semantically coherent
framework. Our framework enables the rapid development,
modification and evaluation of architectures for complex
systems.

Our framework includes a modeling language for defining
libraries of component models that include information on
component reliability, connectivity and fault propagation.
System architectures consist of a sequence of component
instantiations, component connections, and the identification
of top-level faults. Our framework includes algorithms for
automatically synthesizing and reducing fault trees from
architectures and library models. The generated fault trees are
then automatically analyzed to determine cutsets and the
probability of top-level faults. Finally, our framework
includes visualization algorithms that depict fault trees and
architectures at various levels of abstraction. We provide a
case study of a model inspired by the Boeing 777 IMA
architecture.

The framework is compositional because safety engineers
only need to define reliability and fault propagation aspects at
the component level. This is in contrast with current methods
used in the field of avionics, where safety engineers directly
construct system-level fault trees. Defining such fault trees
requires significant expertise, time and care. Small changes
to architectures can result in significant changes to fault trees.
All of this makes analyzing a collection of architectures error-
prone and prohibitive both in terms of time and money. We
developed an open source tool that implements our
framework, and provide an experimental evaluation consisting
of the modeling and analysis of a collection of architectures.
Our model-based framework provides a new paradigm,
allowing significant automation in the area of safety analysis
of architectures for complex avionics systems.

1 INTRODUCTION

One measure of the safety capability of a system is the
level of risk that failures result in identified hazards, or
undesired events, associated with the functions performed by

the system. Examples include hazards that impact availability
(loss of function) and integrity (erroneous, misleading or
inadvertent function). Fault Tree Analysis (FTA) is the most
common method for determining the combinations of failures
that result in hazards, as well as the probability of such
hazards occurring [1].

The current practice is that FTA is used at multiple stages
within the development of safety critical systems. It is used
during the early concept and initial architecture development
phases to help drive architecture decisions. After the design
details are finalized, FTA is used as a means of verifying
compliance to qualitative and quantitative safety objectives.
FTA is used as both a means to understanding the
combinations of failures that lead to a given undesired event
and a means of documenting the safety analysis.

Fault trees, though powerful, are hard to manually
construct. According to [2], “The manual construction of fault
trees relies on the ability of the safety engineer to understand
and to foresee the system behavior … it is a time consuming
and error-prone activity.” Safety engineers also have to update
fault trees and analyses as designs are refined and fleshed out
at increasing layers of detail. This challenge is one of the
driving forces behind our work.

We introduce a framework consisting of modeling,
analysis and visualization capabilities that has been
implemented and is available as an open-source tool, to be
distributed by NASA, and is based on Inez, an extension of
OCaml [3]. Our framework contributes to the area of Model
Based Safety Analysis (MBSA).

1.1 Related Work

 MBSA tools can be partitioned into two classes. The
first class includes tools that require engineers to manually
construct fault trees. These tools then perform various safety
analyses, including the generation of minimal cutsets and
quantitative analyses using the fault trees provided as input.
Examples of such tools are OpenFTA and Windchill FTA.
The second class includes tools that synthesize fault trees from
models. Examples include HiP-HOPS, AltaRica, AADL with
the Error Annex, as well as our framework.

HiP-HOPS [4] is an add-on tool that allows one to
annotate Simulink or Sim-X models with reliability
annotations, which are used to automatically generate fault
trees and FMEAs (Failure Mode Effect Analyses). Minimal
cutsets are generated from fault trees.

AltaRica [5-7] is a high-level modeling language for
specifying the behavior of systems when faults occur. It
includes a fault tree generator that automatically generates a
static fault tree and uses a model checker to reason over
dynamic properties of the system expressed in Linear
Temporal Logic (LTL). AltaRica rejects models with loops
even if there are no cycles in the failure propagation.

AADL is a modeling language for describing the structure
of a system as an assembly of software components mapped
onto execution platforms. The Error Annex EMV2 [8]
provides support for specifying error models by adding to the
AADL model error type, error propagations, composite error
behavior, and component error behavior. EMV2 essentially
requires users to provide a fault tree, as it requires a composite
error behavior that specifies “the logic in a fault tree” [9].

