
Practical Formal Verification of Domain-Specific
Language Applications

Greg Eakman1, Howard Reubenstein1, Tom Hawkins1, Mitesh Jain2, and
Panagiotis Manolios2

1 BAE Systems, Burlington MA 01803, USA
2 Northeastern University, Boston MA 02115, USA

Abstract. An application developer’s primary task is to produce perfor-
mant systems that meet their specifications. Formal methods techniques
allow engineers to create models and implementations that have a high
assurance of satisfying a specification. In this experience report, we take
a model-based approach to software development that adds the assur-
ance of formal methods to software construction while automating over
90% of the formal modeling. We discuss a software development method-
ology and two specific examples that illustrate how to integrate formal
methods and their benefits into a traditional (testing-based) software
development process.

1 Introduction
Domain-Specific Languages (DSLs) provide expressive semantics for defining
computational behavior while insulating the application developer from many
sources of error inherent in programming in the underlying target programming
language (e.g., C or Java). A DSL can be transformed using a code generator
into a traditionally compilable source language where the full expressivity of that
language can be used, assuming that the transformation technology respects the
execution semantics of the target language (Figure 1). The semantics of the DSL,
despite the intentions of the DSL designer, are really defined in the translation
rules of the code generator. In this paper, we apply formal semantics to two
DSLs: a Haskell-based text DSL (Ivory developed by Galois) and a graphical
DSL based on a UML profile. We augment the code generation strategy to in-
clude generation of a shallow embedding of the target DSL program in ACL2s.
We prove application level properties of the DSL program and demonstrate cor-
respondence of the ACL2s model with the source code implementation through
testing for equivalent behavior.

This work is motivated by the difficulties observed in accelerating the adop-
tion of formal methods techniques in the practicing software engineering com-
munity responsible for deploying systems. The barriers to application developers
using formal tools to get their jobs done include: the need to build a constructive
proof of correctness before extracting an implementation, unfamiliarity with the
syntax and development methodology of formal languages, the difference in se-
mantic models (imperative versus logical/inductive), the difficulty in extracting
implementations that interface with existing systems (e.g., those written in C,
C++, Java), and the difficulty in obtaining performant implementations.



Fig. 1: Properties of the application, developed in the model and proven in
ACL2s, are shown to hold in deployed code through correspondence testing.

2 FORMED and UML
Project FORMED (Formal Methods Engineering Desktop)3 combines software
design in the Unified Modeling Language (UML) with formal methods in a way
that allows application developers to create formal models. The FORMED DSL
is built on the fUML profile [7] which provides executable semantics to class,
operation, and association UML elements, and includes semantics for a model-
level programming language [2]. This executable UML profile is a graphical DSL,
albeit for a very broad domain. From this profile, we build on existing model
transformation and code generation tools such as PathMATE [11] to generate
a shallow mapping of an application model into ACL2s, the ACL2 Sedan [5].
ACL2s extends ACL2, an industrial strength, semi-automated theorem prover,
with a powerful termination analysis engine, a data definition framework, and
counterexample generation capabilities. Properties of the application are then
specified and proven using ACL2s. We focus on application correctness as part
of high assurance software development, rather than on general properties of
memory safety or security, which depend on the implementation language, com-
piler, operating system, and CPU architecture.

The execution semantics of the FORMED UML profile operates on a stack
and a heap, modeled in ACL2s with a reusable context data definition. The con-
text and the functions that operate on it form the platform model that supports
the operation of the UML semantics and the execution of the application. Each
context function has an associated input-output contract (proved automatically
by ACL2s) that provides assurance on the correctness of the function implemen-
tation. We specify and prove many other theorems that axiomatize the semantics
of operations on the context. These theorems assist us in abstracting the rea-
soning about UML semantics. This hierarchical approach to reasoning not only
provides a reasoning structure but it also reduces the time taken by ACL2s. For

3 Sponsored by OSD under contract FA8750-14-C-0024



example, it reduced a proof of an application level property from 20 minutes to
less than 15 seconds.

The code generator produces ACL2s code that stores the application state
in the stack/heap context. The imperative nature of the FORMED profile maps
to ACL2s’s functional language by providing the context as one of the input
arguments for an operation and requiring the operation to return an updated
context. Templates map the UML elements to ACL2s constructs. A UML class,
for example, gets mapped to an ACL2s data definition using the defdata frame-
work, which supports automated type-like reasoning [6]. Rather than validate
the transformation, we generate theorems based on the UML profile’s semantics,
such as inheritance, associations, pointers, and class extents, to reason about the
ACL2s code.

