
Partial Functions in ACL2

Panagiotis Manolios (manolios@cc.gatech.edu)
College of Computing, CERCS Lab, Georgia Institute of Technology
801 Atlantic Drive, Atlanta, Georgia 30332-0280 U.S.A.
http://www.cc.gatech.edu/∼manolios

J Strother Moore (moore@cs.utexas.edu)
Department of Computer Sciences, University of Texas at Austin
Taylor Hall 2.124, Austin, TX 78712-1188 U.S.A.
http://www.cs.utexas.edu/users/moore

Abstract.
We describe a method for introducing “partial functions” into ACL2, i.e., func-

tions not defined everywhere. The function “definitions” are actually admitted via
the encapsulation principle: the new function symbol is constrained to satisfy the ap-
propriate equation. This is permitted only when a witness function can be exhibited,
establishing that the constraint is satisfiable. Of particular interest is the observation
that every tail recursive definition can be witnessed in ACL2. We describe a macro
that allows the convenient introduction of arbitrary tail recursive functions and we
discuss how such functions can be used to prove theorems about state machine
models without reasoning about “clocks” or counting the number of steps until
termination. Our macro for introducing “partial functions” also permits a variety of
other recursive schemes and we briefly illustrate some of them.

1. Introduction

The ACL2 system [15, 14] consists of a programming language based
on Common Lisp [29], a logic of total recursive functions, and a the-
orem prover. It contains a definitional principle essentially identical
to that in Boyer and Moore’s Nqthm [4] whereby function definitions
are admissible only if a measure of the arguments can be shown to be
decreasing, in some well-founded sense, in every recursive call.

ACL2 has a definitional principle for good reason: arbitrary definition-
like axioms can introduce logical inconsistency.

Consider the “definition” of g below, shown in ACL2’s Lisp-like
syntax. Intuitively, g returns a list of n nils.

(defun g (n)
(if (equal n 0)

nil
(cons nil (g (- n 1)))))

From the perspective of the Lisp programmer, this defun expression
introduces a program named g with one argument, n. The body of the

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.



2

program is an if-expression that tests n against 0. If n is 0, g returns
nil. Otherwise, g is evaluated on the difference of n and 1 and the
result of that recursive call is paired with nil. Defining this program
in Lisp and executing (g 3) would produce (nil nil nil). Executing
(g -3) or (g 1/2) would produce a nonterminating computation and,
ultimately, a stack overflow.

So much for the computational “meaning” of this defun. What
about the logical meaning? The defun is inadmissible under ACL2’s
definitional principle: there is no ordinal measure of the argument that
is decreasing in the recursive call.

Despite the inadmissibility of the expression as a definition, the
ACL2 user could choose to add the “defining equation” as an axiom,
as follows.1

(defaxiom g-axiom
(equal (g n)

(if (equal n 0)
nil

(cons nil (g (- n 1))))))

Unfortunately, a consequence of g-axiom is the theorem nil!2 That
is, the logic is inconsistent after the addition of the axiom. (Nil can
be proved by first proving the lemma that, for all negative integers n,
(len (g n)) is greater than any natural number k. This lemma can
be proved by induction on k. Since conses in ACL2 are of finite length,
instantiation of this lemma, replacing n by -1 and k by (len (g -1)),
contradicts the irreflexivity of the less than relation.)

However, consider the “definition”

(defun h (n)
(if (equal n 0)

nil
(h (- n 1)))).

It too is inadmissible. Like g, if h were defined in Lisp, certain com-
putations, such as (h -3), would never terminate or would cause a

1 Any ACL2 formula may be added as an axiom, but the ACL2 user is dis-
couraged from adding such axioms because of the risk of unsoundness. Before
the axiom about g, above, can be added, we must declare g to be a function
symbol of one argument. When the axiom is added, the user may tell ACL2
how to use it, e.g., as a rewrite rule. We omit such operational details from
this paper. The interested reader can consult [15], a book describing ACL2, [16],
which contains a precise description of the ACL2 logic, or the ACL2 home page,
http://www.cs.utexas.edu/users/moore/acl2, which contains an online user’s
manual.

2 Nil denotes false in ACL2.



3

stack overflow. But would inconsistency result if we added the axiom
“defining” h as above?

In this paper we answer that question: no inconsistency results,
because h is tail recursive (see Section 2). Any tail recursive definition
can be added to the logic without imperiling consistency.

We describe a macro named defpun (for “def ine partial function”)
that we have defined in ACL2. Defpun allows such “definitions” and
works by expanding such “definitions” into a sequence of consistency-
preserving events culminating with an event that adds an axiom con-
straining the new function symbol appropriately. For example, replac-
ing defun by defpun in the “definition” of h results in an admissible
event that adds the following axiom.

(equal (h n)
(if (equal n 0)

nil
(h (- n 1))))

The constrained functions introduced by defpun could be (indeed,
are) introduced with encapsulate [17]. That is, each use of defpun ex-
pands into an encapsulate expression. Thus, defpun does not increase
the expressive power of ACL2. The primary contribution of this paper
is to show within ACL2 that for every tail recursive definition there
exists an admissible ACL2 function that can be used to witness the
constrained introduction of the tail recursive definition. Furthermore,
defpun automates this by generating the necessary encapsulation and
its supporting definitions and theorems. Prior to this work it had not
been realized that every tail recursive definition can be witnessed by a
total recursive function in ACL2.

A trivial but entertaining consequence of this observation about tail
recursion is that the famous “3n+1” function can be introduced into
ACL2. This function has terminated on all the examples ever tried [30]
but has not yet been proved to terminate for all natural numbers. The
following event is admissible.