The tools mentioned above are developed for very
expressive modeling languages, e.g., Simulink. This makes it
infeasible for such tools to fully support these modeling
languages. For both AltaRica and AADL, the currently
available tools have limitations and their own syntax and
semantics, e.g., fault-tree compilers for AltaRica do not
support delays. This leads to semantic inconsistencies that
make it difficult for safety engineers to have confidence in the
analyses produced by these tools. Instead, they tend to just
directly define fault trees. This semantic gap was our
motivation in defining our framework, since we started this
project by first evaluating existing approaches.

1.2 Contributions

Our first contribution is the design of the framework. We
introduce a unified framework that encompasses high-level
models, fault trees and qualitative and quantitative safety
analyses in one semantically coherent framework. There is
no other framework we are aware of that provides this
capability. For example, HiP-HOPS depends on Simulink and
there is no documented claim that HiP-HOPS preserves the
semantics of Simulink models. In fact, Mathworks does not
publish the semantics and can change them as they see fit.
This makes it unclear what the analyses mean with respect to
the Simulink models.

Our second contribution is the design of the modeling
language, introduced in Section 2. In order to have a
semantically coherent framework, our modeling language is
designed to provide a minimal set of core capabilities for
modeling architectures at the level required to perform safety
analyses. In contrast, current MBSA tools such as AltaRica
require one to define a behavioral model, which is at a lower-
level of abstraction than is needed for safety analysis. Our
language is compositional, which allows one to define
reusable libraries of components that provide consistency
within and between the projects of an organization. It
includes a fault-propagation language that supports defined
equations, loops, defining multiple faults, defining faults in
terms of other faults, etc. The language is an extension of
OCaml, which allows us to support parameterized component
models via component generators. The language is designed
to only require information relevant to safety analysis, e.g.,

detailed behavioral models of components are not required.
This allows for rapid development and prototyping of
architectures in early stages of the design.

Our third contribution is the fault-tree synthesis algorithm
for our modeling language, described in Section 3. While
there exist fault-tree synthesis algorithms, the collection of
language features and capabilities we allow requires a custom
fault-tree synthesis algorithm. For example, dealing with
loops, identifying when loops do not uniquely define fault
propagation behavior, support for faults defined in terms of
other faults and so on require a custom fault tree synthesis
algorithm. Our algorithm is part of a unified framework,
ensuring a semantic connection with the user-defined libraries
used to model architectures. We have found that beyond a
certain level of complexity, human-generated fault trees tend
to be incomplete. While such incompleteness usually does not
lead to significant differences in the probability of top-level
faults, the possibility of a significant discrepancy exists. Our
approach is guaranteed to not have such problems. The
synthesis algorithm enables us to easily update all relevant
fault trees after component definitions are updated and
guarantees that components are handled in a complete,
uniform way across an organization.

Our fourth contribution is the fault-tree reduction
algorithm, described in Section 3. A practical problem with
complete fault trees is that they tend to be more complex than
fault trees humans generate, making them large and unwieldy.
This makes it hard for safety engineers to understand and
approve such trees, even if visualizations are used. Our fault
tree reduction engine addresses this problem by using
symbolic tree manipulation methods to generate equivalent,
reduced fault trees. Experiments show that we often generate
shallower fault trees with far fewer nodes, which are then
easier for experts to understand and evaluate. In fact, these
trees can be even simpler than trees generated by experts.
Existing tools do not provide this capability. Many of them
can generate BDDs and cutsets, but there is no guarantee that
these transformations will simplify the tree (reduce the size of
the formulas). In our case, we are guaranteed that the depth
and size of the formula will not increase.

Our fifth contribution is the visualization algorithms of
our framework, described in Section 2. We identify several
useful views of architectures and automatically generate
visualizations of these views.

Our sixth contribution is an open source tool, to be
distributed by NASA. The tool provides evidence that the
framework works and is usable by safety experts.

Our final contribution is our experimental evaluation of
the framework, using a case study described in Section 4.

