
Automating Component-Based System Assembly

Panagiotis Manolios†, Gayatri Subramanian‡, and Daron Vroon†

†College of Computing
Georgia Institute of Technology

266 Ferst Drive
Atlanta, Georgia 30332-0765 USA
{manolios, vroon}@cc.gatech.edu

‡Oracle Corporation
600 Oracle Parkway

Redwood Shores, California 94065 USA
gayatri@gatech.edu

ABSTRACT
One of the major challenges in the development of large
component-based software systems is the system assembly
problem: from a sea of available components, which should
be selected and how should they be connected, integrated,
and assembled so that the overall system requirements are
satisfied? We present a powerful framework for automati-
cally solving the system assembly problem directly from sys-
tem requirements. Our framework includes an expressive
language for declaratively describing system-level require-
ments, including component interfaces and dependencies, re-
source requirements, safety properties, objective functions,
and various types of constraints. We show how to automati-
cally solve system assembly problems using verification tech-
nology that takes advantage of current advances in Boolean
satisfiability methods. We have implemented our techniques
in the CoBaSA tool (Component-Based System Assembly),
and we have successfully applied it to several large-scale in-
dustrial examples.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Design

Keywords
System Assembly Problem, Component-Based Software De-
velopment, Integrated Modular Avionics, Pseudo-Boolean
Satisfiability

1. INTRODUCTION
One of the main goals of component-based software de-

velopment (CBSD) is to enable the construction of large in-
dustrial systems by integrating components, especially com-
mercial off-the-shelf (COTS) components. The potential

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’07, July 9–12, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-734-6/07/0007 ...$5.00.

benefits include greater reliability, lower development costs,
shorter development cycles, less testing and validation, more
flexibility and reuse, etc. [16] Component-based systems can
consist of thousands of components, and ensuring that they
are connected, integrated, and assembled in a way that sat-
isfies the system requirements is a formidable undertaking
that currently requires significant human effort and is the
responsibility of the system architect. We refer to this prob-
lem as the system assembly problem.

In this paper, we present a new, automated approach to
the system assembly problem. The idea, simply stated, is
to algorithmically find an optimal solution to the system
assembly problem directly from the system requirements.
A key insight is that the system assembly problem can be
seen as the following satisfiability problem: does there exist
a way of selecting and assembling the available components
that satisfies all of the system and component requirements?
These requirements can include component interface depen-
dencies, resource requirements, safety properties, separation
and safety requirements, as well as replication, timing, and
scheduling constraints, etc.

We have developed a powerful framework that includes
an expressive object-oriented language for declaratively de-
scribing system-level requirements and constraints such as
those mentioned above, and more. If the resulting satisfia-
bility problem has a solution, then we often want to find the
best solution, i.e., a solution that optimizes a given objec-
tive function. We show how to algorithmically handle such
satisfiability/optimization problems using novel constraint
solving methods that take advantage of current SAT-based
methods.

We have implemented our approach in the CoBaSA (Com-
ponent-Based System Assembly) tool. CoBaSA provides an
expressive declarative language for expressing system con-
straints. After applying constraint solving methods to the
system constraints, the result is compiled to a pseudo-Boolean
satisfiability and optimization (PBSAT) problem, which can
be handled by any of the existing PBSAT solvers [2]. We
can also generate a Boolean Satisfiability (SAT) problem.
An advantage of generating satisfiability problems is that we
can take advantage of the current, rapid advances in SAT
solving technology [35]. If the SAT/PBSAT solver finds a
solution to the satisfiabilty problem we generate, CoBaSA
transforms the solution into an optimal, detailed architec-
ture satisfying the original constraints, as shown in Figure 1.

We describe in detail an industrial case study involving
Boeing. The case study allows us to evaluate our techniques
and the CoBaSA tool in an industrial setting, by supporting
the development of the Boeing 787 Dreamliner.

61

Constraint
Solver & Compiler PBSAT Solver Translation

CoBaSA
Program

PBSAT
Problem

PBSAT
Solution

CoBaSA
Solution

Figure 1: Solving system assembly problems with CoBaSA. The system requirements are written using

the CoBaSA language. These requirements are processed by a constraint solver and are transformed into

pseudo-Boolean SAT problems that are given to a pseudo-Boolean solver. The solution is translated back

into a solution of the component assembly problem.

Component-based software development is very important
and relevant to the avionics domain because software has
become one of the major costs of developing aircraft. To
curtail costs, the industry has moved away from federated
systems—where subsystems use dedicated processing and
I/O components—to integrated modular avionic (IMA) sys-
tems. IMA systems allow multiple subsystems to share the
same resources and can lead to drastic savings in power,
weight, development and maintenance costs, as well as over-
all efficiency [1, 25, 34]. 1

As one can imagine, IMA systems tend to be rather large
and complex. They contain thousands of components, many
with similar interfaces. In addition, Federal Aviation Ad-
ministration (FAA) regulations add hundreds of restrictions
on how components may be assembled. For example, safety-
critical processes have redundancy constraints requiring that
the processes be replicated among resources in such a way
that a small number of isolated failures do not lead to catas-
trophic consequences. In systems of this size and complex-
ity, component integration and assembly becomes a major
challenge.

To get a sense of the complexity of the Boeing problems,
we make a few brief comments about one of the examples
we considered. It turns out that this example was actually
one of the simplest Boeing examples we considered, but it is
the only one for which we have Boeing provided statistics.
It took Boeing engineers about half a person-month to gen-
erate a CoBaSA model for this example. This number does
not account for the time required to determine what infor-
mation to gather and the time required to gather and check
this information from the various component suppliers. The
model is quite detailed and accounts for I/O time, latency,
network jitter, context switching time, cache flushing time,
memory latencies, etc. Since solutions to the system assem-
bly problem have to satisfy hard real-time guarantees, the
numbers and analyses are based on the worst-case execution
times. Once we generated a solution to the above mentioned
system assembly problem, it took Boeing engineers over a
person-week to check the validity of the solution. Clearly,
the human effort required to actually solve these problems

1Similar trends can be seen in other industries, e.g., the
automotive industry has also moved in this direction.

is much larger, especially when it comes to the other, more
complex Boeing examples we considered.