(defpun 3n+1 (n)
(if (<= n 1)

n
(3n+1 (if (evenp n)

(/ n 2)
(+ (* 3 n) 1)))))

An important class of tail recursive functions is that containing the
various machine interpreters formalizing the operational semantics of
microprocessors and programming languages. Traditionally, such “it-



4

erated step functions” have been admitted to ACL2 and Nqthm by
burdening each definition with a “clock” argument that artificially
provides a decreasing ordinal measure. See for example [3]. This clock
argument must then be dealt with in theorems about these interpreters.
(This is a two edged sword. The clock argument makes the statement of
theorems more cumbersome but often makes their proofs easier because
the resulting theorems are stronger and easier to prove by induction.)

Suppose that haltedp recognizes “halted states” in some machine
model and that step1 is the state transition function. Then the follow-
ing function is now admissible.

(defpun stepw (s)
(if (haltedp s)

s
(stepw (step1 s))))

Observe that (stepw s) “runs state s to termination” if a halted state
can be reached by repeated step1s. The value of (stepw s) on states
that do not terminate is undefined by this axiom.

With stepw one can state and prove “code correctness” theorems in
ACL2 without defining or reasoning about clocks.

In addition, one can define the equivalence relation

(defun == (a b)
(equal (stepw a)

(stepw b)))

which holds between two terminating states precisely when they ter-
minate in the same state. The states before and after the execution
of a primitive instruction are related by this equivalence. One can
arrange for ACL2 to use these equivalences as rewrite rules to run
programs symbolically without using a clock to control the expansion.
More interestingly, one can prove theorems establishing such an equiv-
alence between a state poised to execute a subroutine call and some
state eventually produced by that call. Such a theorem can be used
in subsequent proofs precisely as though the subroutine call were a
primitive instruction that completed in one step.

Our defpun macro also supports a variety of other schemes for
“defining” “partial functions,” such as proving that, on a specified
domain, a measure decreases in each recursive call. We put quotation
marks around these words for technical reasons. The axioms describing
the new symbols may not uniquely define the new symbol; all that is
required is that they are satisfied by some total function. Henceforth,
“definition” refers to the constrained introduction of a new function
symbol. We put quotation marks around “partial function” because
ACL2 is a logic of total functions. If f is a function symbol of one



5

argument then (f 0), say, denotes some value. The question is whether
the axioms specify what that value is. By “partial function” we mean a
function whose value is specified on a (perhaps empty) subset of ACL2
objects.

This paper focuses on the admission of tail recursive definitions
and the ramifications of having such functions in the logic. The paper
merely sketches other uses of defpun. Our emphasis on tail recur-
sive definitions is due to their importance and prominence in indus-
trial applications of ACL2. ACL2 has been used on some impressive
industrial-scale problems by companies such as AMD, Rockwell Collins,
Motorola, and IBM. ACL2 was used to prove that the floating-point
operations performed by the AMD microprocessors are IEEE-754 com-
pliant [23, 25, 26, 27, 28], to analyze bit and cycle accurate models of
the Motorola CAP, a digital signal processor (DSP) [6], and to analyze
a model of the JEM1, the world’s first silicon JVM (Java Virtual Ma-
chine) [11, 12, 13]. There are many other examples we could mention
and they tend to have the following in common: one starts by defining
a tail recursive interpreter along the lines of the interpreter in Section 3
and then proves theorems about that interpreter. Our interest in tail
recursive definitions is based on this observation.

We basically ignore some important pragmatic issues in this paper,
such as the details of the implementation of defpun, how ACL2 is
configured to make it prove theorems about such functions, and the
role of execution or computation on explicit values. We expect defpun
and its pragmatic consequences will evolve as the ACL2 community
explores the logical consequences. The current definition of defpun, all
of the results cited in this paper, and a technical report illustrating
the features of defpun are available from the Web pages of the authors
[19, 20].

This paper assumes some familiarity with ACL2 or the Boyer-Moore
logic, but most issues are explained in passing. Two features of ACL2
are especially relevant here.

The first is encapsulation [17], which allows the witnessed constraint
of new function symbols. The encapsulation below introduces a new
function symbol, dot, of two arguments, and constrains dot to be
associative. To establish the consistency of this constraint, a witness
is provided. The particular witness we chose is the constant function
that ignores its arguments and returns 23, but any provably associative
function would do. The witness is specified by “locally” defining dot
to be the constant function within the scope of the encapsulation. The
constraint is shown to be satisfiable by proving it as a theorem within
the scope of the encapsulation.



6

(encapsulate (((dot * *) => *)) ; Declare the signature of dot,
(local ; provide a witness, and
(defun dot (x y)

(declare (ignore x y))
23))

(defthm dot-associative ; prove that the witness has
(equal (dot (dot x y) z) ; the desired property.

(dot x (dot y z)))))

We say the defun in the encapsulate above is “local” and the defthm
is “non-local” or “exported.” Exported events generally become con-
straints on the functions declared in the signature entry of the en-
capsulation. Closely related to encapsulation is the derived rule of
inference called “functional instantiation.” A theorem may be derived
by replacing the function symbols of any theorem by new function
symbols, provided that the new symbols satisfy all the constraints on
the replaced symbols [2, 17].

