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Abstract

We introduce a new method of automating the verifica-
tion of term-level pipelined machine models that is based
on commitment refinement maps. Our method is much sim-
pler to implement than current alternatives. More impor-
tantly, as our extensive experiments show, our method leads
to more than a 30-fold improvement in verification times
over the standard approaches to pipeline machine verifica-
tion, which use refinement maps based on flushing and com-
mitment. In addition, we can verify machines that are too
complex to directly verify using flushing-based refinement
maps.

1. Introduction

In this paper, we describe a new, automatic method for
defining commitment refinement maps that provide over a
30-fold improvement in verification times over both the pre-
vious method for defining commitment-based refinement
maps and the standard method for defining flushing-based
refinement maps. We define 42 processor models of varying
complexity and, with extensive profiling, show that prov-
ing the invariant accounts for almost all of the verification
time required when using the standard commitment-based
refinement maps. Based on this observation, we introduce
a new invariant that can be used for commitment-based re-
finement proofs. Not only does the new invariant lead to an
average speedup factor of about 30, but it is also much sim-
pler to define, leading to a decrease both in the human ef-
fort required to verify pipelined machines and in the code
size.

We automatically and efficiently verify the pipelined ma-
chines described in this paper by showing that they have
exactly the same infinite executions as the machines de-
fined by the corresponding instruction set architectures,
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up to stuttering. This is accomplished by constructing a
WEB-refinement proof, which implies that the pipelined
machine satisfies exactly the same CTL∗ \X properties sat-
isfied by the instruction set architecture [13]. Thus, we ver-
ify both safety and liveness properties of the pipelined ma-
chine models we study. Automation is attained by express-
ing the WEB-refinement proof obligation in the logic of
Counter arithmetic with Lambda expressions and Uninter-
preted functions (CLU), which is a decidable logic [5]. We
use the tool UCLID [11] to transform the CLU formula
into a CNF (Conjunctive Normal Form) formula, which we
then check with the SAT solver Siege [24]. The pipelined
machine models that we verify are described at the term-
level, where the data path is abstractly represented using
integers and many of the combinational circuit blocks are
abstractly represented using uninterpreted functions. The
pipeline control logic, however, is described in detail.

The refinement proofs depend on a critical parameter:
the refinement map, a function that relates pipelined ma-
chine states to instruction set architecture states. Refinement
maps tend to be complex functions that in essence step the
pipelined machine multiple times, in order to force it into a
state where all the pipeline latches are invalid, so that an
instruction set architecture state can be obtained by pro-
jecting out the programmer visible components. For this
reason, the refinement maps used can have a drastic im-
pact on verification times. The refinement maps we con-
sider are based on commitment [12, 13] and flushing [6].
The idea with commitment is that partially completed in-
structions are invalidated and the programmer visible com-
ponents are rolled back to correspond with the last com-
mitted instruction. Flushing is a kind of dual of commit-
ment, where partially completed instructions are made to
complete without fetching any new instructions. Using re-
finement maps based on commitment requires the use of in-
variants, and the main contribution of this paper is the in-
troduction of a new method for defining a suitable invari-
ant that leads to drastic improvements in verification times
and is much easier to implement, debug, and maintain.

The paper is organized as follows. In Section 2, we pro-



vide an overview of refinement based on WEBs, the the-
ory used for our correctness proofs. In Section 3, we de-
scribe the pipelined machine models and verification bench-
marks that we use for the experiments. The models and
benchmarks are available from the authors. In Section 4,
we briefly describe the flushing and commitment refine-
ment maps. In Section 5, we introduce the Greatest Fix-
point (GFP) invariant and show results obtained by applying
the commitment refinement map using the GFP invariant on
our 42 pipelined machine models. In Section 6, we describe
how to use the recently introduced idea of intermediate re-
finement maps to obtain even faster verification times. Fi-
nally, we present related work in Section 7, and conclude in
Section 8.