CoBaSA was able to solve the Boeing problems in a matter
of seconds. In addition to the substantial savings in terms of
human effort, CoBaSA empowers system architects to work
in completely new ways. Architects can easily explore the
design space and can consider various “what-if” scenarios
in a matter of minutes. This exploration will help identify
and clarify the limits, issues, strengths, weaknesses, etc. of
various architectural-level decisions at a very early stage in
the design cycle, which will in turn lead to more flexibility
and reduced costs. Another advantage of our method is that
it allows system architects to quickly respond to unplanned
and often significant changes in requirements. Such changes
are inevitable when designing large, complex systems and
often require drastic changes in the architecture. Unfortu-
nately, such problems are often compounded by severe time-
to-market constraints. Therefore, without tool support, it is
almost impossible to properly explore the space of possible
architectural solutions.

It is worth pointing out that CoBaSA is designed to be
a flexible and generally applicable system, not a domain-
specific tool. In addition, CoBaSA was designed before we
had access to any of the Boeing models, and as will be ap-
parent in later sections, there is nothing in CoBaSA that
is specialized to the avionics domain. Therefore, we expect
CoBaSA to be widely applicable, e.g., during our work with
Boeing, CoBaSA was able to easily handle what Boeing de-
scribed as “serious architecture changes.” Also, in Section 6,
we outline a few of the many possible applications we envi-
sion for CoBaSA.

The main contributions of our work are:

• We introduce a novel, general approach to automating
the system assembly problem. This is the first such
approach we know of. In fact, in chapter 26 (The
Prophecies) of “Building Systems from Commercial
Components” [32], the use of reasoning systems for
automating system assembly was prophesied to occur
within the next ten years (i.e., by 2012).

• The CoBaSA tool, which implements our approach
and can efficiently scale to industrial-strength prob-
lems.

62

• An industrial case study showing the effectiveness and
applicability of our work and the CoBaSA tool, which
was able to solve in under a minute problems that
require multiple person-weeks for Boeing engineers to
just state and check.

The rest of the paper is organized as follows. We start
in Section 2 by presenting the CoBaSA language, using ex-
amples to illustrate language features. Due to space con-
straints, we cannot give the full syntax and semantics of the
language here, but these are described in the CoBaSA docu-
mentation. In Section 3, we describe our constraint solving
work and show how to compile CoBaSA problems to PBSAT
problems. In Section 4, we present the industrial case study
where we applied CoBaSA to problems from the avionics
domain. We discuss related work in Section 5 and then turn
our attention, in Section 6, to several opportunities for fu-
ture research. We conclude in Section 7.

2. CoBaSA LANGUAGE
CoBaSA uses its own modeling and constraint language

for describing components and their interaction. Our goal
was not to define a general-purpose language, but rather to
define a language that can be used to model components,
their interfaces, their resource needs, their capabilities, etc.
We wanted expressive power, but more important was the
requirement that the language have a formal semantics and
that the system assembly problem should not only be decid-
able, but practically solvable for realistic, industrial exam-
ples.

The part of the CoBaSA language used for defining system-
level requirements can be thought of as a declarative con-
straint specification language. Here, our goal was to design
general and powerful abstractions with enough expressive
power to declaratively describe system-level requirements
and component interfaces, including dependencies, resource
requirements, safety properties, separation constraints, ob-
jective functions, etc.

The modeling part of the CoBaSA language is based on
object oriented concepts, like more complex languages such
as UML [27, 26] and OCL [23]. This makes the modeling
of systems convenient and flexible. It also provides many
opportunities for reuse. A design goal was to develop a
language that can function as the target language to which
a variety of other languages, such as UML and OCL, can be
compiled.

In fact, this is how we approached the Boeing case study
for CoBaSA, which is presented in Section 4. In response
to the specific needs of the domain in which we were work-
ing, we developed a domain-specific language which sim-
plified the model construction and constraint specification
tasks and which we compiled to CoBaSA. After we under-
stood the domain, the development of the domain-specific
language took a few days to implement, in part because
CoBaSA provides many powerful abstractions.

We now give a brief overview of the core CoBaSA lan-
guage, using examples to illustrate its features.

2.1 Component Modeling
We start by giving an overview of the part of the language

used for modeling components. The language is object-
based, but since our focus is on structural properties of com-
ponents, not on their behaviors, our language is not used

to describe computation. Therefore, there is no notion of a
method. Instead, variables are write once; that is, once they
are assigned a value, the user is not allowed to assign them
a different value.

Our language supports as basic types all of the following:
Booleans, integers (including bounded integer types), and
strings. In addition, data can be organized into arrays and
entities, which resemble Java classes without methods. A
component specification can be expressed through an entity
definition and an instance of the component can be created
by defining an object for the entity definition. The syntax of
an entity definition is illustrated by the following example.

entity server {
;name string
;memory int
;num-processors 4

}
entity foo-server extends server {

;name "foo"
;neighbor foo-server

}

The first specification defines a server component by declar-
ing an entity of type server. The fields within the entity
definition represents the interface and extra-functional prop-
erties of the component. The entity server contains three
fields: a name field of type string, a memory field of type in-
teger, and a num-processors field which is 4 for all servers.
Note that every field in an entity definition begins with a
’;’, and specifies a field name and either a type or value for
the field.

The second definition creates a foo-server type which
extends the server entity. This means that foo includes
all the fields contained in a server, plus the fields defined
in the body of the definition of foo-server. The example
demonstrates how inheritance is implemented in CoBaSA.
Note that entities can be recursive, as is the case with the
foo-server entity, which contains a field that is of type
foo-server.

Declaring a variable can be thought of as either defining
an instance of an entity type or defining a basic data-type
variable. The following example illustrates the syntax of a
variable declaration.

var ;int num = 5 ;string bar
var ;int[4] x = [1, 2, 3, 4]
var ;foo-server x = { ; ; ;"foo" ;1024 ;}

The first line defines an integer called num with value 5

and a string called bar with no value specified. The second
line creates an array of integers with values 1, 2, 3, and 4.
The third line creates an object x, which is an instance of
component foo-server. Each ‘;’ in the definition represents
a field of the entity. The order of the fields in the object
definition correspond to their order in the entity definition.
Hence, the first field corresponds to the name field, and the
second field corresponds to the neighbor field. Once the
fields of the current type are exhausted, the definition fills
the fields of the immediate ancestor type and so on until all
the ancestors are exhausted. Thus, in our example, the third
field corresponds to the name field of the server entity, the
fourth corresponds to the memory field of the server entity,
and so on. If no text appears after a semicolon, then no
value is specified for the corresponding field. Any field can
be left blank, and any field that is given a value in the entity

63

definition can also be left blank (e.g., the name field of the
foo-server entity).