An important aspect of our framework is that it is
compositional. That is, safety engineers only need to define
reliability and fault propagation aspects at the component
level. Instead of defining fault trees directly, one only defines
how faults propagate through individual components. This
only requires understanding one component at a time. Once
this information is provided, it can be reused by any other
safety engineer on any other project using that component, i.e.,

we wind up with a library of components that can be shared
throughout an organization, thereby allowing for consistency,
reuse and rapid architectural development. In contrast, most
existing methods require safety engineers to define this
information at the system-level, which requires significantly
more effort and expertise. Our framework is also robust:
making small changes to architectures is easy. Such changes
can result in significant changes to fault trees, which makes
the use of existing system-level methods costly and error-
prone. Our model-based framework provides a new paradigm,
allowing significant automation in the area of safety analysis
of architectures for complex avionics systems.

2 MODELING

Our modeling language is designed to provide a minimal
set of capabilities for modeling architectures at the level
required to perform safety analyses. The modeling language
has evolved as we used it to model a variety of architectures,
some of which were quite complex. For example, the
language allows one to model feedback loops; while such
loops seem to be rare in avionics applications, they sometimes
exist and they can be modeled and analyzed in our current
framework.

Our modeling language allows us to define components,
libraries and architectures. A component consists of a name, a
list of fault types supported, a list of inputs, a list of basic
events and their characteristics, a list of outputs and formulas
characterizing the propagation of faults through the
component. A library is a collection of components. An
architecture or a model is a set of component instantiations,
which allow us to override basic event information, along with
connection information and the identification of a top-level
fault.

We will use the running example architecture shown in
Figure 1 to highlight the modeling language. The
architectural views were generated by our framework’s
visualization capability. The architecture consists of two
sensors that generate analog readings that are sent to the RIUs
(Remote Interface Units) that digitize the data and send it on
the network along channels A and B, using Switches A and B.
RIUi only accepts input from Sensori, but both switches
accept input from both RIUs. The switches send the data to
the GPM (General Processing Module). A visualization of the
architecture at this high-level of abstraction is provided by the
physical architecture, a graph whose nodes are component
instances and whose edges correspond to one or more
connections between components. To describe the workings
of the GPM, it helps to consider the more detailed functional
architecture, a graph whose nodes are ports of components
and whose edges correspond to connections between ports.
The GPM includes a redundancy management unit, which
selects a sensor reading from Sensor1 and Sensor2. The
Sensor1 data comes in through ports in1 and in3, whereas the
Sensor2 data comes in through ports in2 and in4. For our
purposes, we will assume that this selection is
nondeterministic. Next, the GPM has a voting unit, which
checks that the data sources selected for sensor readings are
equivalent.

Our modeling language allows us to formalize how
various faults propagate through components. In the GPM, a
UED (Undetected Erroneous Data) fault occurs if the data are
equal, but erroneous. For that to happen, at least one of the
inputs from Sensor1 to the GPM propagated a UED fault
AND at least one of the inputs from Sensor2 to the GPM
propagated a UED fault AND the vote passes, i.e., it does not
report a problem when there is one because the errors cancel
each other out. An LOA (Loss of Availability) error occurs
when both copies of at least one sensor propagate an LOA
fault: then one of the sensor readings is unavailable. But, what
if both are available, but erroneous? Then, due to the voting,
we have an LOA fault (we caught a problem). But, that’s
similar to what UED is checking, so this is an example of
where we want the propagation logic for one fault (LOA) to
refer to the propagation logic for another (UED).

An example of how we specify a component is shown on
the top half of Figure 2. The basic events include internal
faults that lead to UED and GPM faults, as well as events
corresponding to the voting logic. The basic event
information required corresponds to the lambda and tau values
of the basic event, i.e., the failure rate and exposure time.
Boolean formulas are used to define how UED and LOA
faults propagate through the component. These formulas can
include references to faults that propagate through the inputs,
internal faults and defined equations. Defined equations make
fault propagation logic easier to understand (just like functions
make programs easier to understand) and give us the ability to
define the propagation of a fault in terms of formulas defining
the propagation of another fault. The utility of defined
equations became apparent when we used the framework to
model large, realistic examples. There should be a formula for

