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SUMMARY & CONCLUSIONS 

We introduce a compositional, model-based framework 
for modeling, visualizing and analyzing the safety of system 
architectures for safety-critical cyber-physical systems.  Our 
work provides a unified, end-to-end, framework that 
encompasses high-level models, fault trees and qualitative and 
quantitative safety analyses in one semantically coherent 
framework.  Our framework enables the rapid development, 
modification and evaluation of architectures for complex 
systems.   

Our framework includes a modeling language for defining 
libraries of component models that include information on 
component reliability, connectivity and fault propagation.  
System architectures consist of a sequence of component 
instantiations, component connections, and the identification 
of top-level faults.  Our framework includes algorithms for 
automatically synthesizing and reducing fault trees from 
architectures and library models.  The generated fault trees are 
then automatically analyzed to determine cutsets and the 
probability of top-level faults.  Finally, our framework 
includes visualization algorithms that depict fault trees and 
architectures at various levels of abstraction.  We provide a 
case study of a model inspired by the Boeing 777 IMA 
architecture. 

The framework is compositional because safety engineers 
only need to define reliability and fault propagation aspects at 
the component level.   This is in contrast with current methods 
used in the field of avionics, where safety engineers directly 
construct system-level fault trees.  Defining such fault trees 
requires significant expertise, time and care.   Small changes 
to architectures can result in significant changes to fault trees.   
All of this makes analyzing a collection of architectures error-
prone and prohibitive both in terms of time and money.  We 
developed an open source tool that implements our 
framework, and provide an experimental evaluation consisting 
of the modeling and analysis of a collection of architectures.  
Our model-based framework provides a new paradigm, 
allowing significant automation in the area of safety analysis 
of architectures for complex avionics systems.    

1 INTRODUCTION 

One measure of the safety capability of a system is the 
level of risk that failures result in identified hazards, or 
undesired events, associated with the functions performed by 

the system.  Examples include hazards that impact availability 
(loss of function) and integrity (erroneous, misleading or 
inadvertent function).  Fault Tree Analysis (FTA) is the most 
common method for determining the combinations of failures 
that result in hazards, as well as the probability of such 
hazards occurring [1]. 

The current practice is that FTA is used at multiple stages 
within the development of safety critical systems.  It is used 
during the early concept and initial architecture development 
phases to help drive architecture decisions.  After the design 
details are finalized, FTA is used as a means of verifying 
compliance to qualitative and quantitative safety objectives.   
FTA is used as both a means to understanding the 
combinations of failures that lead to a given undesired event 
and a means of documenting the safety analysis.   

Fault trees, though powerful, are hard to manually 
construct.  According to [2], “The manual construction of fault 
trees relies on the ability of the safety engineer to understand 
and to foresee the system behavior … it is a time consuming 
and error-prone activity.” Safety engineers also have to update 
fault trees and analyses as designs are refined and fleshed out 
at increasing layers of detail.  This challenge is one of the 
driving forces behind our work. 

We introduce a framework consisting of modeling, 
analysis and visualization capabilities that has been 
implemented and is available as an open-source tool, to be 
distributed by NASA, and is based on Inez, an extension of 
OCaml [3].  Our framework contributes to the area of Model 
Based Safety Analysis (MBSA). 

1.1 Related Work 

 MBSA tools can be partitioned into two classes.  The 
first class includes tools that require engineers to manually 
construct fault trees.  These tools then perform various safety 
analyses, including the generation of minimal cutsets and 
quantitative analyses using the fault trees provided as input.  
Examples of such tools are OpenFTA and Windchill FTA.  
The second class includes tools that synthesize fault trees from 
models.  Examples include HiP-HOPS, AltaRica, AADL with 
the Error Annex, as well as our framework. 

HiP-HOPS [4] is an add-on tool that allows one to 
annotate Simulink or Sim-X models with reliability 
annotations, which are used to automatically generate fault 
trees and FMEAs (Failure Mode Effect Analyses).  Minimal 
cutsets are generated from fault trees. 



AltaRica [5-7] is a high-level modeling language for 
specifying the behavior of systems when faults occur.  It 
includes a fault tree generator that automatically generates a 
static fault tree and uses a model checker to reason over 
dynamic properties of the system expressed in Linear 
Temporal Logic (LTL).  AltaRica rejects models with loops 
even if there are no cycles in the failure propagation. 