To assign values to variables or fields of objects that have
been declared but not assigned a value, our language pro-
vides an assign statement. The following code assigns val-
ues to bar and the neighbor field of x.

assign bar = "hello world"
assign x.neighbor = { ; ; ;"server-001" ;2048 ;}

Note that a ‘.’ is used between the object name and the
field name, to access the value of that field within the object.

2.2 Constraint Modeling
A key concept of the CoBaSA constraint modeling lan-

guage is that of maps. These are simply functions or rela-
tions, generally mapping components to components. They
are used to place restrictions on what constitutes a solution
to the system assembly problem. For example, we may want
to map processes to servers and we can use the notion of a
map to correspond to such a mapping. But, maps are really
existentially quantified in the sense that the user typically
does not fully define a map, rather she outlines constraints
describing what relationships must exists between compo-
nents in the domain and range. The user claims to CoBaSA
that maps satisfying these constraints exist and it is then
up to CoBaSA to then find a definition for the maps that
satisfies these constraints and optimizes the objective func-
tion.

There are several mechanisms for defining constraints.
The first is the map definition itself, which allows users
to specify a domain and range for an existentially quan-
tified function. Once a map is defined, users can use field
constraints, which further restricts the associated map so
that it pairs resource consumers with resource providers.
This means that a solution to the generated constraints will
specify how the needs of the resource consumers are met
by the resource providers. The implicit constraint of le-
gal solutions is that providers must have enough of every
resource to meet the needs of all the consumers that get
mapped to them. In addition, the user can specify arbitrary
arithmetic and Boolean constraints over maps and pseudo-
Boolean variables (i.e., variables that take the values 0 or
1 in an arithmetic context, and False or True in a Boolean
context). This gives the user the flexibility to specify a va-
riety of constraints on how components interact. In this
section, we describe these mechanisms in more detail and
make use of various illustrative examples.

2.2.1 Maps and Field Constraints
Consider the task of mapping process components to server

components. We might expect entity and object definitions
such as the ones given in Figure 2. Servers have resources
such as memory, disk space, and the number of processors.
They also have a security predicate (e.g., this may indi-
cate whether the server is behind a firewall or is configured
for high security). The server entity is extended by Linux
and Win servers, which have operating system and version
strings.

We also have an entity definition for processes. Processes
have minimum memory and disk requirements, as well as
operating system, version, and security requirements. There
are 20 Linux servers, 20 Win servers, and 1,000 processes.
We wish to map each of the processes to one of the servers

entity server {
;mem int
;disk int
;procs int
;secure bool

}

entity linux-server extends server {
;os "linux"
;version string

}
entity win-server extends server {

;os "win"
;version string

}
entity process {

;mem-req int
;disk-req int
;os-req string
;ver-req string
;sec-req bool

}

var linux-server[20] ls =
[{; ;"2.4.22" ;1024 ;250000 ;2 ;False},

...
{; ;"2.6.11" ;512 ;160000 ;2 ;True}]

var win-server[20] ws =
[{; ;"2k" ;1024 ;250000 ;2 ;True},

...
{; ;"xp sp2" ;2048 ;250000 ;4 ;False}]

var process[1000] pr =
[{;32 ;100 ;"win" ;"2k" ;True},

...
{;128 ;4000 ;"linux" ;"2.6.10" ;False}]

Figure 2: An example of software component match-

ing in CoBaSA.

such that all the processes’ extra-functional requirements
are met.

We start by defining a map from processors to servers,
which can be done as follows.

map proc-serve pr (ls, ws)

In general, a map command takes a name, followed by
an optional relation R ∈ {<=, >=, =} and natural number, k,
followed by the domain of the map, followed by the range.
Both domains and ranges can be a variable (indicating a
singleton set), an array (indicating the set consisting of all
the elements in the array), or a sequence of variables and/or
arrays (the union of all corresponding sets).

A map has an implicit constraint. If R and k are specified,
then for each component in the domain, the number of com-
ponents to which it is mapped is at most, at least, or equal
to k if R is <=, >=, or =, respectively. If R and k are not
specified, then each component in the domain is mapped
to exactly 1 component of the range. Thus map m c p is
equalivalent to map = 1 m c p.

Often, it is the case that the elements in the domain of a
map are resource consumers and the elements in the range
of the map are resource providers. For example, proc-serve
maps processes, which require computing resources, to the
servers that will provide them.

To express such relationships in the CoBaSA language,
one can use field constraints. In our case, we wish to indicate
that the memory and disk requirements of the processes are

64

provided by the servers to which they are mapped. This is
denoted by the following statement.

constraint proc-serve ((mem-req disk-req))
((mem disk) (mem disk))

Each constraint statement is given a map name, and two
lists. The first list is the same length as the list used to
define the domain of the map (i.e., the set of resource con-
sumers). Similarly, the second list is the same length as the
list used to define the range of the map (i.e., the set of re-
source providers). The ith member of the first list in the
constraint statement specifies a list of fields in the ith col-
lection of elements specified by the domain list of the map.
The situation for the range and the second list are analo-
gous. All of these domain/range lists need to be exactly
the same length. The consumer field lists correspond to the
“needs” of the consumer components, and the provider field
lists correspond to the “resources” that the provider com-
ponents have available to meet these needs. The implicit
constraint for these statements is that, for each provider,
there must be enough of every resource to meet the needs of
the consumers that are mapped to it. In our example, every
server must have at least as much memory and disk space
as all the processes running on it require.

2.2.2 Relational and Boolean Constraints
To express reliability and safety constraints, more expres-

siveness is needed than that offered by the map and field
constraints. CoBaSA allows the designer to specify explicit
constraints in the form of arbitrary Boolean formulas. In ad-
dition, CoBaSA allows formulas relating two arbitrary arith-
metic expressions over pseudo-Boolean variables and what
we call map references, which indicate whether a domain ele-
ment gets mapped to a range element. CoBaSA also includes
the powerful and convenient For_all and Sum statements,
which allow us to easily apply constraints to entire arrays.

Consider the following CoBaSA example, which states
that secure processes must be mapped to secure machines.