2. Preliminaries on Refinement

In this section, we review the required background on
the theory of refinement used in this paper; for a full ac-
count see [13, 14]. Pipelined machine verification is an in-
stance of the refinement problem: given an abstract specifi-
cation, S, and a concrete specification, I, show that I refines
(implements) S. In the context of pipelined machine verifi-
cation, the idea is to show that MA, a machine modeled at
the microarchitecture level, a low level description that in-
cludes the pipeline, refines ISA, a machine modeled at the
instruction set architecture level. A refinement proof is rela-
tive to a refinement map, r, a function from MA states to ISA
states. The refinement map, r, shows us how to view an MA
state as an ISA state, e.g., the refinement map has to hide
the MA components (such as the pipeline) that do not ap-
pear in the ISA.

The ISA and MA machines are arbitrary transition sys-
tems (TS). A TS, M , is a triple 〈S,99K,L〉, consisting of a
set of states, S, a left-total transition relation, 99K⊆ S2, and
a labeling function L whose domain is S and where L.s (we
sometimes use an infix dot to denote function application)
corresponds to what is “visible” at state s.

Our notion of refinement is based on the following def-
inition of stuttering bisimulation [3], where by fp(σ,s) we
mean that σ is a fullpath (infinite path) starting at s, and by
match(B,σ,δ) we mean that the fullpaths σ and δ are equiv-
alent sequences up to finite stuttering (repetition of states).

Definition 1 B ⊆ S × S is a stuttering bisimulation (STB)
on TS M = 〈S,99K,L〉 iff B is an equivalence relation and
for all s,w such that sBw:

(Stb1) L.s = L.w
(Stb2) 〈∀σ :: fp(σ,s) ⇒ 〈∃δ :: fp(δ,w)∧match(B,σ,δ)〉〉

Browne, Clarke, and Grumberg have shown that states
that are stuttering bisimilar satisfy the same next-time-free
temporal logic formulas [3].

Lemma 1 Let B be an STB on M and let sBw. For any
CTL∗ \X formula f , M ,w |= f iff M ,s |= f .

We note that stuttering bisimulation differs from weak
bisimulation [18] in that weak bisimulation allows infinite
stuttering. Stuttering is a common phenomenon when com-
paring systems at different levels of abstraction, e.g., if the
pipeline is empty, MA will require several steps to complete
an instruction, whereas ISA completes an instruction dur-
ing every step. Distinguishing between infinite and finite
stuttering is important, because (among other things) we
want to distinguish deadlock from stutter.

When we say that MA refines ISA, we mean that in the
disjoint union (]) of the two systems, there is an STB that
relates every pair of states w, s such that w is an MA state
and r(w) = s.

Definition 2 (STB Refinement) Let M = 〈S,99K,L〉, M ′ =
〈S′,99K′,L′〉, and r : S → S′. We say that M is a STB refine-
ment of M ′ with respect to refinement map r, written M ≈r
M ′, if there exists a relation, B, such that 〈∀s ∈ S :: sBr.s〉
and B is an STB on the TS 〈S ] S′,99K ] 99K

′,L〉, where
L .s = L′.s for s an S′ state and L .s = L′(r.s) otherwise.

STB refinement is a generally applicable notion. How-
ever, since it is based on bisimulation, it is often too strong
a notion and in this case refinement based on stutter-
ing simulation should be used (see [13, 14]). The reader
may be surprised that STB refinement theorems can be
proved in the context of pipelined machine verification; af-
ter all, features such as branch prediction can lead to
non-deterministic pipelined machines, whereas the ISA
is deterministic. While this is true, the pipelined ma-
chine is related to the ISA via a refinement map that hides
the pipeline; when viewed in this way, the nondetermin-
ism is masked and we can prove that the two systems are
stuttering bisimilar (with respect to the ISA visible compo-
nents).

A major shortcoming of the above formulation of re-
finement is that it requires reasoning about infinite paths,
something that is difficult to automate [21]. In [13], WEB-
refinement, an equivalent formulation is given that requires
only local reasoning, involving only MA states, the ISA
states they map to under the refinement map, and their suc-
cessor states. In [15], it is shown how to automate the re-
finement proofs in the context of pipelined machine verifi-
cation. The idea is to strengthen, thereby simplifying, the re-
finement proof obligation; the result is the following CLU-
expressible formula, where rank is a function that maps
states of MA into the natural numbers.