AADL is a modeling language for describing the structure 
of a system as an assembly of software components mapped 
onto execution platforms.  The Error Annex EMV2 [8] 
provides support for specifying error models by adding to the 
AADL model error type, error propagations, composite error 
behavior, and component error behavior.  EMV2 essentially 
requires users to provide a fault tree, as it requires a composite 
error behavior that specifies “the logic in a fault tree” [9]. 

The tools mentioned above are developed for very 
expressive modeling languages, e.g., Simulink.  This makes it 
infeasible for such tools to fully support these modeling 
languages.  For both AltaRica and AADL, the currently 
available tools have limitations and their own syntax and 
semantics, e.g., fault-tree compilers for AltaRica do not 
support delays.  This leads to semantic inconsistencies that 
make it difficult for safety engineers to have confidence in the 
analyses produced by these tools.  Instead, they tend to just 
directly define fault trees.  This semantic gap was our 
motivation in defining our framework, since we started this 
project by first evaluating existing approaches. 

1.2 Contributions   

Our first contribution is the design of the framework.  We 
introduce a unified framework that encompasses high-level 
models, fault trees and qualitative and quantitative safety 
analyses in one semantically coherent framework.   There is 
no other framework we are aware of that provides this 
capability.  For example, HiP-HOPS depends on Simulink and 
there is no documented claim that HiP-HOPS preserves the 
semantics of Simulink models.  In fact, Mathworks does not 
publish the semantics and can change them as they see fit.  
This makes it unclear what the analyses mean with respect to 
the Simulink models.   

Our second contribution is the design of the modeling 
language, introduced in Section 2.  In order to have a 
semantically coherent framework, our modeling language is 
designed to provide a minimal set of core capabilities for 
modeling architectures at the level required to perform safety 
analyses.  In contrast, current MBSA tools such as AltaRica 
require one to define a behavioral model, which is at a lower-
level of abstraction than is needed for safety analysis.  Our 
language is compositional, which allows one to define 
reusable libraries of components that provide consistency 
within and between the projects of an organization.   It 
includes a fault-propagation language that supports defined 
equations, loops, defining multiple faults, defining faults in 
terms of other faults, etc.  The language is an extension of 
OCaml, which allows us to support parameterized component 
models via component generators.  The language is designed 
to only require information relevant to safety analysis, e.g., 

detailed behavioral models of components are not required.  
This allows for rapid development and prototyping of 
architectures in early stages of the design. 

Our third contribution is the fault-tree synthesis algorithm 
for our modeling language, described in Section 3.  While 
there exist fault-tree synthesis algorithms, the collection of 
language features and capabilities we allow requires a custom 
fault-tree synthesis algorithm.  For example, dealing with 
loops, identifying when loops do not uniquely define fault 
propagation behavior, support for faults defined in terms of 
other faults and so on require a custom fault tree synthesis 
algorithm.  Our algorithm is part of a unified framework, 
ensuring a semantic connection with the user-defined libraries 
used to model architectures.  We have found that beyond a 
certain level of complexity, human-generated fault trees tend 
to be incomplete.  While such incompleteness usually does not 
lead to significant differences in the probability of top-level 
faults, the possibility of a significant discrepancy exists.  Our 
approach is guaranteed to not have such problems.  The 
synthesis algorithm enables us to easily update all relevant 
fault trees after component definitions are updated and 
guarantees that components are handled in a complete, 
uniform way across an organization. 

Our fourth contribution is the fault-tree reduction 
algorithm, described in Section 3.  A practical problem with 
complete fault trees is that they tend to be more complex than 
fault trees humans generate, making them large and unwieldy.  
This makes it hard for safety engineers to understand and 
approve such trees, even if visualizations are used.  Our fault 
tree reduction engine addresses this problem by using 
symbolic tree manipulation methods to generate equivalent, 
reduced fault trees.  Experiments show that we often generate 
shallower fault trees with far fewer nodes, which are then 
easier for experts to understand and evaluate.  In fact, these 
trees can be even simpler than trees generated by experts.  
Existing tools do not provide this capability.  Many of them 
can generate BDDs and cutsets, but there is no guarantee that 
these transformations will simplify the tree (reduce the size of 
the formulas).  In our case, we are guaranteed that the depth 
and size of the formula will not increase. 