Figure 1 Physical (upper left), functional (lower left), and
fault propagation (right) architectures

 out

GPM

 in1 in2 in3 in4

 out1 out2

SwitchB

 in1 in2

 out1 out2

SwitchA

 in1 in2

 out

RIU2

 in

 out

RIU1

 in

 out

Sensor2

 out

Sensor1

 out

GPM

 Ued

 Loa

 votePasses

 voteFails

 in1 in2 in3 in4

 out1 out2

SwitchB

 Ued

 Loa

 in1 in2

 out1 out2

SwitchA

 Ued

 Loa

 in1 in2

 out

RIU2

 Ued

 Loa

 in

 out

RIU1

 Ued

 Loa

 in

 out

Sensor2

 Ued

 Loa

 out

Sensor1

 Ued

 Loa

Sensor1

RIU1

Sensor2

RIU2

SwitchA SwitchB

GPM

each fault-type/output-flow combination and fault formulas
can refer to the formulas for other faults. The types of
formulas allowed are positive Boolean formulas because for
safety analysis, a fault not occurring never leads to another
fault occurring, i.e., the propagation functions are positive.
The basic operators allowed include references to atomic
variables (such as faults propagated through inputs, basic
events and references to defined equations), arbitrary-arity
conjunctions, arbitrary-arity disjunctions and an N-of
construct that corresponds to n or more of a list of formulas
being true.

A collection of components corresponds to a library, as
shown in the bottom half of Figure 2. An architecture
definition is a collection of component instantiations, along
with connection information and the identification of a top-
level fault, which can be any formula (but is just an atomic
variable in our example). Our modeling language allows one
to override the default lambda and tau values of component
instances (not shown). This is often required to account for
the operating environment of a component, e.g., the failure
rate of a component may vary depending on whether it is in a
pressurized space or not.

Furthermore, our modeling language allows us to define
parameterized component models. Parameters can be used to
specify the number of inputs and outputs of a component, the
source selection mechanisms used by a component, the voting
mechanisms used, and so on.

The fault propagation view of the architecture, as shown
in Figure 1 extends the functional architecture with nodes
corresponding to basic events and shows what parts of the
architecture can affect the probability of the top-level fault. If
an edge (corresponding to the propagation of a fault from one

component to another) can affect the top-level fault, it is
colored red. If a basic event can affect the top-level fault, then
a (set of) red edge(s) is added from that event to the output(s)
along which the basic event propagates.

3 FAULT TREE SYNTHESIS, REDUCTION AND ANALYSIS

Once architectures are modeled in our framework, it is
possible to algorithmically synthesize fault trees, the topic of
this section. From the synthesized fault trees, we can use
standard algorithms to perform qualitative and quantitative
analyses to determine the safety of the modeled architecture.
Therefore, our framework allows us to go from models to
analyses with a push of a button. In contrast, current practice
in avionics requires safety engineers to construct fault-trees by
hand. Notice that a fault tree is required per fault, so if there
are 30 faults of interest and 5 architectures to consider, then
150 fault trees must be generated. This makes it difficult to
explore multiple architectures and it makes it easy to introduce
errors when fault trees must be updated to reflect architectural
changes, which often undergo numerous changes in the course
of an industrial project.

We describe the fault tree synthesis algorithm informally,
due to space limitations. The idea is simply to expand out the
equations defining the top-level fault under consideration
starting from the component instance that has the fault. If the
fault involves more than one component, then we define a
dummy component that is connected to all the required
components. The algorithm expands out the fault propagation
logic associated with component outputs. Recall that there
may be defined equations, in which case these are expanded
and simplified until we arrive at a formula in terms of the
basic events of the component and the inputs of the
component (really input/fault pairs). The architecture is
consulted to determine what component instance outputs are
connected to the identified inputs and the process repeats, i.e.,
we expand out the appropriate fault propagation logic
associated with the newly discovered component instances as
before. If there are no cycles, we eventually have a formula in
terms of just basic events, potentially with many events
appearing multiple times. For our running example in Figure
1, the direct fault tree generated for the top-level fault LOA of
GPM, is shown in Figure 3. What we have found is that such
trees can be significantly simplified, which makes it easier to
use them to understand system behavior. Therefore, our
framework includes a collection of formula transformations
that when used (as is the default case) generate the reduced
fault tree shown in Figure 4. Notice that this fault tree is
much simpler than the direct fault tree, e.g., the number of
nodes and operators has been reduced significantly. The two
trees are semantically equivalent, but the reduced fault tree is
much easier to understand and it does not have any repeated
events!