We have identified common properties of application models and formalized
the semantics of each into a theorem template to produce an instance of the
theorem for each model location where the property holds. For example, all rooms
within a hotel must have a unique room number. The application developer
marks the number attribute of the Room class with an «Identifier» stereotype
indicating that all instances should have a unique value. We generate an ACL2s
theorem that proves by induction that this invariant holds for all operations
from any valid state of the application. The code generator statically analyzes
the application to assist theorem proving. The unique room number invariant
can only be invalidated by operations that write the room number attribute or
create a new room. Thus, our proof only needs to consider those critical functions
identified through static analysis.

Hotel Locking Example Metrics

Source UML
UML Classes 13
Lines Action Language 220
Operations 26

Java Generated Java 3895
ACL2s ACL2s SLOC 1284
Context Theorems 132

SLOC Theorems 998
Generated Executable Code 5652

UML Theorem Code 4078
Semantics Theorems Generated 175

Hand-written ACL2s
Application Theorems 18
SLOC Theorems 806

Table 1. Just 6% of the Hotel application’s formal verification code is hand-written.

FORMED proves properties about the shallow embedding of the application
in ACL2s, but the formal model is not the deployed code. DSLs, including this
UML profile, can generate source in multiple languages (Java in this case), that
are deployed as a real application. We build an assurance case argument based on
correspondence testing that the properties proven in the ACL2s representation
also exist in the deployed code. Since both the ACL2s and deployed code are
executable representations generated from the same model, and since we apply
the same test cases to each version and verify the corresponding results, we gain
confidence that the properties also hold in the deployed code.

We have applied this process to a model of the Hotel Locking problem [9],
which describes a protocol for managing room keys to secure hotel rooms be-



tween guests. Some metrics from the Hotel application are shown in Table 1.
Preliminary results indicate that only about 6% of the ACL2s code, the Appli-
cation Theorems, need to be hand written. Specifying these theorems in ACL2s
requires only moderate knowledge of formal logic. Most of the theorems were au-
tomatically proved by ACL2s and some of them required us to guide the theorem
prover with appropriate lemmas.

3 SITAPS and Ivory DSL

Ivory is a DSL undergoing development by Galois for UAV control systems used
on DARPA’s HACMS program. Ivory code is currently flying on a quadcopter
UAV, running flight control algorithms and data link processing.

Embedded in Haskell, Ivory relies on Haskell’s type system to ensure type
and memory safety of the generated runtime code (Ivory compiles to C). Though
it is a language similar to C, Ivory purposely limits expressiveness to provide
memory safety. For example, Ivory does not provide pointer types, nor does it
allow arbitrary pointer operations, but it does provide mutable references that
are stack allocated and can be passed as procedure arguments. References are
ensured not to escape the enclosing stack frame, which is enforced by Haskell
types. To prevent buffer overflows, Ivory provides indexing types and bounded
loop operations to ensure array accesses are within bounds.

To increase assurance of Ivory programs, we developed a proof framework4,
based on a compilation of Ivory into ACL2s, that verifies user specified and com-
piler generated assertions. In addition to assertions, Ivory also provides input
and output contracts on procedures. Using these contracts to abstract proce-
dure calls, this proof framework is able to perform an efficient interprocedural
analysis that scales well with larger programs. The analysis walks through each
procedure, generating verification conditions (VCs) for each assertion, each sub
input contract at every sub procedure call, and each output contract at every
return point. These VCs, which are captured in a VC DSL, are optimized and
translated to ACL2s for verification. Verified assertions are removed from the
program to lower the runtime overhead and those that fail to prove remain in
place to serve as runtime checks. An example Ivory procedure and translation
are illustrated below:

retractLandingGear :: Def (’[IBool, Sint32] :-> ())

retractLandingGear = proc "retractLandingGear" $

\ weightOnWheels airspeed -> body $ do

ifte_ (iNot weightOnWheels .&& airspeed >? 120) -- Better than spec

(do

assert $ iNot weightOnWheels -- Spec guarding

assert $ airspeed >? 80 -- call to GearUp

call_ commandLandingGearUp

retVoid)

retVoid

4 Supported by DARPA under the SITAPS project under contract FA8750-13-C-0240



Procedure Translated to VC DSL to Verify the First Assertion:

let stack0=[] in -- Initial stack.

forall free0 in -- Free variables for

forall free1 in -- arguments var0,var1.

let env0={var0 : free0, var1 : free1} in -- Bind args into env.

let bc0=((!env0.var0)&&(env0.var1>70)) in -- Branch condition.

let vc0=(bc0->(!env0.var0)) in vc0 -- VC:not weightOnWheels.