The second especially relevant idea is a first-order feature called
defchoose, by which the user can introduce a Skolem witnessing func-
tion. For example, if rel is a relation of two arguments, then

(defchoose descendant (n) (x)
(rel x n))

axiomatizes (descendant x) so that if there is an n such that (rel
x n), then (descendant x) is such an n. In particular, the following
axiom is introduced

(implies (rel x n)
(rel x (descendant x))),

which (if the reader will pardon our mixing of traditional notation and
ACL2’s term-based logic) is equivalent to

(implies (∃ n (rel x n))
(rel x (descendant x))).

In fact, as proved in [17], defchoose is “appropriate” by which we mean
that the theory resulting from the addition of the axioms introduced
by defchoose is a conservative extension of the initial theory, even in
the presence of ε0 induction.

2. Tail Recursion

Can a tail recursive definitional axiom be inconsistent?
The answer is no. It is always possible to produce a witness for a

tail recursive definitional equation. Suppose test, base, and st are



7

arbitrary functions of one argument. Then, exploiting the first-order
power of ACL2, we can provide a witness to the following axiom.

(defaxiom generic-tail-recursive-f
(equal (f x)

(if (test x)
(base x)

(f (st x)))))

To construct a suitable witness f, first define stn to compute (stn x).

(defun stn (x n)
(if (zp n)

x
(stn (st x) (1- n))))

The function zp returns t if its argument is 0 or not a natural number,
and returns nil otherwise.

Then, using

(defchoose fch (n) (x)
(test (stn x n)))

let (fch x) be an n such that (test (stn x n)), if such an n exists.
The value of fch is not specified otherwise, nor is it necessarily the
case that fch returns the smallest such n.

Next, define

(defun fn (x n)
(declare (xargs :measure (nfix n)))
(if (or (zp n) (test x))

(base x)
(fn (st x) (1- n))))

which applies st n times or until test is true, whichever occurs first,
and finishes by applying base.3 It should be fairly obvious that the
following function satisfies generic-tail-recursive-f.

(defun f (x)
(if (test (stn x (fch x)))

(fn x (fch x))
nil))

The nil above could be replaced by any constant, a fact which illu-

3 Recall that definitions require a proof that there exists an ordinal measure of
the arguments that decreases in each recursive call. The declare form above tells
ACL2 to use the measure (nfix n). Without this hint, ACL2’s heuristics “guess”
an inappropriate measure. The measure used to admit a definition is irrelevant to
the definitional axiom added. We omit the definition of nfix in this paper.



8

minates how it is that the constrained symbol may not be uniquely
defined.

We have just given an outline of an encapsulation that exports
generic-tail-recursive-f as the only constraint on a new func-
tion symbol f. Test, base, and st are unconstrained. The defpun
macro is defined to recognize tail recursive equations and to generate a
functional instantiation that exploits generic-tail-recursive-f to
produce a witness to the desired tail recursive equation. For the details
of the admission process, include defpun.lisp in your ACL2 [19, 20],
execute a simple example of a tail recursive function, and use :pe to
inspect the generated encapsulate.

Here is a tail recursive version of factorial admitted as a partial
function.

(defpun trfact (n a)
(if (equal n 0)

a
(trfact (- n 1) (* n a))))

Such an axiom might be produced by the mechanical translation of an
imperative program into its “functional” semantics. Its value off the
natural numbers is unspecified by the axiom. Thus, this definition does
not uniquely define trfact but merely constrains it. We can, however,
prove with the ACL2 theorem prover

(defthm trfact-is-fact-on-nats
(implies (and (natp n)

(natp a))
(equal (trfact n a)

(* a (fact n)))))

where (fact n) is the usual ACL2 factorial function.

3. Tail Recursive Interpreters

As noted in Section 1, an important class of tail recursive functions
consists of the traditional ACL2 “state machine interpreters.” We il-
lustrate a consequence of the discussion above by considering one such
interpreter, namely the one for the toy Java Virtual Machine, TJVM,
described in [21], which is based on Cohen’s formalization [7] of Sun
Microsystems’ JVM [18].

It is not necessary to understand the TJVM work to understand
our use of partial functions in it. But to give you a feel for the ma-
chine, we discuss it briefly. A TJVM state is a triple consisting of a
call stack, a heap, and a class table. We construct such states with



9

make-state. The call stack is a push down stack of frames, each frame
corresponding to the activation of some method. A frame contains a
program counter, the byte code for the method in the frame, a variable
binding environment for the formal and local variables of the method,
and a stack on which the method pushes operands and results during its
computation. The heap is a map from heap addresses, called references,
to instance objects, which themselves are maps from classes and fields
to values (which may be references). The class table is a map from class
names to descriptions of the fields and methods of the class. Among
the method descriptions is the symbolic description of the code of each
method, stored as a list of byte instructions.

Here is a recursive Java method, fact, implementing the factorial
function.

public static int fact(int n) {
if (n > 0)

return n * fact(n-1);
else return 1;

}
Below we show the compilation of the fact method. In the left column
is the byte code for our TJVM. On the right is the JVM code generated
by Sun Microsystems’ Java compiler.

("fact" (n)
(load n) ; 0 iload 0
(ifle 8) ; 1 ifle 13
(load n) ; 4 iload 0
(load n) ; 5 iload 0
(push 1) ; 6 iconst 1
(sub) ; 7 isub
(invokestatic "Math" "fact" 1) ; 8 invokestatic ...
(mul) ; 11 imul
(xreturn) ; 12 ireturn
(push 1) ; 13 iconst 1
(xreturn)) ; 14 ireturn

Here we are imagining that the "fact" method, above, is in the "Math"
class.