For_all p in pr {
For_all s in ls {

(proc-serve(p,s) and p.sec-req) implies s.secure}
and
For_all s in ws {

(proc-serve(p,s) and p.sec-req) implies s.secure}}

In the above example, proc-serve(p,s) is a map-reference
and is True if proc-serve maps p to s. The For_all state-
ment applies the body to each of the values in the array.
In addition, For_all statements can range over a natural
number, meaning they range from zero to one less than the
number. For more complicated computations, the designer
can give arbitrary code in the Lisp programming language,
which must return a value of the appropriate type. For
Boolean expressions, the result is cast to False if the value
is nil, and True otherwise. For example, we can use this
feature to talk about OS and version constraints as follows.

For_all p in pr {
For_all s in ls {

proc-serve(p,s) implies
(let ((pos p.os-req)

(sos s.os)
(pver p.ver-req)
(sver s.version))

entity server {;bandwidth int}

entity proxy {
;bw-provide int
;bw-req int
;percent-overhead [0..100]

}

entity process {;bw-req int}

var proxy[100] px = [{;512 ; ;12} ...]
var server[10] sv = [{;2048} ...]
var process[1000] pr = [{;32} ...]

map px-sv px sv
constraint px-sv bw-req bandwidth
map pr-px pr px
constraint pr-px bw-req bw-provide

Figure 3: An example of solving chains of maps us-

ing CoBaSA.

_(and (string-equal pos sos)
(string-equal pver sver

:end1 3 :end2 3))_)}}

This constraint says that if a process maps to a Linux
server, its operating system requirement must match the
operating system of the server, and the first 3 characters
of its version requirement must match the first 3 characters
of the server OS version (i.e. a process that requires a 2.4
kernel gets matched to a server running a 2.4 kernel).

Another way to constrain maps is through relation con-
straints. These involve arithmetic expressions over Booleans
and integers, where all the integer values must be known at
compile time. In this context, Boolean values are viewed
as 1 or 0 rather than True or False. As with Boolean ex-
pressions, Lisp code may be used for arbitrary computation.
However, in this context the Lisp code must return an in-
teger. A simple example of a relational constraint is the
following, which limits the number of processes mapped to
any Linux server to 100.

For_all s in ls {
Sum p in pr proc-serve(p,s) <= 100 }

2.2.3 Interdependent Maps
CoBaSA provides a special kind of relational constraint

that is used to set an unknown integer value to some arith-
metic expression over pseudo-Boolean variables. This pro-
vides a mechanism for solving for arbitrary integers, not
just Booleans, and is useful when there are “interdependent”
maps. For example, suppose there were proxies fielding re-
quests from the processes and assigning them to the servers.
A simple example of this in CoBaSA appears in Figure 3.

Now suppose that the proxy incurred an overhead when
negotiating between processes and a server. We can repre-
sent this using the CoBaSA special form of the relational
constraint as follows.

For_all x in px {
x.bw-req
=
Sum r in pr

(* pr-px(r,x)
(let ((bwr r.bw-req)

(po x.percent-overhead))
(ceiling (* (+ 1 (/ po 100)) bwr))))}

65

This sets the bandwidth requirement of the proxies to be
that of the processes mapped to them, but increased by the
percent overhead specified in the proxy specification. The
solver can then simultaneously solve the two maps, generat-
ing a solution to the system assembly problem that provides
the necessary bandwidth to the proxies and the processes.

2.2.4 Optimization
A component based system assembly problem can have

many solutions. It might be desirable to obtain a solu-
tion that maximizes or minimizes a given objective function.
CoBaSA allows objective functions that can be expressed
as an arithmetic or relational expression. For instance, in
the proxy example, we may want to minimize the overhead,
while setting a maximum of 75Mbps. We can do this with
the following command.

Minimize Sum x in px Sum r in pr
(* pr-px(r,x) (let ((bwr r.bw-req)

(po x.percent-overhead))
(* (/ po 100) bwr)))

<= 75

3. CoBaSA COMPILER
The component based system assembly problem is re-

ducible to the 0-1 Integer Programming Problem (also known
as Pseudo-Boolean Satisfiability, PBSAT), which involves
solving two sets of constraints. The first is a set of linear
constraints of the form

Pn

i=1 cixi R c where c and all the
ci are constant integer values, each xi is a variable that
ranges over the values {0, 1}, and R is either ‘≤’, ‘≥’, or
‘=’. The second is a Boolean formula over the same vari-
ables in conjunctive normal form (CNF). In this context,
variables are viewed as Boolean, i.e., False for 0 and True

for 1. The problem is satisfied if there is an assignment for
the variables (False/0 or True/1) such that all of the lin-
ear constraints as well as the Boolean formulas are satisfied.
In addition, PBSAT allows for an optimization sum of the
form O

Pn

i=1 cixi (or sometimes O
Pn

i=1 cixi R c), where
O is either Maximize or Minimize. In this case, the solution
returned must be optimal, i.e., the solution must maximize
or minimize the objective function as specified by the user.

The CoBaSA compiler performs the transformation from
a component based system assembly problem to a PBSAT
problem. The goal of CoBaSA is to find a definition for each
map that satisfies the constraints. In order to convert this
into a PBSAT problem, we must first represent the maps
using pseudo-Boolean variables. For each map, M : C → P ,
we create |C|∗|P | Boolean variables {Mc

p |c ∈ C, p ∈ P}. In-
tuitively, Mc

p represents the Boolean expression M(c) = p.
We then compile the user provided constraints and opti-
mization function to pseudo-Boolean constraints over these
variables such that the following two conditions hold:

1. A satisfying assignment to the PBSAT problem exists
if and only if a satisfying assignment to the original
component based system assembly problem exists,

2. Given an optimal satisfying assignment to the pseudo-
Boolean problem, the assignment such that each func-
tion, M , is defined by M(c) = p iff Mc

p = true, and
each Boolean variable, b is true iff it is true in the
pseudo-Boolean solution, is an optimal satisfying as-
signment to the original component based system as-
sembly problem.

3.1 Implicit Map Constraints
For each map, we have the implicit constraint that each

element of the domain maps to the appropriate number of
elements in the range, according to the user specified rela-
tion, R, and natural number, k (or = and 1 if the user did
not specify any). To represent this in the pseudo-Boolean
format, we add the following constraint for each consumer
component, c ∈ C, of a map M : C → P :

X

p∈P

Mc
p R k.