Theorem 1

〈∀w ∈ MA :: s = r(w) ∧ u = ISA-step(s) ∧

v = MA-step(w) ∧ u 6= r(v)
⇒ s = r(v) ∧ rank(v) < rank(w)〉
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Figure 1. High-level organization of a 10-stage pipelined machine model including all the features we
model, including a pipelined fetch stage, a 3-stage instruction queue, branch prediction, instruction
and data caches, and a write buffer.

In the formula above s and u are ISA states, and w and
v are MA states; ISA-step is a function corresponding to
stepping the ISA machine once and MA-step is a func-
tion corresponding to stepping the MA machine once. It may
help to think of the first conjunct of the consequent (s = r.v)
as the safety component of the proof and the second con-
junct rank.v < rank.w as the liveness component. Also note
that for the machines described in this paper the definitions
of the step functions can be quite complex, e.g., for some
of our examples, MA-step takes thousands of lines to de-
fine using UCLID.

Note that the notion of WEB refinement is indepen-
dent of the refinement map used. This is what allows us
to compare verification times when using different refine-
ment maps, e.g., when comparing the flushing refinement
map [6] with the commitment refinement map [12].

3. Pipelined Machine Models and Bench-
marks

For our experiments, we have created 42 pipelined ma-
chine models of varying complexity. We start with a base
processor model and extend it with features such as a
pipelined fetch stage, a 3-stage instruction queue, two dif-
ferent ways of abstracting branch predictors, an instruc-
tion cache, a data cache, and a write buffer. The base pro-
cessor model is a 6 stage pipelined machine with the fol-
lowing stages: instruction fetch (IF), instruction decode
(ID), execute (EX), data memory access (M1 and M2),
and write back (WB). We implemented ALU instructions,
register-register and register-immediate addressing modes,
loads, stores, and branch instructions. We assign names to
the pipelined machine models that are consistent with the
names in the “Processor” column of Table 1. The model

names start with a number indicating the number of stages
followed optionally by the letters “I”, “D”, “W”, “B” and
“N” indicating the presence of an instruction cache, data
cache, write buffer, branch prediction abstraction scheme
1, and branch prediction abstraction scheme 2, respectively.
By applying different refinement maps to the pipelined ma-
chine models, we get in all 210 benchmarks (5 verification
problems for each pipelined machine model).

The basic features of the pipelined machines are mod-
eled in a style similar to [15], which in turn are similar
to [28]. The models are described at the term-level. Word-
level values are abstracted using terms or integers and much
of the combinational circuit blocks that are common be-
tween the pipelined machine and its ISA are abstracted
using Uninterpreted Functions (functions that only satisfy
the property of functional consistency). We use restricted
lambda expressions to model memories. The caches and
write buffer are modeled as described below.

We model a direct mapped instruction and data cache.
The instruction cache is modeled using three mem-
ory elements ICache-Valid, ICache-Tag, and
ICache-Block that take the index as input and re-
turn a predicate indicating if the entry in the instruc-
tion cache is valid, the tag, and the data block, respectively.
Three uninterpreted functions GetIndex, GetTag, and Get-
BlockOffset take the program counter as input, and are
used to obtain the index, tag, and the block offset, re-
spectively. Another uninterpreted function SelectWord is
used to extract the instruction from the data block. The in-
struction memory is modeled as a lambda expression
that takes 2 arguments, an index and a tag, and re-
turns a block of data. This way of modeling the instruction
memory allows us to relate the contents of the instruc-
tion memory with the instruction cache contents. We re-
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Figure 2. The Greatest Fixpoint Invariant (GFI) characterizes the set of states that can be reached in
n steps from some pipelined machine state.

quire an invariant about the instruction cache that valid
entries in the cache are consistent with the instruction mem-
ory. We also prove that the instruction cache invariant is
inductive, i.e., we prove that if the invariant holds for an ar-
bitrary pipelined machine state, w, then it holds for v, where
v is obtained by stepping w once.

The data cache is direct mapped and the way we model it
is similar to the way we model the instruction cache. Writes
are write-through and update both the data cache and mem-
ory. Also, an invariant stating that all the valid entries in the
data cache are consistent with the data memory is required.