Our fifth contribution is the visualization algorithms of 
our framework, described in Section 2.  We identify several 
useful views of architectures and automatically generate 
visualizations of these views. 

Our sixth contribution is an open source tool, to be 
distributed by NASA.  The tool provides evidence that the 
framework works and is usable by safety experts. 

Our final contribution is our experimental evaluation of 
the framework, using a case study described in Section 4. 

An important aspect of our framework is that it is 
compositional.  That is, safety engineers only need to define 
reliability and fault propagation aspects at the component 
level.  Instead of defining fault trees directly, one only defines 
how faults propagate through individual components.  This 
only requires understanding one component at a time.  Once 
this information is provided, it can be reused by any other 
safety engineer on any other project using that component, i.e., 



we wind up with a library of components that can be shared 
throughout an organization, thereby allowing for consistency, 
reuse and rapid architectural development.  In contrast, most 
existing methods require safety engineers to define this 
information at the system-level, which requires significantly 
more effort and expertise.  Our framework is also robust: 
making small changes to architectures is easy. Such changes 
can result in significant changes to fault trees, which makes 
the use of existing system-level methods costly and error-
prone.  Our model-based framework provides a new paradigm, 
allowing significant automation in the area of safety analysis 
of architectures for complex avionics systems. 

2 MODELING 

Our modeling language is designed to provide a minimal 
set of capabilities for modeling architectures at the level 
required to perform safety analyses.  The modeling language 
has evolved as we used it to model a variety of architectures, 
some of which were quite complex.  For example, the 
language allows one to model feedback loops; while such 
loops seem to be rare in avionics applications, they sometimes 
exist and they can be modeled and analyzed in our current 
framework.   

Our modeling language allows us to define components, 
libraries and architectures.  A component consists of a name, a 
list of fault types supported, a list of inputs, a list of basic 
events and their characteristics, a list of outputs and formulas 
characterizing the propagation of faults through the 
component.  A library is a collection of components.  An 
architecture or a model is a set of component instantiations, 
which allow us to override basic event information, along with 
connection information and the identification of a top-level 
fault. 

We will use the running example architecture shown in 
Figure 1 to highlight the modeling language.  The 
architectural views were generated by our framework’s 
visualization capability.  The architecture consists of two 
sensors that generate analog readings that are sent to the RIUs 
(Remote Interface Units) that digitize the data and send it on 
the network along channels A and B, using Switches A and B.   
RIUi only accepts input from Sensori, but both switches 
accept input from both RIUs.  The switches send the data to 
the GPM (General Processing Module).  A visualization of the 
architecture at this high-level of abstraction is provided by the 
physical architecture, a graph whose nodes are component 
instances and whose edges correspond to one or more 
connections between components.  To describe the workings 
of the GPM, it helps to consider the more detailed functional 
architecture, a graph whose nodes are ports of components 
and whose edges correspond to connections between ports.  
The GPM includes a redundancy management unit, which 
selects a sensor reading from Sensor1 and Sensor2.  The 
Sensor1 data comes in through ports in1 and in3, whereas the 
Sensor2 data comes in through ports in2 and in4.  For our 
purposes, we will assume that this selection is 
nondeterministic.  Next, the GPM has a voting unit, which 
checks that the data sources selected for sensor readings are 
equivalent. 

Our modeling language allows us to formalize how 
various faults propagate through components.  In the GPM, a 
UED (Undetected Erroneous Data) fault occurs if the data are 
equal, but erroneous.  For that to happen, at least one of the 
inputs from Sensor1 to the GPM propagated a UED fault 
AND at least one of the inputs from Sensor2 to the GPM 
propagated a UED fault AND the vote passes, i.e., it does not 
report a problem when there is one because the errors cancel 
each other out.  An LOA (Loss of Availability) error occurs 
when both copies of at least one sensor propagate an LOA 
fault: then one of the sensor readings is unavailable.  But, what 
if both are available, but erroneous? Then, due to the voting, 
we have an LOA fault (we caught a problem).  But, that’s 
similar to what UED is checking, so this is an example of 
where we want the propagation logic for one fault (LOA) to 
refer to the propagation logic for another (UED). 