 From these fault trees, we generate cutsets, which
correspond to the minimal DNF formula that is equivalent to
the fault trees. Since the formulas are positive, there is a
unique minimal DNF formula that can be generated using
existing algorithms [1]. Our framework uses symbolic

Figure 2 Component model (top) and library (bottom)

manipulation algorithms for both reducing fault trees and
generating cutsets. An example of the simplifications used
includes the lift transformation, which is essentially
distributivity in reverse.

⋀ ൣ݃, ൫⋁ ݂, ଵ݂
௜ … ௡݂௜

௜ ൯൧௞
௜ୀଵ ൌ ⋀ൣ݃, ⋁ ݂൫⋀ ൫⋁ ଵ݂

௜ … ௡݂௜
௜ ൯௞

௜ୀଵ ൯൧

Now, this transformation can increase the depth of the
tree and even the number of Boolean operators, but the
number of variable occurrences decreases. Another example
of a transformation we apply is that we replace the second
occurrence of g in the formula below with false.

⋁ሾ… , ݃,… , ⋀ሺ… , ⋁ሺ… , ݃,… ሻ,… ሻ,… ሿ

We also apply the duals of the above transformations.
These transformations are used in conjunction with constant
propagation and transformations for flattening, simplifying
and sorting formulas. In addition, where appropriate,
transformations are applied until a fixpoint is reached. As the
lift transformation highlights, the algorithms have to be careful
to avoid loops, so depending on the context in which they are
used some transformation are not applied unless they meet

context-sensitive criteria. The details can be found in a
planned journal version of this paper.

The cutsets generated are shown in Figure 5. Notice that
while the cutsets are minimal DNF formulas, they are not
minimal Boolean formulas, as a comparison Figure 4 between
and Figure 5 shows. Notice also that the cutsets include
repeated events, whereas the reduced fault tree does not.

The cutsets are very useful because each term of the top-
level disjunction corresponds to a minimal set of basic events
that together lead to the top-level fault under consideration.
For example, we can determine that for LOA faults, there are
5 basic events that correspond to single points of failure. That
this is the case is not apparent from the direct fault tree in
Figure 2, but it is from the reduced fault tree in Figure 3.
However only the cutsets are guaranteed to provide this
information.

From the cutsets, we can use standard techniques to
determine the probability that a top-level fault occurs. The
probability of a failure for a basic event (from reliability
theory) is 1 െ ݁ିఒ். To compute the probability using cutsets

Figure 3 Direct Fault Tree example

Figure 4 Reduced Fault Tree example

Figure 5 Cutsets

requires the use of the inclusion-exclusion principle. Note that
we assume that basic events are independent (as is standard in
safety analysis and this is something that is validated via other
means). The reason we need inclusion/exclusion is that basic
events can be repeated. However, if we have a formula with
no repeated events (as is the case with our reduced fault tree
above), then the probability computations are straightforward.
There are various specialized techniques for determining the
probability of a top-level failure efficiently, and these
techniques are outside the scope of our work. Our framework
also generates importance metrics, which order cutsets by their
contribution to the top-level fault. This is very useful in
understanding what parts of an architecture are primarily
responsible for high probabilities, which helps safety
engineers design new architectures that address these issues.
The next section provides a detailed example.