For example, the implicit map constraint of proc-serve
from Section 2.2.1 for each process p ∈ pr would be

X

s∈(ls∪ws)

proc-servep
s = 1

3.2 Implicit Field Constraints
As with each map definition, there is an implicit pseudo-

Boolean constraint implied by each field constraint. Namely,
all the “needs” of all the consumers that map to a given
provider – by any map – need to be met by the appropri-
ate fields of the provider. Given a producer component, p,
let Mp = {M : C → P | p ∈ P}. That is, Mp is the set
of all maps with a range containing p. We need to assure
that p can satisfy all of the field constraints, as defined by
the constraint statements of the given component based
system assembly problem definition. Recall that such con-
straints tell us which fields of the consumers are supplied by
which fields of the producers. So, for each field, f , of p, we
add the following constraint:

n
X

i=1

ci.fi ∗ (Mi)
ci
p ≤ p.f

where Mi ∈ Mp, and each ci and fi is a pair such that ci is a
consumer of Mi and fi is a field of ci that is a need supplied
by p.f according to some field constraint. Note that neither
the Mi nor the ci are necessarily distinct, since each map
can map several consumers to p, and each consumer can
have several fields that draw from field f of p.

Consider the proc-serve field constraint from Section 2.2.1.
In this case, for each s ∈ (ls∪ ws), we have two constraints:
one for the memory requirement and one for the disk re-
quirement.

X

p∈pr

(p.mem-req ∗ proc-servep
s) ≤ s.mem

X

p∈pr

(p.disk-req ∗ proc-servep
s) ≤ s.disk

Note that if all the fields involved have concrete integer
values, these are proper pseudo-Boolean constraints. How-
ever, recall that fields can also be set to a pseudo-Boolean
arithmetic expression using the special relational constraint
as defined in Section 2.2.3. In this case, we substitute the
expression for the field, giving us a term in the field con-
straint sum in which a Boolean variable is multiplied by
some arithmetic expression. For example, consider the con-
straints generated by the first field constraint in Figure 3.
For each s ∈ sv, we have a constraint of the form:

X

p∈px

(p.bw-req ∗ px-svp
s) ≤ s.bandwidth

However, each p.bw-req was defined in Section 2.2.3 as
the sum of the bandwidth requirements of the processes

66

mapped to p multiplied by some overhead. If we substi-
tute this into the above equation, we get something different
than the required form for pseudo-Boolean constraints. Sim-
ilarly, our language allows relational constraints comparing
two arbitrary arithmetic expressions over pseudo-Boolean
variables involving addition, subtraction, and multiplica-
tion. We deal with all of these constraints in a similar way.

3.3 Arbitrary Arithmetic Relation Constraints
Given an expression of the form E1 R E2, we subtract

E2 from both sides, giving us E1 − E2 R 0. We then focus
on the left hand side of the equation. We turn expressions
of the form −E1 into −1 ∗ E1 and expressions of the form
E1 − E2 into E1 + (−1 ∗ E2). We then push all the sums
outward and all the products inward by distributing mul-
tiplication over addition in the usual way. Collecting all
the coefficients together, we get a constraint of the form
c +

Pn

i=1(civi,1vi,2 . . . vi,mi
) R 0. Subtracting c from both

sides, we get
Pn

i=1(civi,1vi,2 . . . vi,mi
) R − c. This is al-

most the correct form, except that each term in the sum
has multiple variables, and pseudo-Boolean constraints are
only allowed to have one variable per term. But notice that
vi,1vi,2 . . . vi,mi

is 1 if and only if vi,1 ∧ vi,2 ∧ . . . ∧ vi,mi

is True. Therefore, we create a new Boolean variable, vi for
each term and add the following Boolean constraint:

vi ⇔ (vi,1 ∧ vi,2 ∧ . . . ∧ vi,mi
)

Finally, we substitute each vi into the formula, giving us
an expression of the desired form:

Pn

i=1(civi) R c.

4. INDUSTRIAL CASE STUDY
CoBaSA has already been used to solve large compo-

nent assembly problems in an industrial setting. Boeing
has used CoBaSA in the development of their forthcom-
ing 787 Dreamliner passenger jet. In this setting, CoBaSA
was used to find the optimal component configurations in
an avionic system as described by the Integrated Modular
Avionics (IMA) standard. The problems solved involved
hundreds of components and equally many constraints. For
such problems, Boeing requires half a person-month to cre-
ate a CoBaSA model from well-understood data, and over a
person-week to verify that a given configuration satisfies the
constraints. Boeing has requested that we do not disclose
how long these problems take to solve using conventional
methods, but it suffices to say that finding the optimal as-
sembly is significantly more difficult than creating the prob-
lem or verifying a given solution. In this section, we describe
the case study. We begin by giving some background on the
domain of the problem, IMA.

4.1 Domain: Integrated Modular Avionics
Assembling components in avionic systems is tedious; there

are typically hundreds of connections that have to be con-
sidered, in addition to an equal number of safety and relia-
bility constraints imposed both at the component-level and
system-level. Further complicating factors include scarcity
of computation, memory, and bandwidth resources available
on-board an aircraft. Straight-forward assembly techniques
are insufficient for modeling and satisfying the complex as-
sembly constraints.

Historically, the avionics system architecture involved a
federated architecture of black-boxes called Line Replace-
able Units (LRUs), each of which was specifically designed

Figure 4: Diagrammatic Representation of Inte-

grated Modular Avionics

to perform an individual function. Due to growing com-
plexity of equipment and advancements in technology, the
avionics industry has now moved to implementing open ar-
chitectures that employ highly-integrated digital avionics
under software control. This approach, referred to as Inte-
grated Modular Avionics (IMA), is based on modular design,
generic resources and multiplexed communication buses; it
has resulted in the development of smaller, lighter and more
cost-effective avionics equipment.

The IMA platform is illustrated in Figure 4. It reflects
the current standards in the avionics industry [25, 19, 28].
It is made up of cabinets containing sets of modules, called
Line Replaceable Modules (LRMs). An LRM can be either a
memory module or an Avionics Computing Resource (ACR)
module. In the figure, we concern ourselves only with ACR
modules. An ACR is a computer which performs a vari-
ety of tasks (refered to as avionic functions), each of which
would have been performed by a separate LRU in older sys-
tems. Several software applications (or avionic functions)
that were originally implemented as independent LRUs, now
face the possibility of interacting with one another while
sharing common resources. To avoid unintended interac-
tions, software applications running on the ACRs must fol-
low strict guidelines for memory partitioning and timing.