An example of how we specify a component is shown on 
the top half of Figure 2.  The basic events include internal 
faults that lead to UED and GPM faults, as well as events 
corresponding to the voting logic.  The basic event 
information required corresponds to the lambda and tau values 
of the basic event, i.e., the failure rate and exposure time.  
Boolean formulas are used to define how UED and LOA 
faults propagate through the component.  These formulas can 
include references to faults that propagate through the inputs, 
internal faults and defined equations.  Defined equations make 
fault propagation logic easier to understand (just like functions 
make programs easier to understand) and give us the ability to 
define the propagation of a fault in terms of formulas defining 
the propagation of another fault.  The utility of defined 
equations became apparent when we used the framework to 
model large, realistic examples.  There should be a formula for 

Figure 1 Physical (upper left), functional (lower left), and 
fault propagation (right) architectures 
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each fault-type/output-flow combination and fault formulas 
can refer to the formulas for other faults.  The types of 
formulas allowed are positive Boolean formulas because for 
safety analysis, a fault not occurring never leads to another 
fault occurring, i.e., the propagation functions are positive.  
The basic operators allowed include references to atomic 
variables (such as faults propagated through inputs, basic 
events and references to defined equations), arbitrary-arity 
conjunctions, arbitrary-arity disjunctions and an N-of 
construct that corresponds to n or more of a list of formulas 
being true. 

A collection of components corresponds to a library, as 
shown in the bottom half of Figure 2.  An architecture 
definition is a collection of component instantiations, along 
with connection information and the identification of a top-
level fault, which can be any formula (but is just an atomic 
variable in our example).  Our modeling language allows one 
to override the default lambda and tau values of component 
instances (not shown).  This is often required to account for 
the operating environment of a component, e.g., the failure 
rate of a component may vary depending on whether it is in a 
pressurized space or not. 

Furthermore, our modeling language allows us to define 
parameterized component models.  Parameters can be used to 
specify the number of inputs and outputs of a component, the 
source selection mechanisms used by a component, the voting 
mechanisms used, and so on. 

The fault propagation view of the architecture, as shown 
in Figure 1 extends the functional architecture with nodes 
corresponding to basic events and shows what parts of the 
architecture can affect the probability of the top-level fault.  If 
an edge (corresponding to the propagation of a fault from one 

component to another) can affect the top-level fault, it is 
colored red.  If a basic event can affect the top-level fault, then 
a (set of) red edge(s) is added from that event to the output(s) 
along which the basic event propagates. 

3 FAULT TREE SYNTHESIS, REDUCTION AND ANALYSIS  

Once architectures are modeled in our framework, it is 
possible to algorithmically synthesize fault trees, the topic of 
this section.  From the synthesized fault trees, we can use 
standard algorithms to perform qualitative and quantitative 
analyses to determine the safety of the modeled architecture.  
Therefore, our framework allows us to go from models to 
analyses with a push of a button.  In contrast, current practice 
in avionics requires safety engineers to construct fault-trees by 
hand.  Notice that a fault tree is required per fault, so if there 
are 30 faults of interest and 5 architectures to consider, then 
150 fault trees must be generated.  This makes it difficult to 
explore multiple architectures and it makes it easy to introduce 
errors when fault trees must be updated to reflect architectural 
changes, which often undergo numerous changes in the course 
of an industrial project.   