The write buffer is implemented as a queue and has 4
entries. Each entry has a data part, an address part, and a
valid bit. Store instructions do not update the data mem-
ory directly, but write to the tail of the write buffer queue.
The head of the write buffer queue is read and used to up-
date the data memory. Reads from the data memory have
to take into account the valid entries in the write buffer, as
the write buffer has the most recent data values. Among the
write buffer entries, priority is given to the entries closer
to the tail. We require an inductive invariant for the write
buffer that states that the combined state of the write buffer
and the data memory is consistent with a data memory that
is updated directly, without using a write buffer.

4. Flushing and Commitment

Burch and Dill in [6] showed how to automatically use
flushing to define refinement maps. The idea with flushing
is that partially executed instructions in the pipeline latches
are made to complete and update the programmer visible
components without fetching any new instructions. The pro-
grammer visible components are the program counter, the
register file, and the instruction and data memories. After
the pipelined machine is flushed, the pipeline latches are all
invalid, and an ISA state is obtained by projecting out the
programmer visible components. We also need a rank func-

tion, which we define as the number of steps required to
fetch and complete a new instruction.

The commitment refinement map was first introduced
in [12] and automated in [15]. Commitment can be thought
of as the dual of flushing, as partially executed instructions
in the pipeline are invalidated instead of being completed,
and the programmer visible components are rolled back to
correspond to the last committed instruction. We store some
history information to simplify the implementation of the
refinement map. The rank function is defined as the length,
in latches, from the end of the pipeline to a valid latch.

For the commitment approach, we require an inductive
invariant on the pipelined machine states. One such invari-
ant is the “Good MA” invariant: it states that a pipelined ma-
chine state is good if it can be reached within a bounded,
machine-dependent number of steps, say n, from a com-
mitted state. A committed state is a state in which all the
pipeline latches are invalid. All states that are within n steps
from a committed state clearly satisfy the invariant, so our
proof obligation reduces to showing that the successor of
any state that is n steps away from a committed state sat-
isfies the invariant. As shown in Table 1, it turns out that
the invariant proof is computationally expensive, account-
ing for more than 98% of the verification time required by
the commitment approach.

5. Greatest Fixpoint Invariant

We introduce a new inductive invariant that can be used
with commitment-based refinement maps; we call it the
Greatest Fixpoint (GFP) invariant. In this section, we de-
fine the GFP invariant and compare, based on proof times
and the ease of implementation, the commitment approach
that uses the GFP invariant, with the flushing approach and
the commitment approach that uses the “Good MA” invari-
ant.

The definition of the the Greatest Fixpoint (GFP) invari-
ant is straightforward.



Flushing Commitment (Good MA) Commitment (GFP)Processor Model
CNF Ref. Proof Inv. Proof Ref. Proof Total CNF Ref. Proof
Vars Time (sec) Time (sec) Time (sec) CNF Vars Time (sec) Vars Time (sec)