The cabinets communicate with each other via a Gate-
way Module, which multiplexes communications through
the Global Data Bus. The Gateway Modules also han-
dle communication with elements external to the cabinets.
These include some LRUs, which take care of tasks that
cannot be integrated into the cabinets.

Also included in the external elements are sensors and ac-
tuators which collect data and carry out commands through-
out the aircraft. These elements are tied to the system using
Remote Data Concentrators (RDCs) that regulate the data
collected from and distributed to these elements. All the
external elements communicate with the cabinets via addi-
tional I/O modules. The data collected by a sensor is passed
on as a message to an RDC, which through an I/O module
switch passes the message to the gateway module switch,
which through the global data bus passes the message to

67

Version 1 2 3 4 5
Cabinets 2 2 2 2 2
LRMs 16 16 22 22 16
Avionic Functions 237 257 245 245 237
Linked Memory 70 88 88 88 70
Constraints 224 268 271 272 251

Table 1: Description of IMA Model Versions

the specific avionic function (or software application) in an
LRM in a cabinet.

Since IMA is based on an open architecture scheme, it
allows the system designer to shop around for COTS com-
ponents and makes component changes and upgrades nearly
effortless. The difficulties of the IMA approach have to do
with the assembly of the components so as to satisfy the
numerous and restrictive FAA guidelines. In order to min-
imize the risk of critical system failures, avionic functions
must be redundant and spread out among the LRMs and
cabinets in an appropriate way. Additionally, bandwidth
and resource constraints must be met to guarantee proper
timing of critical systems.

The assembly problem in IMA involves figuring out which
cabinet each LRM maps to, which LRM each avionic func-
tion maps to, which switch each of the RDCs and LRUs
map to, and which RDC each of the sensors, actuators, and
LRUs map to. These are only the basic concerns when as-
sembling IMA components. In addition, system architects
must consider worst-case execution time, context switching
time, I/O time, latency, network jitter, cache flushing time,
memory latencies, and so on. All of these are expressible
using CoBaSA.

4.2 The Study: Boeing
We used CoBaSA to solve component assembly problems

that are part of the 787 Dreamliner IMA models. The IMA
models we obtained from Boeing focused on the assembly
of black-box components like avionic functions, LRMs, cab-
inets, etc., as shown in Table 1. All the components except
linked memories are shown in Figure 4; linked memories are
memories, allocated within the LRMs, that are linked to
either a specific avionic function or a set of avionic func-
tions. The 5 versions in Table 1, either differ in number of
components and constraints, or differ in the nature of the
constraints.

There are over 200 constraints for each model. These
include map and field constraints. A sanitized version of
CoBaSA code for the map that maps avionic functions to
LRMs appears as follows.

Map func-lrm func lrm
Constraint func-lrm

((processor-time-req, memory-req,
bandwidth-req-on-global-data-bus))

((processor-time-available, memory-available,
bandwidth-available-on-global-data-bus))

A similar map and field constraint exists for mapping
linked memories to LRMS.

For the purposes of safety and reliability considerations,
partitions are built into the IMA model components by de-
sign [25]. These partitions ensure that the data of one par-
tition does not damage the data of another partition and
that each partition holds its own execution window on the

LRM to which it is mapped. In addition to these partitions,
there are stringent safety and separation requirements that
are imposed on the placements of the avionic functions and
linked memories within the LRMs, and the placement of the
LRMs within the cabinets. These requirements can be mod-
eled as separation constraints in CoBaSA and these can be
used by the solver to obtain an allocation that meets the
critical safety requirements imposed on the aircraft. When
the number of avionic functions is more than 230, and almost
each avionic function needs to be separated from 4 (actually
this number ranges from 1-10) other avionic functions, then
the number of separation constraints that are generated is
large. A sanitized example of such a constraints appears as
follows.

for_all i in lrm {
(func-lrm(func[1], i)
implies ((not func-lrm(func[2], i)) and

((not func-lrm(func[3], i)) and
(not func-lrm(func[4], i)))))}

for_all i in lrm {
(func-lrm(func[2], i)

implies ((not func-lrm(func[3], i)) and
(not func-lrm(func[4], i))))}

for_all i in lrm {
(func-lrm(func[3], i)

implies (not func-lrm(func[4], i)))}

The above constraint says that the first four avionic func-
tions cannot be mapped to the same LRM. Since linked
memories are linked to avionic functions, it is desirable to
allocate a linked memory to the same LRM, to which the
avionic functions that link to that linked memory are allo-
cated. For instance if the first linked memory is linked to
the 12th avionic function, then both of them must be allo-
cated on the same LRM. This is indicated by the following
sanitized CoBaSA constraints.

for_all i in lrm {
(mem-lrm(mem[1], i) implies func-lrm (func[12], i))}

where mem-lrm refers to the map that maps linked mem-
ories mem to LRMs.

As described in Section 4.1, there are many other con-
straints that we cannot show here, including load-balancing
constraints for processor time, and intricate constraints re-
lating the memory regions to the avionic functions and the
LRMs. In addition, the constraints that we have shown here
are significantly simplified from those actually found in the
Boeing model.

Results
The results of running CoBaSA on the Boeing examples are
summarized in Table 2. For each version of the model, the
original CoBaSA description file size is shown. In addition,
the size, number of variables, and number of clauses for the
CNF portion, and the size and number of constraints of
the linear constraints portion of the pseudo-Boolean prob-
lem generated are given. These give an idea of the relative
complexity of the problems given to PBSAT solver. Note
that the CNF portions of the pseudo-Boolean problems are
relatively small, but the linear constraints portions are sig-
nificantly larger.

Note that Table 2 includes two extra models, models 6 and
7, that are significantly more complicated than the previous
five models. For example, the size of model 7 is over half

68

Version CNF Linear Results
File Size File Size Vars Clauses File Size Constraints Compilation Solving Result
1 45.9K 24.7K 2704 1768 133.2K 371 16.55s 0.05s SAT
2 59.7K 49.9K 2952 3748 138.3K 409 35.76s 0.00s UNSAT
3 57.7K 66.0K 3971 4861 180.9K 421 42.59s 0.15s SAT
4 59.9K 70.7K 3773 5620 175.3K 421 57.92s 2.3s SAT
5 47.9K 28.3K 2592 2312 133.7K 371 21.68s 0.00s UNSAT
6 364.5K 34.1K 12938 2018 331.5K 2320 181.50s 2.82s SAT
7 521.3K 31.2K 12781 1876 463.9K 2339 367.7s 1.87s SAT

Table 2: Summary of Experimental Results

a megabyte. Models 6 and 7 are even more complete and
complex versions of the previous five models.