Let step be the single-step state transition function for the TJVM.
That is, (step s) is the state produced by executing the instruction
indicated by the program counter in the top frame of the call stack of s.
For example, if s is so poised to execute a (load n) instruction, then
(step s) is the state obtained from s by incrementing the program
counter and pushing the value of the variable n onto the operand stack
of the top frame.



10

Of special interest is the semantics of the Java byte code instruction
invokestatic (and its cousin, invokevirtual, which is formalized
in TJVM but is not used in this example). When the invokestatic
instruction is executed by step, the state is changed to one in which an
additional method activation frame is pushed on the TJVM call stack,
poised to continue execution with the first byte code of the appropriate
method body, in the appropriate variable environment and with an
empty operand stack.

Note that stepping an invokestatic instruction does not run the
invoked method to completion (which may never happen) but just
initiates the invocation.

If an xreturn instruction is executed in the newly built frame, that
frame is popped off the call stack and certain results are transferred to
the operand stack of the next lower frame.

In the TJVM package, we can introduce the partial function stepw
shown below.

(defpun stepw (s)
(if (haltedp s)

s
(stepw (step s))))

Here, (haltedp s) is defined to be (equal s (step s)), i.e., a
state is “halted” if stepping it is essentially a no-op. We say a state, s,
“terminates” if there is an n such that (haltedp (stepn s)).

If s does not terminate, then the value of (stepw s) is unspecified.
Just to drive home this fact, we make a couple of obvious observations.
First, we do not know that (stepw s) is a state. Second, even if (stepw
s) is a state, we do not know that it is halted or whether it is related
in any sense to s. For example, it is entirely possible that (stepw s) is
a state that is halted and contains a different system of programs than
the programs contained in s.

We now present some examples showing how stepw can be used.
The following equivalence relation is especially interesting.

(defun == (a b)
(equal (stepw a)

(stepw b)))

A trivial theorem we can prove is (== s (step s)): s is related by
== to the result of stepping it once, i.e., to the result of executing the
next primitive instruction.

Here is another theorem, illustrating the trivial theorem above for
the particular case when the next instruction to be executed is of the
form (load var).



11

(defthm ==-load
(implies
(poised-on s ‘(load ,var))
(== s

(modify
s
:pc (+ 1 (pc (top (call-stack s))))
:stack (push (binding

var
(locals (top (call-stack s))))
(stack (top (call-stack s)))))))

:rule-classes nil)

This theorem exhibits the state change caused by load: it increments
the program counter by 1 and pushes the value of the given variable
onto the stack. The statement employs the easily implemented macro
modify that produces a new state from s by changing only the indicated
components.4

We can prove a theorem like this for every primitive instruction
on the machine. Such theorems, when stored appropriately as rewrite
rules, can be used to turn ACL2’s simplifier into a symbolic evaluator
for TJVM states, driving the computation forward whenever the next
instruction is known. We do not discuss in this paper how we control
ACL2’s rewriter to make this happen.

Here is another theorem we can prove.

(defthm ==-invokestatic-fact
(implies
(and (poised-on s ’(invokestatic "Math" "fact" 1))

(Math-class-loadedp (class-table s))
(equal n (top (stack (top (call-stack s)))))
(natp n))

(== s
(modify
s
:pc (+ 1 (pc (top (call-stack s))))
:stack (push (fact n)

(pop (stack (top (call-stack s))))))))
:rule-classes nil)

This theorem shows how to step over an invokestatic instruction that
calls the "fact" method in our "Math" class: increment the program

4 The “:rule-classes nil” instructs ACL2 not to store the theorem as a rule.
The theorem must be written in a different form to be legal and effective as a rule.



12

counter by 1, pop the argument n off the stack, and push (fact n) in
its place.

Note that this theorem is exactly analogous to ==-load above. Fur-
thermore, it makes the previously mentioned symbolic evaluator step
over not just an invocation of fact but the entire, arbitrarily long
computation initiated by it. It thus allows an invocation of "fact" to
be treated exactly like a primitive instruction. Furthermore, no “clocks”
or instruction counting is required to either state or prove this theorem.

The clocked interpreter for the TJVM is defined below.

(defun stepn (s n)
(if (zp n)

s
(stepn (step s) (- n 1))))

This function is admissible because n decreases. However, note that
there is no a priori relationship between the termination of stepn
and the halting of the program in its argument, s. In virtually all
of the ACL2 and Nqthm proofs about particular programs under given
operational semantics, the user provides, as part of the specification, a
clock expression that characterizes exactly how many instructions are
to be executed [1, 5, 21]. Clock expressions are not necessary when
using the == relation.

The clocked interpreter for the TJVM is still useful. For example,
it can be used to state and prove theorems about performance, i.e.,
how long a computation takes. It can also be used to prove theorems
about intermediate states in computations that never halt. Indeed, the
clocked interpreter can be used to establish that a computation never
reaches a halted state. Consider for example, proving (not (haltedp
(stepn σ n))), for some particular state σ. Such theorems cannot be
stated in terms of ==.

There are nice lemmas relating stepn to ==. One is

(defthm ==-stepn
(== (stepn s n)

s))

which allows a clocked theorem to be lifted to an unclocked theorem.
For example, if we know that executing a certain state a certain num-
ber of instructions produces a desirable result state, then we know
that result state is == to the initial state. Thus, all the previously
claimed results about TJVM programs can be restated without clocks
and proved as corollaries.

Another very general theorem about == is called the “Y” theorem
because it relates two states whose traces have a common suffix.