6 28,256 20 23 1 12,334 24 9,498 3
6I 48,917 22 172 4 36,498 176 16,955 5
6ID 114,124 202 414 20 75,405 434 29,089 10
6IDW 159,620 458 438 35 80,434 473 34,107 16
7 53,165 168 24 1 13,296 25 17,528 13
7IDW 263,022 1,012 723 95 105,313 818 55,182 40
8 95,092 630 47 1 14,100 48 27,107 43
8IDW 393,719 2,995 1,054 156 131,364 1,210 96,710 147
9 144,045 1,394 24 1 15,214 25 39,346 100
9IDW 526,651 Fail 1,754 98 161,759 1,852 125,585 265
10 198,375 3,841 30 1 17,121 31 55,763 164
10I 293,862 4,752 1,325 8 82,795 1,333 91,416 384
10ID 580,355 Fail 2,685 126 195,562 2,811 159,638 540
10IDW 690,598 Fail 2,885 88 197,258 2,973 174,122 536
6B 37,002 14 89 1 21,850 90 13,495 4
6BI 63,824 23 1,423 11 51,114 1,434 23,891 8
6BID 137,935 283 2,968 167 100,406 3,135 40,371 17
6BIDW 191,101 439 2,851 229 105,639 3,080 45,567 25
7B 70,985 216 232 1 26,058 233 25,676 22
7BIDW 311,425 1,627 5,537 579 144,441 6,116 76,820 70
8B 121,645 733 701 1 31,914 702 40,559 150
8BIDW 424,604 5,376 30,438 1,043 177,741 31,481 122,550 304
9B 183,371 1,737 686 2 36,757 688 59,110 674
9BIDW 628,179 Fail 58,029 876 230,500 58,905 173,479 1,145
10B 256,272 4,563 1,555 2 43,517 1,557 81,569 1,756
10BI 371,249 4,706 73,710 299 126,785 74,009 136,545 1,780
10BID 695,833 Fail 160,523 926 276,289 161,449 221,420 4,431
10BIDW 824,633 Fail 233,928 1,193 278,137 235,121 237,485 6,039
6N 37,452 19 101 1 37,147 102 12,631 4
6NI 63,563 23 878 8 95,821 886 23,229 8
6NID 137,885 282 3,599 51 161,995 3,650 40,132 18
6NIDW 190,399 428 3,472 267 163,763 3,739 45,259 23
7N 70,667 188 240 1 27,500 241 23,936 14
7NIDW 310,434 1,679 11,103 307 162,225 11,410 75,496 73
8N 121,499 499 794 1 53,697 795 39,165 140
8NIDW 424,124 5,968 34,423 433 259,031 34,856 12,1170 270
9N 185,149 2,027 970 2 62,536 972 54,631 447
9NIDW 626,884 Fail 75,453 417 350,587 75,870 170,918 899
10N 255,780 4,910 2,136 2 73,163 2,138 75,676 1,938
10NI 368,888 4,544 51,514 493 224,692 52,007 131,642 2,101
10NID 698,555 Fail 225,636 4,455 414,530 230,091 217,725 4,229
10NIDW 824,210 Fail 286,285 3,479 416,378 289,764 233,852 6,155

Table 1. Verification statistics for the flushing approach, the commitment approach using the “Good
MA” invariant, and the commitment approach using the Greatest Fixpoint invariant for various
pipelined machines.



Definition 3 gfp.w iff 〈∃a ∈ S :: a 99Kn w〉

In the above definition, S is the set of all pipelined ma-
chine states, 99K is the transition relation, and 99Kn is the
n-fold composition of 99K (i.e., it relates u to v if v can
be reached in n steps from u). The definition states that a
pipelined machine state w is in the invariant if it can be
reached from some state in n steps. Reasonable values of
n depend on the pipelined machine in question and should
be selected to correspond to the minimum number of steps
required to replace all the partially executed instructions in
the pipeline with instructions fetched from the instruction
memory. For the pipelined machine models that we con-
sider, n is the number of steps required to flush the machine.

The reason we call this invariant the greatest fixpoint in-
variant is that we have the following lemma.

Lemma 2
〈∀k ∈

�
:: 〈∃a ∈ S :: a 99Kk+1 w〉 ⇒ 〈∃a ∈ S :: a 99Kk w〉

Therefore, for the sequence of sets S0, . . . ,Sn, where Si =
{w ∈ S :: 〈∃a ∈ S :: a 99Ki w〉}, we have S0 ⊇ S1 ⊇ ·· · ⊇ Sn.

The GFP invariant is depicted in Figure 2. If an arbitrary
pipelined machine state is stepped for the number of steps
required to flush the pipeline, then all the partially executed
instructions in the pipeline are made to complete and up-
date the programmer visible components, and the pipeline
latches are filled with new instructions. For the machines
we consider, the flow of an instruction in the pipeline de-
pends only on older instructions in the pipeline. Therefore,
all the instructions in pipeline latches of the original arbi-
trary state are guaranteed to complete and be replaced by
new instructions from the instruction memory. The new par-
tially executed instructions in the pipeline latches of the re-
sulting state will be consistent, thereby avoiding the prob-
lems inherent in the commitment approach. That GFP is an
invariant follows from the following lemma.

Lemma 3 〈∀w,v ∈ S :: (gfp.w ∧ w 99K v) ⇒ gfp.v〉

The lemma is true by definition. Recall that checking
the standard invariant used for the commitment approach
is where most of the verification time is spent, but by the
above lemma, no such check is required for the GFP invari-
ant approach. As we show in the next section, this leads to
drastically faster verification times.