The results section of the table show the compilation time,
PBSAT solving time, and satisfiability results for each model.
Parsing and compiling take up the bulk of running time,
due to the fact that our compilation code has not been op-
timized for performance. In addition to “SAT”, CoBaSA
gave us the assignment in human readable format, which
the Boeing engineers confirmed was a correct satisfying as-
signment. None of the problems, satisfiable or unsatisfiable,
took longer than 370 seconds to complete. This is in stark
contrast to the much greater time taken by Boeing to find
satisfying assignments using their current techniques.

With such low solving times, we were able to make sig-
nificant architectural changes and find new configurations
for the models. For example, the original CoBaSA problem
that we received for version 3 of the model contained only 16
LRMs. There was no satisfying assignment, so we increased
the number of LRMs to 18 and so on until we found the sat-
isfying assignment using 22 LRMs. This entire exercise took
only several minutes using CoBaSA, but would have taken
orders of magnitude longer if done using Boeing’s current
methods.

5. RELATED WORK
Component-based software development (CBSD) is a well-

studied area, and overviews are available in standard text-
books [31, 16, 12, 14, 32]. While there has been work on
checking configurations of systems developed using CBSD
(e.g., [5, 10]) and on verifying component assemblies [33],
automated component assembly requires further attention [15,
13].

Software architecture [24] has evolved to the point that
effective tools for the development and analysis of software
architectures are available [4, 29]. These include tools and
techniques for automatically assembling components when
given a detailed architecture description [17, 11]. While
these tools can resolve the semantic issues of integrating
components whose interfaces mismatch, they again do not
generate the architecture themselves. For example, the Gen-
Voca tool [7, 6], is a domain independent tool that generates
a hierarchical software system from component specification
and composition rules. The tool is effective as long as the
software architecture specifies how each component is con-
nected to other components. These tools have no way of
dealing with architecture descriptions expressed as assem-
bly constraints.

Automatic component deployment [18] and dynamic com-
ponent redeployment [21] make adjustments or modifica-
tions to the components after they have been deployed in

order to satisfy the run-time constraints of the deployment
architecture. This approach can be used when sufficient run-
time environment information is unavailable at components
assembly time. However, these approaches do not address
the problem of automatic static assembly.

Another challenge that automated component based sys-
tem assembly faces is the development of specifications for
components. There has been considerable work on this, in-
cluding work on architecture description languages (ADL).
After comparing various ADLs, Medvidovic et al. [20] make
a point that existing ADLs lack in their support for ex-
pressing extra-functional properties. Assembly constraints
are essentially constraints on extra-functional properties of
components, hence there is need to develop specifications
languages with full support for expressing these properties.
Unified modeling language (UML) is the de-facto standard
for modeling software applications [12]. While UML is a
good modeling language for describing component functional
properties, tools for automating system assembly for UML
do not exist. An interesting research problem would be to
compile UML system assembly problems to CoBaSA.

The Artificial Intelligence community has studied the prob-
lem of enforcing constraints for system assembly. Most of
this work falls either checks existing configurations [3, 8] or
develops ontologies and frameworks for automatic configura-
tion [22, 30]. None of this work automatically gives optimal
configurations given a set of constraints, as CoBaSA does.
There is, however, one notable exception, which converts the
Feature Model problem to the Constraint Satisfaction Prob-
lem (CSP), for which there are AI-based solvers [9]. These
give optimal solutions based on a user-provided optimization
function. However, this technique does not scale to large in-
dustrial systems such as those found in IMA problems. The
experimental results show that the authors’ technique can
handle only up to 25 components efficiently.

6. FUTURE WORK
In this section we outline some of the numerous extensions

and potential applications we see for CoBaSA.
When analyzing models arising in practice, it is not un-

common that constraint satisfaction problems generated can
be decomposed into several independent subproblems. This
arises in cases where components are integrated in a hierar-
chical fashion and the integration choices at the lowest level
are independent of the integration choices at higher levels.
This suggests performing a static analysis to determine if an
iterative decomposition is possible. We believe that this can
lead to significant savings in running times.

Another possible extension is to use more sophisticated
encoding schemes. For example, consider the number of

69

Boolean variables we introduce for maps: if M is a map
from A to B, we introduce |A| × |B| variables. However,

the number of functions from A to B is |B||A| so by a suit-
able encoding scheme, we can make do with O(|A| log |B|)
variables. Given the input restrictions imposed by pseudo-
Boolean solvers, we will have to introduce extra variables,
so it is not clear how much of a savings alternate encoding
schemes will provide.

If a solution to the system assembly problem cannot be
found, then it is important to provide an explanation to the
user showing, in as simple a fashion as possible, why this
is not the case. In general, this is a hard problem that is
related to the fact that due to NP-completeness, we do not
know how to provide a short certificate of unsatisfiability.
However, in practice simple explanations often exist and it
would be useful to develop techniques that find and report
such explanations.

7. CONCLUSION
Component-based software development and design has

the potential to significantly impact software development
in the large, but several technical challenges remain. One
of them is the component-based system assembly problem:
which components should be selected and how should they
be assembled so that the overall system requirements are sat-
isfied? We propose what we believe is the first approach to
automatically solving the system assembly problem directly
from the system requirements. Our framework includes an
expressive language for declaratively describing system-level
requirements, component interfaces and dependencies, re-
source requirements, safety properties, objective functions,
and various types of constraints, including replication, tim-
ing, scheduling, and separation constraints. We developed
constraint solving algorithms that transform problems ex-
pressed in our language to PBSAT problems, allowing us
to leverage the recent and on-going advances in SAT solv-
ing technology. We have implemented these techniques in
the CoBaSA tool. To evaluate our framework, we presented
an in-depth case study in which we successfully applied our
work to several large industrial examples arising in the de-
sign of the Boeing 787 Dreamliner. Our techniques and
the CoBaSA tool were able to easily handle the Boeing
problems, solving in under a minute problems that require
multiple person-weeks for Boeing engineers to just state
and check. Our approach is applicable to a wide class of
component-based system assembly problems, and for future
work, we plan to explore applying it to other domains.