13

(defthm ==-Y
(implies (== (stepn s1 n)

(stepn s2 m))
(== s1 s2))

:rule-classes nil)

The Y theorem implies that if the paths from s1 and s2 intersect, then
(== s1 s2), even if they are both nonterminating.

4. Some Theoretical Considerations

In this section we examine the following questions: What functions can
you express with tail recursive definitions?, Does the first recursion
theorem from computability theory apply?, When is a set of equations
satisfiable by a total function?, and Can tail recursive definitions be
reflexive?

To address the questions above it is necessary to compare and si-
multaneously discuss ACL2 functions and functions as defined in com-
putability theory (also called recursive function theory). To avoid am-
biguity, we will italicize the words partial, total, recursive, and function
when referring to the computability theory concepts. In computability
theory, a function, f , is a set of ordered pairs such that if 〈x, y〉, 〈x, z〉 ∈
f , then y = z and x, y ∈ N. A function is total if its domain is N, the
set of natural numbers and is partial otherwise. In contrast, all ACL2
functions are from the ACL2 universe to the ACL2 universe. While it is
convenient to have strings, characters, symbols, rationals, lists, etc., the
notion of computable remains essentially the same (see the discussion
of codings in [24]), thus we proceed as if ACL2 functions map naturals
to naturals.

Let φ be a recursive (i.e., total and computable) function. Since φ is
recursive, there is a Turing machine p that computes φ, i.e., given any
natural number n as input, Turing machine p terminates with the value
φ(n). Observe that one can define a non-recursive function in ACL2, say
step, that given a state of p, returns the state obtained after taking one
step. We can define an ACL2 function f that corresponds to φ using
step. For any natural number n, (f n) starts by creating an initial
state of p with input n and then calls stepw (as defined in Section 3)
on that state. Since p terminates, stepw will also terminate (since it
simulates p) with the same result, namely φ(n). We have thus proved:

Theorem 1 Any recursive function can be defined in ACL2 where the
only type of recursion used is tail recursion.



14

We can also carry out the above construction for partial recur-
sive functions. Let φ be a partial recursive function, i.e., φ is Turing-
computable, but not necessarily total. Since φ is computable, there is
a Turing machine p that computes φ, i.e., given any natural number
n in the domain of φ as input, p terminates with the value φ(n) and
given a number outside the domain of φ, p does not terminate. We can
define a non-recursive function in ACL2, say step, that given a state of
p, returns the state obtained after taking one step. An ACL2 function,
f, that corresponds to φ can be defined using step. For any natural
number n, (f n) starts by creating an initial state of p with input n
and then calls stepw on that state. If φ is defined on n, stepw will
terminate with the result of φ(n), otherwise stepw does not terminate,
but since the equation is satisfied by a total function, there is at least
one value the expression can assume without violating the equation.
We have thus proved:

Theorem 2 Any partial recursive function can be defined in ACL2
where the only type of recursion used is tail recursion.

We remind the reader that because ACL2 is a logic of total functions,
a “partial function” in ACL2 is one whose value is specified on a subset
of ACL2 objects and thus a “definition” refers to the constrained intro-
duction of a new function symbol. The above theorem then says that
for any partial recursive function φ we can introduce a new function
that agrees with φ everywhere φ is defined. In contrast, a theorem of
computability theory states that there are partial functions such that
no total computable function extends them (see Section 2.3 of [24]). A
direct consequence is the following.

Theorem 3 There exist tail recursive equations that are satisfiable
only by non-computable total functions.

There is one related observation that is worth making. Consider
a Turing machine p that given input n generates n + 1, then n + 2,
and so on. Since the Turing machine is non-terminating, the partial
function corresponding to this Turing machine is the empty function.
The above construction will produce a set of equations, say for f, that
are satisfiable by some total function. However, there are total functions
that do not satisfy the equations, even though every total function
extends the partial function defined by p. For example, consider the
identity function. It is not a witness for f as by the Y theorem we
have that (f 1) = (f 2) = (f 3), . . .; any witness function has to
be a constant function. The point is that not every total function that



15

agrees with a partial recursive function φ is necessarily a witness for
the ACL2 equations corresponding to φ.

We now show that the first recursion theorem from computability
theory (see [8] or [24]) is not directly applicable. The first recursion
theorem states that any recursive operator has a least fixed point that
is a computable function. An operator maps functions to functions.
Here is an example.

(Φ(f))(0) = 1

(Φ(f))(x + 1) = f(x + 2)

Φ is an operator that given a partial function f , returns another partial
function, Φ(f), which satisfies the above equations on its domain. Φ has
a least fixed point, namely the partial function fΦ which is undefined
everywhere except at 0, where it takes the value 1. It also has other
fixed points; for any such fixed point, F , we have that F is total, F
extends fΦ (i.e., F (0) = 1) and for any i, j > 0, F (i) = F (j).

In our context, the existence of fixed points that are partial functions
is not relevant, as ACL2 is a logic of total functions. Unfortunately, the
first recursion theorem does not guarantee the existence of total fixed
points. Here is a simple example of an operator that has only one
non-total fixed point.

(Φ(f))(x) = f(x) + 1

The only fixed point is the empty function; as a consequence, we
can easily show that adding the following axiom to ACL2 renders it
inconsistent.

(defaxiom f-axiom
(equal (f x)

(+ 1 (f x))))

A natural question, then, is: When is a set of equations satisfiable
by a total function? This is an undecidable problem.

Theorem 4 Determining if a set of equations is satisfiable by some
total function is undecidable.