The commitment refinement map using the GFP invari-
ant is defined as follows. A pipelined machine state satisfy-
ing the GFP invariant is committed by invalidating the par-
tially executed instructions in the pipeline and rolling back
the programmer visible components (program counter, in-
struction and data memory, and register file) so that they
correspond with the last committed instruction. The pro-
grammer visible components are then projected out, result-
ing in an ISA state. The rank function is the same as the one
used for the “Good MA” commitment approach (i.e., it is
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the length, in latches, from the end of the pipeline to a valid
latch).

5.1. Results and Analysis

 10

 100

 1000

 10000

 100000

 1e+06

 10  100  1000  10000  100000  1e+06

Fl
us

hi
ng

 (s
ec

s)

Commitment with Good MA (secs)

Pipelined Machine Models
Failed with Flushing

Figure 4. A comparison of the verification
times required for our benchmark problems
between commitment using the “Good MA”
invariant and flushing.

We used flushing, the commitment approach with the
“Good MA” invariant, and the commitment approach with
the GFP invariant to verify the 42 pipelined machine mod-
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Figure 5. A comparison of verification times
required for our benchmark problems be-
tween commitment using the GFP invariant
and flushing.

els described in Section 3. For all experimental results pre-
sented in this paper, we used the UCLID decision proce-
dure (version 1.0) coupled with the Siege SAT solver [24]
(variant 4), using a 3.06 GHz Intel Xeon, with an L2 cache
size of 512 KB. The results should be interpreted taking
into consideration the following two factors. First, the Siege
SAT solver uses a random number generator and large vari-
ations in the running times are possible, e.g., in previous
work we noticed that the standard deviation of the Siege
running times can be significant [15]. Second, the machines
we used for the experiments are part of a public cluster.
While we tried to use idle machines, the running times we
obtained could have been slightly influenced by other jobs
running on the machines.

Table 1 shows the verification times and related statis-
tics for the various pipelined machine models. The names in
the “Processor” column start with a number indicating the
number of stages followed optionally by the letters “I”, “D”,
“W”, “B”, and “N” indicating the presence of an instruction
cache, data cache, write buffer, branch prediction abstrac-
tion scheme 1, and branch prediction abstraction scheme 2,
respectively. Branch prediction abstraction schemes 1 and
2 refer to two different ways of abstracting branch predic-
tors. For all the three approaches we report the time taken
by both UCLID and Siege to complete the refinement proof.
For the commitment approach based on the “Good MA” in-
variant, we also report the time taken by both UCLID and
Siege for the invariant proof and the total time for both the
refinement proof and the invariant proof. A “Fail” entry in-
dicates that Siege failed on the problem (by immediately re-
porting that the problem is too complex and quiting).

Figure 3 shows the running times for the refinement
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Figure 6. A comparison of verification times
required for our benchmark problems be-
tween commitment using the GFP invariant
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ant.

proof and the invariant proof for the “Good MA” approach
and the refinement proof for the GFP approach, as the com-
plexity of the pipelined machine models increases. An inter-
esting observation is that more than 98% of the total proof
time for the “Good MA” approach is spent in proving the
invariant. This motivates the use of the Greatest Fixpoint
(GFP) invariant, which is computationally less expensive.

Figures 4, 5, and 6 are scatter plots with log scales for
both axes and compare the use of commitment (“Good
MA”) vs. flushing, commitment (GFP) vs. flushing, and
commitment (GFP) vs. commitment (“Good MA”), respec-
tively. The comparison is based on running times for veri-
fying 42 pipelined machine benchmarks. From Figure 4, it
can be seen that flushing and commitment based on “Good
MA” have similar performance characteristics on the mod-
els that flushing completes. But, flushing fails to produce a
result on 9 of the more complex benchmarks. Commitment
(“Good MA”) scales better than flushing, but the verification
times for the more complex benchmarks reach over 250,000
seconds. Figure 5 shows that the commitment based on GFP
does better than flushing on all the 42 benchmarks.