3.1 Handling Loops

The fault tree generation algorithm includes one more
complication that we now describe. In certain architectures,
there are cyclic dependencies between faults. The NASA
Fault Tree Handbook [1], version 1.1, includes a new section
describing such feedback loops. The handbook describes how
in the space shuttle, the orbiter sends a control signal to the
main engine, which provides the feedback signal, so the
failure of the orbiter depends on the failure of the main engine,
which depends on the failure of the orbiter, …. Our fault tree
synthesis algorithm supports such loops. First, loops are
detected when we notice a cycle in the expanded fault
propagation definition. We note that one can legitimately
expand out the definition of some fault more than once
without there being a loop, so we have to take context into
account, by only looking for loops along the path of ancestors
of the fault tree node being generated. Once loops are found,
they have to be broken in a way that makes sense, e.g., ܽ ∨ ܽ ∨
ܽ ∨ ⋯	should be set to a, which is equivalent to replacing all
but the first occurrence of a with false. However, in the
formula ܽ ∧ ܽ ∧ ܽ ∧ ⋯	we should replace all but the first
occurrence of a with true. Our algorithm breaks loops only in
the context of conjunctions and disjunctions that include at
least one basic event and replaces repeated events with the
appropriate identity for the operator. If there are no basic
events, then there are a number of potential solutions to the
equations and that indicates an error, which we report.

4 CASE STUDY

We present a case study that is inspired by the Boeing 777
IMA architecture. Figure 6 shows the functional architecture.
The system contains three types of input components: inertial
reference units (IRU), multi-purpose control display units
(MCDU), and distance measuring equipment (DME). The
data generated from the input components are first transmitted
to input/output modules (IOM) and then transmitted to flight
management computers (FMC) via network buses. Consider
LOA (Loss of Availability) faults. Since the probability that
network buses are responsible for LOA faults is much smaller
than that of other components in the system, network buses are

omitted for the sake of simplicity. After FMCs perform their
computations, the results are first transmitted to IOMs via
network buses and then transmitted to symbol generators (SG)
for display. The system contains two types of display
components: primary flight displays (PFD) and navigation
displays (ND). The top-level fault of interest is the LOA of
PFD1. In this architecture, input components contain two
instances for dual redundancy, and the communication over
network buses is supported by dual channel redundancy
(channels A and B).

Our tool automatically synthesizes the fault tree of the
system and generates the reduced fault tree and cutsets, along
with visualizations. The top-level probability of failure is
3.000E-6. The fault probability and the importance metric
indicate that the cutset IOM1, IOM2, and IOM3 account for
more than 99.99% of the top-level probability of failure,
which can be explained by the following observations. It can
be seen that IOM1 introduces a single point of failure to the
two IRU components. Loss of IOM1 will lead to loss of both
IRU components, which essentially removes the dual
redundancy of IRUs. Similarly, IOM2 and IOM3 introduce
single points of failures for MCDUs and DMEs, respectively.
To improve the system’s safety performance, we remove these
single points of failure in an updated system architecture
where the input components are shuffled so that IOM1, IOM2,
and IOM3 take different types of input components. The
updated architecture’s top-level probability of failure is
2.160E-10, which is a significant improvement over the
original system. In the new system, the only dominant cutset
is the basic event of PFD1, which accounts for 92.59% of the
top-level probability which is unavoidable because PFD1 is
the sink node of the fault data flow under consideration.

The above case study shows that our framework, with
automated fault tree synthesis and analysis capabilities, can
help a safety engineer to quickly identify, correct and fix

Figure 6 Boeing 777 IMA architecture

 out

pfd2

 in1 in2

 out

pfd1

 in1 in2

 out

nd2

 in1 in2

 out

nd1

 in1 in2

 out

sg2

 in

 out

sg1

 in

 out

iom5

 inA inB

 out

iom4

 inA inB

 outA outB

fmc2

 inA1 inA2 inA3 inB1 inB2 inB3

 outA outB

fmc1

 inA1 inA2 inA3 inB1 inB2 inB3

 A B

iom3

 in1 in2

 A B

iom2

 in1 in2

 A B

iom1

 in1 in2

 out

dme2

 out

dme1

 out

mcdu2

 out

mcdu1

 out

iru2

 out

iru1

architectural problems. To go from the original architecture to
the new architecture, we only need to modify the connections
associated with the inputs of the IOMs. The rest of the system
model and component library remains the same, which
demonstrates the advantage of our component-based approach.
Our framework synthesizes the fault tree, generates the cutsets
and computes the top-level probability of failure for the new
architecture automatically, removing the fault tree
construction burden from the safety engineer, allowing her to
focus on architecture-level designs.