Proof Consider a set of equations for f and add the following equation.

g(i) = if f(i) = 0 then 0 else g(i) + 1

If f(i) 6= 0 for any i, then g(i) = g(i) + 1 and no total function
satisfies g. Thus g is satisfied by a total function iff f(i) = 0 for all



16

i ∈ N. Since this is a well-known undecidable problem, our original
problem is also undecidable. �

We now turn our attention to the final topic in this section. The
theorem we proved in Section 2 states that if test, base, and st are
already defined, then an equation of the form

(equal (f x)
(if (test x)

(base x)
(f (st x))))

is satisfiable by some total function. If we instead allow (st x) to be an
expression that mentions f, does a total function satisfying the equa-
tion exist? Equations with nested recursive calls are sometimes called
reflexive and well-known examples of such reflexive functions include
Ackermann’s function and McCarthy’s 91 function. A simple corollary
of the next theorem is that the problem of deciding if a reflexive tail
recursive equation is satisfiable by some total function is undecidable.

First, let us consider an example. We have seen that the following
recursive equation renders ACL2 inconsistent.

(defaxiom f-axiom
(equal (f x)

(+ 1 (f x))))

Here is a set of equations all of whose recursive calls are reflexive
tail recursive and where the equation for g is satisfied by the same total
functions that satisfy the above equation (i.e., none). We obtained the
equations using a construction found in the proof of the next theorem.

(defaxiom h-axiom
(equal (h x flg)

(if (equal flg 1)
x

(h (+ 1 (h x 0)) 1))))

(defaxiom g-axiom
(equal (g x)

(h x 0)))

After adding h-axiom to ACL2, one can easily derive a contradic-
tion, thereby rendering ACL2 inconsistent. The intuition is that the
nested call of h corresponds to the recursive call of f, whereas the
outer call of h returns its first argument and results in a reflexive tail
recursive equation.



17

Theorem 5 For any recursive equation, there is a reflexive tail recur-
sive equation such that both equations are satisfiable by exactly the
same total functions.

Proof Consider a recursive equation of the form (equal (f x) body).
Consider the following equations.

(equal (h x flg) (if (equal flg 1) x (h body(f z)←(h z 0) 1)))

(equal (g x) (h x 0))

By body(f z)←(h z 0), we denote the expression obtained by replacing
expressions of the form (f z) by (h z 0) in body. By well-known cod-
ing tricks, one can transform functions of two arguments into functions
of one argument. Therefore, our use of function symbols, such as h,
that take two arguments, is not essential, but their use simplifies the
presentation. We proceed as follows.

(g x)
= { Equation for g }

(h x 0)
= { Equation for h, flg = 0 }

(h body(f z)←(h z 0) 1)
= { Equation for h, flg = 1 }

body(f z)←(h z 0)

= { (h z 0) = (g z) }
body(f z)←(g z)

But the above is just the equation for f, with all occurrences of
f replaced by g. Therefore, f and g are satisfied by the same total
functions. �

5. More Defpun Features

We now turn from tail recursion to other features supported by our
defpun macro. We illustrate two.

Any definition-like equation can be added if a witness can be exhib-
ited by the user. Thus defpun is a convenient syntax for constraining
a new symbol.

(defpun offset (n)
(declare (xargs :witness fix)) ; fix is the numeric
(if (equal n 0) ; identity function

0
(+ 1 (offset (- n 1)))))



18

Note that offset is similar in form to g, except offset adds 1 where
g conses.

Why is offset admissible while g was inconsistent? For example,
can we assign a meaning to (offset -3) that is consistent with the def-
initional equation, i.e., so that (offset -3) is one more than (offset
-4)? Yes, let (offset -3) be -3 and (offset -4) be -4. Speaking
loosely, we cannot witness g because there are no “negative” conses.

A witness to the offset definition, supplied in the declare form,
is the identity function on numbers. In fact, any function which is
the identity function on the natural numbers and adds an arbitrary
constant to its argument otherwise is a witness, and there are oth-
ers. Defpun events are sometimes thought of as introducing families of
functions.

Partial definitions may be satisfied by functions that are not ob-
viously suggested by the computational (i.e., induction-based) inter-
pretation of the equation. For example, many programmers would not
imagine that offset might yield a negative value since inspection of its
definition reveals that it returns 0 or one more than the value returned
on a recursive call.

Here is another definition with a witness not suggested by its com-
putational interpretation. This example also illustrates that functions
introduced with defpun may in fact be uniquely defined.

(defpun z (x)
(declare (xargs :witness (lambda (x) 0)))
(if (zip x) ; x is not an integer or is 0.

0
(* (z (- x 1))

(z (+ x 1)))))

Normal evaluation of z is nonterminating. But we can prove that ex-
actly one function satisfies this equation. In fact, the following can be
proved.

(defthm z-is-0
(equal (z x)

0))

Another feature of defpun answers an oft-heard plea from ACL2
users: let us define functions on a specified domain. Here is a partial
function that is uniquely defined on a specified domain. The “g” in
:gdomain stands for “guarded” and insures that the equation is closed
on the domain. The measure given in the declare section, quotm,
(whose definition we omit) decreases on the domain.



19

(defpun quot (i j)
(declare (xargs :gdomain (and (rationalp i)

(rationalp j)
(< 0 j))

:measure (quotm i j)))
(if (<= i 0)

0
(+ 1 (quot (- i j) j))))

The axiom added defines quot conditionally.

(defaxiom quot-def
(implies (and (rationalp i)

(rationalp j)
(< 0 j))

(equal (quot i j)
(if (<= i 0)

0
(+ 1 (quot (- i j) j))))))

From this axiom one can deduce that (quot 27 9) is 3 and (quot
22/7 1/3) is 10. But one cannot deduce values for (quot 27 0) or
(quot 1 -1). The defpun event proves that quot is unique on the
specified domain.