During the development of the Ivory-ACL2s interprocedural analyzer, we
established a suite of tests to cover the interesting corners of the language.
Combining both assertions and procedure contracts, the test suite comprised
61 checks of which 54 were verified automatically by the analyzer. One set of
tests of specific interest are Ivory compiler generated assertions, which protect
loop bounds, index casting, numerical overflows, and other security impinging
aspects of the language. Our limited test suite produced 6 compiler generated
assertions, 5 of which were verified automatically. The one that failed verification
was bounds checking an index type, though it can be argued this check is not
necessary because the index’s bounds is enforced by the Ivory type system. Fur-
ther investigation is warranted to determine verification performance on larger,
real-world examples.

4 Formal Methods to Support Application Developers

Both the FORMED and SITAPS projects demonstrate the effective use of DSLs
and code generation to make formal methods accessible to developers.

Our approach in both of these projects has been to start with the goal of
supporting a developer in creating high assurance software from an environment
that includes the normal tools they are used to working with and that also sup-
ports a development process that is a consistent superset of the normal process
they might use. The development methodology we advocate consists of:

1. Model - capture the software specification in a DSL that can be used to
generate code and additional software artifacts

2. Test - perform simple unit testing to ascertain that the model properly cap-
tures the most important properties of the specification

3. Plan Proofs - define invariants, pre and post conditions, that are important
to obtaining confidence in the implementation

4. Prove - prove properties (only after initial testing indicates proof is likely to
succeed) or generate counter-examples. Repair model as needed.

5. Correspondence test - confirm correspondence of model and code and provide
traditional visible testing evidence that software meets specification

Correspondence testing is an important aspect of this approach that varies
from proof-first development approaches that derive executable code from formal
models. The derivation guarantees that the implementation refines the model and
thus that proofs at the model level apply to the implementation. This approach,
while principled, places the modeling and proof task ahead of the application
developer’s primary implementation task. It also exposes the development to a



common problem that formal methods do not provide an “anytime confidence”
approach to development. When proving properties using formal reasoners your
confidence is either 0% (unproven) or 100% (proven). The methodology described
above provides increasing confidence as more proofs and tests pass and limits
the proof effort while focusing on producing an executable software artifact.

5 Related Work and Conclusion
Kestrel Institute’s Specware [10] tool synthesizes deployable code from formal
specifications by process of successive refinements, with proofs of each refinement
step, but requires a proof-first approach. Coq is another, more common, proof
first language that has the ability to generate code.

Other efforts have mapped UML to various formal methods languages, such
as CSP [1], Z [3], and Alloy [4]. AADL is another example of a graphical language
used in both development and formal verification. In [8], the LLVM intermediate
language is translated into ACL2 for both testing and low-level theorem proving.

Domain-specific languages enable application development at a higher con-
ceptual level than general purpose languages, but hide their real semantics within
the code generator. A shallow embedding of these languages in a formal language
like ACL2s enables DSL semantics to be specified, reasoned about, and used to
prove properties about applications. The executability of ACL2s also allows it to
be used to verify the correct operation of deployable code through test correspon-
dence. Shallow embedding also broadens the user base of formal methods, giving
application developers the ability, through the DSL, to create formal models.

References

1. I. Abdelhalim, S. Schneider, and H. Treharne. Towards a practical approach to
check UML/fUML models consistency using CSP. In Formal Methods and Software
Engineering, pages 33–48. Springer, 2011.

2. http://www.omg.org/spec/ALF.
3. N. Amálio, S. Stepney, and F. Polack. Formal proof from UML models. In Formal

Methods and Software Engineering, pages 418–433. Springer, 2004.
4. K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: a challenging

model transformation. In Model Driven Engineering Languages and Systems.
5. H. R. Chamarthi, P. Dillinger, P. Manolios, and D. Vroon. The ACL2 Sedan the-

orem proving system. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 291–295. Springer, 2011.

6. H. R. Chamarthi, P. C. Dillinger, and P. Manolios. Data definitions in the ACL2
Sedan. In ACL2 Workshop, volume 152 of EPTCS, pages 27–48, 2014.

7. http://www.omg.org/spec/FUML.
8. D. S. Hardin, J. A. Davis, D. A. Greve, and J. R. McClurg. Development of a

translator from LLVM to ACL2. volume 152 of EPTCS.
9. D. Jackson. Software Abstractions: logic, language, and analysis. MIT press, 2012.

10. R. Jüllig, Y. Srinivas, and J. Liu. SPECWARE: an advanced environment for the
formal development of complex software systems. In Algebraic Methodology and
Software Technology, pages 551–554. Springer, 1996.

11. http://www.pathmate.com.