From Figure 6, it can be seen that commitment based on
the GFP invariant does better than commitment based on
the “Good MA” invariant for most of the benchmarks. We
note that the time required for the refinement proofs of the
two commitment approaches differs. From Figure 3 and Ta-
ble 1, we see that the time for the refinement proofs for the
GFP approach is much higher. The difference can be ex-
plained by noting that once the invariants are proved, the
sets of states satisfying the invariants are defined as the set
of states reachable from an initial state after some number of
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UCLID specifications required for our bench-
mark problems between commitment using
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steps. The maximum number of such steps required for the
two approaches depends on the number of steps required for
a newly fetched instruction to reach the end of the pipeline.
For the “Good MA” approach, the initial state is a commit-
ted state (this is an advantage of using the “Good MA” in-
variant), meaning that all the pipeline latches are initially
invalid. Therefore, the flow of the first newly fetched in-
struction is uninhibited (e.g., it cannot stall) and depends
only on the length of the pipeline. For example, for the
10 stage pipeline models, starting from a committed state,
9 steps of the pipelined machine are required for a newly
fetched instruction to reach the end of the pipeline. In con-
trast, when using the GFP approach, the initial state is an
arbitrary state and the flow of the first newly fetched in-
struction in the pipeline depends on the older instructions in
the pipeline. For example, if the first newly fetched instruc-
tion is data dependent on older instructions in the pipeline,
it will stall. For the 10 stage pipeline, starting from an arbi-
trary state, a maximum of 14 steps of the pipelined machine
is required for a newly fetched instruction to reach the end
of the pipeline. As a rule of thumb, verification times in-
crease exponentially with the number of symbolic simula-
tion steps required, therefore, the refinement proof times for
the GFP approach is much higher than for the “Good MA”
approach. Of course, if we look at the total time required
for verification, the GFP approach is the clear winner be-
cause it does not require us to prove an invariant.

One further important observation is worth making and
that is that the GFP approach is much easier to implement
than the “Good MA” approach, because (in contrast to the
“Good MA” approach) we do not require an extra invari-

ant proof. Such proofs require that we symbolically sim-
ulate a pipelined machine state in two different ways and
check that that results are equal. Figure 7 is a scatter plot
that compares the size of the UCLID specifications for the
two commitment based refinement maps for each of the 42
pipelined machine models. The UCLID specifications con-
sist of the machine model and the refinement map. As can
be seen from the figure, the UCLID specifications that use
the “Good MA” approach are much larger than those that
use the GFP approach. Further, once the machine models
are defined, implementing the commitment refinement map
based on the GFP approach required about a couple of hours
while the implementation of the “Good MA” approach took
more than twice as long.

6. Using GFP with Intermediate Refinement
Maps

Intermediate refinement maps, an approach that com-
bines flushing and commitment and leads to drastic reduc-
tions in verification times, was proposed in [16]. Interme-
diate refinement maps are obtained by selecting a pipeline
stage, which we will call the reference point, committing all
pipeline latches before the reference point, and flushing all
latches after the reference point. The rank function for these
refinement maps returns a pair of natural numbers rankc and
rank f , which are exactly the same rank functions for com-
mitment and flushing. The less-than ordering on the rank is
the component-wise order. An invariant is required for the
part of the pipeline being committed, but is not required for
the part of the pipeline being flushed.

For any given pipelined machine, many intermediate re-
finement maps can be defined by selecting different stages
in the pipeline as the reference point. The fastest verifica-
tion times are obtained when selecting a reference point that
is close to the middle of the pipeline. We implemented the
intermediate refinement map IR4 that commits the first 4
pipeline latches and flushes all other latches, for the most
complex processor model with branch prediction scheme
1 (10BIDW) using both the old and the new characteriza-
tion of commitment. For the new characterization of com-
mitment, we used the GFP invariant to characterize the set
of reachable states by stepping the pipelined machine for i
steps, where i is the number of steps required to replace the
instructions in the pipeline latches being committed with
new instructions from memory. The rank function for the
intermediate refinement map defined using the GFP invari-
ant is the same as the rank function for the intermediate re-
finement map defined using the “Good MA” invariant.

The experiments were conducted using the same experi-
mental set up (tools and machines) described in Section 5.1.
We found that the verification time for 10BIDW using IR4
defined with the commitment approach based on “Good



MA” invariant and the GFP invariant to be 3,500 seconds
and 550 seconds, respectively. Note that with using only
the commitment approach (“Good MA”), the verification
time for 10BIDW is 235,121 seconds. Thus, the GFP invari-
ant can be fruitfully combined with intermediate refinement
maps to get verification times that are about 6 times faster
than the previous approach, for the most complex proces-
sor model (10BIDW).