Defpun also supports a weaker notion in which the definitional equa-
tion is known to hold on the specified domain, but the function is not
necessarily unique because the definition may not be closed on the
domain. This is illustrated among the examples included with the Web
distribution of defpun [19, 20].

6. The Impact of Defpun

ACL2 already contained all of the features necessary to allow the im-
plementation of defpun, including those necessary to control the use
of the equations introduced.

The heuristics controlling the expansion of calls to partial functions
are the same as those for admissible functions. The main heuristic is
that a call of a function may be expanded if the arguments of all the
recursive calls thus introduced are already in the conjecture. ACL2 con-
tains many heuristics aimed at preventing runaway (non-terminating)
rewriting. These heuristics are not foolproof but we have found that the
addition of the rewrite rules introduced with defpun do not exacerbate
the problem.



20

In ACL2, functions defined using defun “suggest” induction schemes
based on their case analysis and recursions. These schemes are known
to be well-founded by the admissibility proofs done at definition-time.
Constrained functions, including those introduced with defpun, do
not suggest inductions because the recursion schemes used are not
necessarily well-founded. ACL2 allows the user to attach suggested
induction schemes to new symbols so that partial functions can be
made to suggest well-founded schemes.

For example, the theorem

(defthm trfact-is-fact-on-nats
(implies (and (natp n)

(natp a))
(equal (trfact n a)

(* a (fact n)))))

is proved automatically (with the standard arithmetic library) if the
partial function trfact is first made to suggest the well-founded in-
duction scheme analogous to its partial definition but containing a base
case for non-natural values of its first argument.

The theorem above suggests a phenomenon one must keep in mind
when dealing with constrained functions in this setting: to state theo-
rems one must often explicitly restrict the arguments of the constrained
functions to their intended domain. Giesl [10] develops an alternative
approach to partial functions by introducing the semantic notion of
“partial truth” (true when all the terms of the formula are defined). He
then shows that one may allow partial functions to suggest “induction
schemes” which may then be used on certain formulas. To carry out
this program soundly, Giesl changes some of the traditional rules of
inference. For example, well-founded induction is restricted to “total”
formulas and the deduction law is changed so that the antecedents and
consequent are defined under the same conditions. Carrying out such
changes in a mature theorem prover such as ACL2 would be an am-
bitious undertaking (not unlike the addition of reals via non-standard
analysis [9]).

The evaluation of constrained functions on explicit constants is not,
in general, supported in ACL2. How can one evaluate (dot 1 3) when
dot is known merely to be associative? However, certain constrained
functions introduced with defpun are uniquely defined on their do-
mains and it is possible to evaluate such functions on explicit values
by using ACL2 rewrite rules. It will be possible to directly evaluate
such constrained functions, without resorting to rewriting, by using a
new feature, the MBE macro of ACL2 Version 2.8. MBE will also make it



21

possible to automatically install an “executable counterpart” for some
functions introduced with defpun.

Prior to the introduction of defpun, it was not realized that tail
recursive definitions can always be witnessed in ACL2, thus, users
wishing to define “problematic” tail recursive functions either added
artificial means to admit them (e.g., “clock” arguments) or found other
“work-arounds.” Since defpun was introduced, several interesting uses
have been found.

One example, already discussed, is the use of == to state and prove
theorems about sometimes-nonterminating programs under an opera-
tional semantics. As noted above, the theorem ==-invokestatic-fact
relates two states that are arbitrarily far apart, without characterizing
how many steps separate them.

Defpun has also led to the discovery that it is possible to use the
inductive assertion method of proving partial program correctness in
an operational semantics setting without introducing a verification con-
dition generator. With the appropriate use of defpun one can arrange
for the proof of a certain invariant to decompose into the traditional
verification conditions [22].

7. Conclusion

We have shown several ways to use encapsulate to introduce functions
into ACL2 that are partially defined by their axioms. The three basic
methods are (i) exhibit a witness, (ii) show that on a specified domain
some measure decreases in a well-founded sense in every recursive call,
or (iii) use a tail recursive definition. In the case of well-founded re-
cursion on a given domain, one may be able to choose a domain on
which the recursion is closed. All three methods are implemented in our
defpun macro, the sources of which are available on the Web [19, 20].

Partial definitions may be satisfied by functions that are not obvi-
ously suggested by the computational (i.e., induction-based) interpre-
tation of the equation. We have offered examples of such functions and
hope that by contemplating these examples ACL2 users will be able to
create suitable witnesses for partial definitions of interest.

Partial definitions may define unique functions but more often de-
fine families of functions. When well-founded recursion and closure
are proved on a specified domain, our macro can be used to prove
automatically the uniqueness of the partial function on the domain.

We have shown that every tail recursive definition has a witness. In
addition, our defpun macro can be used to automatically admit tail
recursive definitions. Tail recursive definitions are of practical signifi-



22

cance because they play a prominent role in industrial applications of
ACL2. Many of the industrial applications include proofs about tail
recursive interpreters along the lines of the interpreter in Section 3.
One noteworthy consequence is that we can prove properties of machine
interpreters without recourse to the traditional use of clocks [3].

We have demonstrated a variety of theorems about partial functions.
All the theorems mentioned have been proved with ACL2. We have not
shown how we proved these theorems, but the lemmas and hints used
are available on the Web. Knowing that it is possible to prove theorems
about partial functions will enable users to learn how to do it when it
is necessary.