5 ACKNOWLEDGEMENTS

This research was the result of NNL15AA02C, a cost-
sharing contract between NASA and GE. Tool distribution is
through NASA Langley Research Center. The authors would
like to thank Camila Rodriguez and Heber Herencia-zapana
for their support on the examples used in this paper.

REFERENCES

1. NASA, Fault Tree Handbook with Aerospace
Applications, 2002.

2. R. Banach and M. Bozzano, "Retrenchment, and the
generation of fault trees for static, dynamic and cyclic
systems," International Conference on Computer Safety,
Reliability, and Security SAFECOMP, pp 127-141, 2006.

3. P. Manolios, J. Pais and V. Papavasileiou, "The Inez
mathematical programming modulo theories framework,"
Computer Aided Verification, vol. 9207, no. LNCS, pp.
53-69, 2015.

4. Y. Papadopoulos, HiP-HOPS Automated Fault Tree,
FMEA and Optimisation tool - User Manual, University
of Hull.

5. A. Batteux and T. Prosvirnova, AltaRica 3.0 Language
Specification.

6. R. Bernard, J. Aubert, P. Bieber and S. M. C. Merlini,
"Experiments in model based safety analysis: flight
controls," IFAC Proceedings Volumes, 40(6): 43-48,
2007.

7. P. Bieber, C. Bougnol, C. Castel, J. Heckmann, C.
Kehren, S. Metge and C. Sequin, "Safety assessment with
AltaRica - lessons learnt based on two aircraft system
studies," 18th IFIP World Computer Congress, pp 26,
2004.

8. P. Feller, J. Hudak, J. Delange and D. Gluch, Architecture
Fault Modeling and Analysis with the Error Model
Annex, version 2, Software Engineering Institute,
Carnegie Mellon University, 2016.

9. J. Delange and P. Feiler, "Architecture fault modeling
with the AADL error-model annex," EUROMICRO
Conference on Software Engineering and Advanced
Applications, pp 361-368, 2014.

BIOGRAPHIES

Panagiotis Manolios, PhD
Northeastern University
360 Huntington Avenue

Boston, MA, 02115, USA

e-mail: pete@ccs.neu.edu

Panagiotis Manolios is a Professor in the College of Computer
and Information Science at Northeastern University. He
earned his doctoral degree in Computer Science at the
University of Texas, Austin in 2001. He is a widely published
expert in formal verification and validation. He has served as
an Associate Editor of ACM Transactions on Design
Automation of Electronic Systems (TODAES), as a member
of the FMCAD, ACL2 and ITP Steering Committees, is a
member of the IFIP working group 1.9/2.15 on Verified
Software. He is a member of ACM, IEEE and Sigma Xi.

Kit Siu
GE Global Research
One Research Circle
Niskayuna, NY 12309, USA

e-mail: siu@ge.com

Kit Siu is a Senior Engineer with 18 years of experience. She
received her masters from Rensselaer Polytechnic Institute and
bachelors from Columbia University. She works at GE Global
Research developing validation and verification technology
for software. She is a co-PI on one of DARPA's Cyber
Assured Systems Engineering (CASE) programs and was the
PI on SOTERIA (Safe & Optimal Techniques Enabling
Recovery, Integrity, and Assurance), a NASA funded research
for analyzing safety of IMA architectures.

Michael Noorman
GE Aviation Systems
3290 Patterson Avenue SE
Grand Rapids, MI, 49512, USA

e-mail: michael.noorman@ge.com

Mike Noorman is a Principal Engineer and has been with GE
Aviation since 2005. He received his bachelors from
Michigan State University. He has been the lead Safety
Engineer on various GE Aviation projects. He provides
technical oversight for safety activities across many GE
Aviation products, develops internal safety processes, mentors
other safety engineers, and supports multiple development
programs. He is an active member of the SAE S-18
committee working on updates to ARP4761, Guidelines and
Methods for Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment.

Hongwei Liao, PhD
Netflix, Inc.
5808 Sunset Boulevard
Los Angeles, CA, 90028, USA

e-mail: hliao@netflix.com

Hongwei Liao is currently a Senior Data Scientist at Netflix.
He received his Ph.D. and Masters from University of
Michigan. Prior to his current role, Dr. Liao worked at Aviall -
A Boeing Company and GE Global Research.