7. Related Work

Pipelined machine verification is an active area of re-
search. One popular approach involves the use of theo-
rem provers, which have the advantage that the underly-
ing logics are very powerful and expressive, but also unde-
cidable. Examples of this line of research include the work
by Sawada and Hunt, who use an intermediate abstraction
called MAETT to verify some safety and liveness properties
of complex pipelined machines [25, 27, 26]. Another exam-
ple of a theorem proving approach is the work by Hosabettu
et al., who use the notion of completion functions [8].

Our main concern, however, is with highly automatic
methods. An early and influential paper in this area is due
to Burch and Dill, who showed how to automatically com-
pute refinement maps using flushing [6] and gave a de-
cision procedure for the logic of uninterpreted functions
with equality and Boolean connectives. The idea with flush-
ing is that a pipelined machine state is related to an in-
struction set architecture state by completing partially com-
pleted instructions without fetching any new instructions.
Another refinement map that can be automatically com-
puted is based on the commitment approach [12, 15], where
a pipelined machine state is related to an instruction set ar-
chitecture state by invalidating all the partially executed in-
structions in the pipeline and rolling back the programmer-
visible components so that they correspond with the last
committed instruction. There has been recent work on com-
mitment [23, 2], and on the use of refinement maps that
partly flush and partly commit [16].

Different types of automatic methods have been used,
e.g., McMillan uses model-checking and symmetry reduc-
tions [17]; Patankar et al. use Symbolic Trajectory Evalu-
ation (STE) to verify a processor that is a hybrid between
ARM7 and StrongARM [22]; and SVC is used to check the
correct flow of instructions in a pipelined DLX model [19].
Aagaard et al., in [1] describe a survey of various pipelined
machine correctness statements. There has also been related
work based on assume-guarantee reasoning by Henzinger et
al. [7].

More directly related to this paper is the work on deci-
sion procedures for boolean logic with equality and uninter-
preted function symbols [4]. The results in [4] were further
extended in [5], where a decision procedure for the CLU

logic is given. The decision procedure is implemented in
UCLID, which has been used to verify out-of-order micro-
processors [11] and which we use to verify the models pre-
sented in this paper.

The notion of correctness for pipelined machines that
we use was first proposed in [12], and is based on WEB-
refinement [13]. The first proofs of correctness for pipelined
machines based on WEB-refinement were carried out using
the ACL2 theorem proving system [9, 10]. The advantage
of using a theory of refinement over using the Burch and
Dill notion of correctness, even if augmented with a “live-
ness” criterion is that, deadlock may avoid detection with
the Burch and Dill approach [12], whereas it follows di-
rectly from the WEB-refinement approach that deadlock (or
any other liveness problem) is ruled out. In [15], it is shown
how to automatically verify safety and liveness properties
of pipelined machines using WEB-refinement. The proofs
are carried out using UCLID and Siege, and it is shown that
Siege tends to outperforms Chaff [20] for such problems,
which is why we use Siege in this paper. Our results ex-
tend this work by showing how to use WEB-refinement to
automatically prove safety and liveness using a new charac-
terization of the commitment refinement map.

8. Conclusion

We have introduced a new method for automatically
verifying pipelined machines using commitment-based re-
finement maps. Our method is based on a greatest fixed-
point characterization of the commitment invariant. We de-
fined 210 benchmark verification problems and 42 proces-
sor models, which we used to compare our method with
previous approaches. Our results clearly show that our new
method is easier to define and automate, and gives rise to
more than a 35-fold reduction in verification times over the
standard approach to verifying commitment-based refine-
ment maps. We noticed a similar improvement over flush-
ing, although the standard flushing approach was not able
to complete the verification of 9 of the 42 flushing bench-
marks. We also showed that further improvements in verifi-
cation times are possible by using the recently introduced
notion of intermediate refinement maps. The verification
engines we used are the UCLID decision procedure and the
Siege SAT solver. For future work, we plan to apply our
method of defining commitment maps to a wider class of
pipelined machines, and we will continue to explore meth-
ods for reducing the verification times of refinement based
approaches to pipelined machine verification.
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