References

1. William R. Bevier, Warren A. Hunt, Jr., J Strother Moore, and William D.
Young. An approach to systems verification. Journal of Automated Reasoning,
5(4):411–428, December 1989.

2. Robert Stephen Boyer, David M. Goldschlag, Matt Kaufmann, and J Strother
Moore. Functional instantiation in first order logic. In Vladimir Lifschitz,
editor, Artificial Intelligence and Mathematical Theory of Computation: Papers
in Honor of John McCarthy, pages 7–26. Academic Press, 1991.

3. Robert Stephen Boyer and J Strother Moore. Mechanized formal reasoning
about programs and computing machines. In R. Veroff, editor, Automated
Reasoning and Its Applications: Essays in Honor of Larry Wos, pages 147–176.
MIT Press, 1996.

4. Robert Stephen Boyer and J Strother Moore. A Computational Logic
Handbook. Academic Press, second edition, 1997.

5. Robert Stephen Boyer and Yuan Yu. Automated proofs of object code for
a widely used microprocessor. Journal of the ACM, 43(1):166–192, January
1996.

6. Bishop Brock, Matt Kaufmann, and J Strother Moore. ACL2 theorems about
commercial microprocessors. In M. Srivas and A. Camilleri, editors, Formal
Methods in Computer-Aided Design (FMCAD’96), pages 275–293. Springer-
Verlag, 1996.

7. Richard M. Cohen. The defensive Java Virtual Machine specification, ver-
sion 0.53. Technical report, Electronic Data Systems Corp, Austin Technical
Services Center, 98 San Jacinto Blvd, Suite 500, Austin, TX 78701, 1997.

8. Nigel J. Cutland. Computability: An Introduction to Recursive Function
Theory. Cambridge University Press, 1980.

9. Ruben Gamboa. Mechanically Verifying Real-Valued Algorithms in ACL2. PhD
thesis, The University of Texas at Austin, 1999.

10. Jürgen Giesl. Induction proofs with partial functions. Journal of Automated
Reasoning, 26(1), January 2001.

11. David Greve, Matthew Wilding, and David Hardin. High-speed, analyzable
simulators. In Kaufmann et al. [14], pages 113–135.

12. David A. Greve. Symbolic simulation of the JEM1 microprocessor. In Formal
Methods in Computer-Aided Design – FMCAD, LNCS. Springer-Verlag, 1998.



23

13. David Hardin, Matthew Wilding, and David Greve. Transforming the theorem
prover into a digital design tool: From concept car to off-road vehicle. In Alan J.
Hu and Moshe Y. Vardi, editors, Computer-Aided Verification – CAV ’98,
volume 1427 of LNCS. Springer-Verlag, 1998. See URL http://pobox.com/-

users/hokie/docs/concept.ps.
14. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors.

Computer-Aided Reasoning: ACL2 Case Studies. Kluwer Academic Publishers,
June 2000.

15. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, July 2000.

16. Matt Kaufmann and J Strother Moore. A precise description of the ACL2
logic. Technical report, Department of Computer Sciences, University of
Texas at Austin, 1997. See URL http://www.cs.utexas.edu/users/moore/-

publications/acl2-papers.html#Foundations.
17. Matt Kaufmann and J Strother Moore. Structured theory development for a

mechanized logic. Journal of Automated Reasoning, 26(2):161–203, February
2001.

18. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 2nd edition, 1999.

19. Panagiotis Manolios. Homepage of Panagiotis Manolios, 2003. See URL
http://www.cc.gatech.edu/∼manolios.

20. J Strother Moore. Homepage of J Strother Moore, 2003. See URL http://-

www.cs.utexas.edu/users/moore.
21. J Strother Moore. Proving theorems about Java-like byte code. In E. R.

Olderog and B. Steffen, editors, Correct System Design – Recent Insights and
Advances, volume 1710 of LNCS, pages 139–162. Springer-Verlag, 1999.

22. J Strother Moore. Inductive assertions and operational semantics. Techni-
cal report, Department of Computer Sciences, University of Texas at Austin,
2003. See URL http://www.cs.utexas.edu/users/moore/publications/-

trecia/index.html.
23. J Strother Moore, T. Lynch, and Matt Kaufmann. A mechanically checked

proof of the AMD5K86 floating-point division program. IEEE Trans. Comp.,
47(9):913–926, September 1998.

24. Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability.
MIT Press, 1st paperback edition, 1987.

25. David M. Russinoff. A mechanically checked proof of correctness of the AMD-
5K86 floating-point square root microcode. Formal Methods in System Design
Special Issue on Arithmetic Circuits, 1997.

26. David M. Russinoff. A mechanically checked proof of IEEE compliance of
a register-transfer-level specification of the AMD-K7 floating-point multipli-
cation, division, and square root instructions. London Mathematical Society
Journal of Computation and Mathematics, 1:148–200, December 1998.

27. David M. Russinoff. A mechanically checked proof of correctness of the AMD-
K5 floating-point square root microcode. Formal Methods in System Design,
14:75–125, 1999.

28. David M. Russinoff and Arthur Flatau. RTL verification: A floating-point
multiplier. In Kaufmann et al. [14], pages 201–231.

29. G. L. Steele, Jr. Common Lisp The Language, Second Edition. Digital Press,
Burlington, MA, 1990.

30. G. J. Wirsching. The Dynamical System Generated by the 3n+1 Function,
volume 1681 of Lecture Notes in Mathematics. Springer-Verlag, 1998.