We describe the fault tree synthesis algorithm informally, 
due to space limitations.  The idea is simply to expand out the 
equations defining the top-level fault under consideration 
starting from the component instance that has the fault.  If the 
fault involves more than one component, then we define a 
dummy component that is connected to all the required 
components.  The algorithm expands out the fault propagation 
logic associated with component outputs.  Recall that there 
may be defined equations, in which case these are expanded 
and simplified until we arrive at a formula in terms of the 
basic events of the component and the inputs of the 
component (really input/fault pairs).  The architecture is 
consulted to determine what component instance outputs are 
connected to the identified inputs and the process repeats, i.e., 
we expand out the appropriate fault propagation logic 
associated with the newly discovered component instances as 
before.  If there are no cycles, we eventually have a formula in 
terms of just basic events, potentially with many events 
appearing multiple times.  For our running example in Figure 
1, the direct fault tree generated for the top-level fault LOA of 
GPM, is shown in Figure 3.  What we have found is that such 
trees can be significantly simplified, which makes it easier to 
use them to understand system behavior.  Therefore, our 
framework includes a collection of formula transformations 
that when used (as is the default case) generate the reduced 
fault tree shown in Figure 4.  Notice that this fault tree is 
much simpler than the direct fault tree, e.g., the number of 
nodes and operators has been reduced significantly.  The two 
trees are semantically equivalent, but the reduced fault tree is 
much easier to understand and it does not have any repeated 
events!  

 From these fault trees, we generate cutsets, which 
correspond to the minimal DNF formula that is equivalent to 
the fault trees.  Since the formulas are positive, there is a 
unique minimal DNF formula that can be generated using 
existing algorithms [1].  Our framework uses symbolic 

 

 
Figure 2 Component model (top) and library (bottom) 



manipulation algorithms for both reducing fault trees and 
generating cutsets.  An example of the simplifications used 
includes the lift transformation, which is essentially 
distributivity in reverse.   

⋀ ൣ݃, ൫⋁ ݂, ଵ݂
௜ … ௡݂௜

௜ ൯൧௞
௜ୀଵ ൌ ⋀ൣ݃, ⋁ ݂൫⋀ ൫⋁ ଵ݂

௜ … ௡݂௜
௜ ൯௞

௜ୀଵ ൯൧  

Now, this transformation can increase the depth of the 
tree and even the number of Boolean operators, but the 
number of variable occurrences decreases.  Another example 
of a transformation we apply is that we replace the second 
occurrence of g in the formula below with false. 

⋁ሾ… , ݃,… , ⋀ሺ… , ⋁ሺ… , ݃,… ሻ,… ሻ,… ሿ 

We also apply the duals of the above transformations.  
These transformations are used in conjunction with constant 
propagation and transformations for flattening, simplifying 
and sorting formulas.  In addition, where appropriate, 
transformations are applied until a fixpoint is reached.  As the 
lift transformation highlights, the algorithms have to be careful 
to avoid loops, so depending on the context in which they are 
used some transformation are not applied unless they meet 

context-sensitive criteria.  The details can be found in a 
planned journal version of this paper. 

The cutsets generated are shown in Figure 5.  Notice that 
while the cutsets are minimal DNF formulas, they are not 
minimal Boolean formulas, as a comparison Figure 4 between 
and Figure 5 shows.  Notice also that the cutsets include 
repeated events, whereas the reduced fault tree does not. 

The cutsets are very useful because each term of the top-
level disjunction corresponds to a minimal set of basic events 
that together lead to the top-level fault under consideration.  
For example, we can determine that for LOA faults, there are 
5 basic events that correspond to single points of failure.  That 
this is the case is not apparent from the direct fault tree in 
Figure 2, but it is from the reduced fault tree in Figure 3.  
However only the cutsets are guaranteed to provide this 
information. 

From the cutsets, we can use standard techniques to 
determine the probability that a top-level fault occurs.  The 
probability of a failure for a basic event (from reliability 
theory) is 1 െ ݁ିఒ்.  To compute the probability using cutsets 

Figure 3 Direct Fault Tree example 
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requires the use of the inclusion-exclusion principle.  Note that 
we assume that basic events are independent (as is standard in 
safety analysis and this is something that is validated via other 
means).  The reason we need inclusion/exclusion is that basic 
events can be repeated.  However, if we have a formula with 
no repeated events (as is the case with our reduced fault tree 
above), then the probability computations are straightforward.  
There are various specialized techniques for determining the 
probability of a top-level failure efficiently, and these 
techniques are outside the scope of our work.  Our framework 
also generates importance metrics, which order cutsets by their 
contribution to the top-level fault.  This is very useful in 
understanding what parts of an architecture are primarily 
responsible for high probabilities, which helps safety 
engineers design new architectures that address these issues.  
The next section provides a detailed example.   

3.1 Handling Loops 

The fault tree generation algorithm includes one more 
complication that we now describe.  In certain architectures, 
there are cyclic dependencies between faults.  The NASA 
Fault Tree Handbook [1], version 1.1, includes a new section 
describing such feedback loops.  The handbook describes how 
in the space shuttle, the orbiter sends a control signal to the 
main engine, which provides the feedback signal, so the 
failure of the orbiter depends on the failure of the main engine, 
which depends on the failure of the orbiter, …. Our fault tree 
synthesis algorithm supports such loops.  First, loops are 
detected when we notice a cycle in the expanded fault 
propagation definition.  We note that one can legitimately 
expand out the definition of some fault more than once 
without there being a loop, so we have to take context into 
account, by only looking for loops along the path of ancestors 
of the fault tree node being generated.  Once loops are found, 
they have to be broken in a way that makes sense, e.g., ܽ ∨ ܽ ∨
ܽ ∨ ⋯	should be set to a, which is equivalent to replacing all 
but the first occurrence of a with false.  However, in the 
formula ܽ ∧ ܽ ∧ ܽ ∧ ⋯	we should replace all but the first 
occurrence of a with true.  Our algorithm breaks loops only in 
the context of conjunctions and disjunctions that include at 
least one basic event and replaces repeated events with the 
appropriate identity for the operator.  If there are no basic 
events, then there are a number of potential solutions to the 
equations and that indicates an error, which we report. 

4 CASE STUDY 

We present a case study that is inspired by the Boeing 777 
IMA architecture.  Figure 6 shows the functional architecture.  
The system contains three types of input components: inertial 
reference units (IRU), multi-purpose control display units 
(MCDU), and distance measuring equipment (DME).  The 
data generated from the input components are first transmitted 
to input/output modules (IOM) and then transmitted to flight 
management computers (FMC) via network buses.  Consider 
LOA (Loss of Availability) faults.  Since the probability that 
network buses are responsible for LOA faults is much smaller 
than that of other components in the system, network buses are 

omitted for the sake of simplicity.  After FMCs perform their 
computations, the results are first transmitted to IOMs via 
network buses and then transmitted to symbol generators (SG) 
for display.  The system contains two types of display 
components: primary flight displays (PFD) and navigation 
displays (ND).  The top-level fault of interest is the LOA of 
PFD1.  In this architecture, input components contain two 
instances for dual redundancy, and the communication over 
network buses is supported by dual channel redundancy 
(channels A and B). 

Our tool automatically synthesizes the fault tree of the 
system and generates the reduced fault tree and cutsets, along 
with visualizations.  The top-level probability of failure is 
3.000E-6.  The fault probability and the importance metric 
indicate that the cutset IOM1, IOM2, and IOM3 account for 
more than 99.99% of the top-level probability of failure, 
which can be explained by the following observations.  It can 
be seen that IOM1 introduces a single point of failure to the 
two IRU components.  Loss of IOM1 will lead to loss of both 
IRU components, which essentially removes the dual 
redundancy of IRUs.  Similarly, IOM2 and IOM3 introduce 
single points of failures for MCDUs and DMEs, respectively.  
To improve the system’s safety performance, we remove these 
single points of failure in an updated system architecture 
where the input components are shuffled so that IOM1, IOM2, 
and IOM3 take different types of input components.  The 
updated architecture’s top-level probability of failure is 
2.160E-10, which is a significant improvement over the 
original system.  In the new system, the only dominant cutset 
is the basic event of PFD1, which accounts for 92.59% of the 
top-level probability which is unavoidable because PFD1 is 
the sink node of the fault data flow under consideration. 

The above case study shows that our framework, with 
automated fault tree synthesis and analysis capabilities, can 
help a safety engineer to quickly identify, correct and fix 

Figure 6 Boeing 777 IMA architecture 
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architectural problems.  To go from the original architecture to 
the new architecture, we only need to modify the connections 
associated with the inputs of the IOMs.  The rest of the system 
model and component library remains the same, which 
demonstrates the advantage of our component-based approach.  
Our framework synthesizes the fault tree, generates the cutsets 
and computes the top-level probability of failure for the new 
architecture automatically, removing the fault tree 
construction burden from the safety engineer, allowing her to 
focus on architecture-level designs. 
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