8. REFERENCES
[1] C. A. 651. Arinc report 651, draft 9. Technical Report

91-207/SAI-435, Airlines Electronic Engineering
Committee, September 1991.

[2] F. Aloul, A. Ramani, I. Markov, and K. Sakallah.
PBS: A backtrack search pseudo-boolean solver. In
Symposium on the Theory and Applications of
Satisfiability Testing (SAT), 2002.

[3] T. Asikainen, T. Männistö, and T. Soininen. Using a
configurator for modelling and configuring software
product lines based on feature models. In Workshop
on Software Variability Management for Product
Derivation, Software Product Line Conference
(SPLC3), 2004.

[4] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley, 1998.

[5] D. Batory and B. J. Geraci. Composition validation
and subjectivity in GenVoca generators. IEEE
Transactions on Software Engineering (IEEE TSE),
pages 67–82, 1997.

[6] D. Batory and S. O’Malley. The design and
implementation of hierarchical software systems with
reusable components. ACM Trans. Softw. Eng.
Methodol., Volume 1(4):355–398, 1992.

[7] D. Batory, V. Singhal, J. Thomas, S. Dasari,
B. Geraci, and M. Sirkin. The GenVoca model of
software-system generators. Software, IEEE, Volume
11:89–94, Sep 1994.

[8] D. S. Batory. Feature models, grammars, and
propositional formulas. In Software Product Lines,
SPLC 2005, volume 3714 of Lecture Notes in
Computer Science, pages 7–20. Springer, 2005.

[9] D. Benavides, P. T. Mart́ın-Arroyo, and A. R. Cortés.
Automated reasoning on feature models. In CAiSE,
volume 3520 of Lecture Notes in Computer Science,
pages 491–503. Springer, 2005.

[10] A. Bertolino and R. Mirandola. Modeling and analysis
of non-functional properties in component-based
systems. In TACoS 2003: Proc. International
Workshop on Test and Analysis of Component Based
Systems, volume 82 of Electronic Notes in Theoretical
Computer Science, April 2003.

[11] F. Cao, B. R. Bryant, C. C. Burt, R. R. Raje, A. M.
Olson, and M. Auguston. A component assembly
approach based on aspect-oriented generative domain
modeling. Electronic Notes in Theoretical Computer
Science, Volume 114:119–136, 2005.

[12] J. Cheesman and J. Daniels. UML Components: A
Simple Process for Specifying Component-Based
Software. Addison-Wesley, 2000.

[13] I. Crnkovic. Component-based software engineering -
new challenges in software development. Software
Focus, December 2001.

[14] I. Crnkovic and M. Larsson. Building Reliable
Component-Based Software Systems. Artech House
publisher, 2002.

[15] I. Crnkovic, H. Schmidt, J. Stafford, and K. Wallnau.
Automated component-based software engineering.
Journal of Systems and Software, 74(1), January 2005.

[16] G. T. Heineman and W. T. Councill. Component
Based Software Engineering: Putting the Pieces
Together. Addison-Wesley, 2001.

[17] P. Inverardi and M. Tivoli. Software architecture for
correct components assembly. Lecture Notes in
Computer Science, Volume 2804, Nov 2003.

[18] S. Lacour, C. Perez, and T. Priol. A software
architecture for automatic deployment of CORBA
components using grid technologies. In In Proceedings
of the 1st Franco-phone Conference On Software
Deployment and (Re)Configuration (DECOR 2004),
Oct. 2004.

[19] F. Martin and C. Fraboul. Modeling and simulation of
integrated modular avionics. In Proceedings of the
Sixth Euromicro Workshop on Parallel and Distributed
Processing, 1998. PDP ’98., pages 102 – 110, 1998.

70

[20] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture
description languages. IEEE Trans. Software Eng.,
26(1):70–93, 2000.

[21] M. Mikic-Rakic, S. Malek, N. Beckman, and
N. Medvidovic. A tailorable environment for assessing
the quality of deployment architectures in highly
distributed settings. In Component Deployment,
Second International Working Conference, CD 2004,
volume 3083 of Lecture Notes in Computer Science,
pages 1–17. Springer, 2004.

[22] S. Mittal and F. Frayman. Towards a generic model of
configuraton tasks. In IJCAI, pages 1395–1401, 1989.

[23] Object Management Group (OMG). Response to the
UML 2.0 OCL RfP Revised Submission, Version 1.6,
2003. http://www.omg.org/docs/ad/03-01-07.pdf.

[24] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software
Engineering Notes, Vol. 17(4):40–52, 1992.

[25] P. J. Prisaznuk. Integrated modular avionics. In
Proceedings of the IEEE 1992 National Aerospace and
Electronics Conference (NAECON 1992), volume 1,
pages 39 – 45, 1992.

[26] Rational Partners, Object Management Group. UML
Notation Guide, Sept. 1997.
http://www.omg.org/docs/ad/97-08-04.pdf.

[27] Rational Partners, Object Management Group. UML
Semantics, Sept. 1997.
http://www.omg.org/docs/ad/97-08-04.pdf.

[28] M. A. Sánchez-Puebla and J. Carretero. A new
approach for distributed computing in avionics
systems. In ISICT ’03: Proceedings of the 1st
international symposium on Information and
communication technologies, pages 579–584. Trinity
College Dublin, 2003.

[29] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, and G. Zelesnik. Abstractions for software
architecture and tools to support them. IEEE
Transactions on Software Engineering, Vol.
21(4):314–335, 1995.

[30] T. Soininen, J. Tiihonen, T. Männistö, and
R. Sulonen. Towards a general ontology of
configuration. AI EDAM, 12(4):357–372, 1998.

[31] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[32] K. Wallnau, S. Hissam, and R. Seacord. Building
Systems from Commercial Components. SEI Series in
Software Engineering. Addison-Wesley, 2002.

[33] K. Wallnau, J. Stafford, S. Hissam, and M. Klein. On
the relationship of software architecture to software
component technology. In Proceedings of the 6th
ECOOP Workshop on Component-Oriented
Programming, 2001.

[34] R. Warrilow. The avionics platform, 2004. See URL
www.smiths-aerospace.com/Press/TechPapers/.

[35] L. Zhang and S. Malik. The quest for efficient boolean
satisfiability solvers. In 18th International Conference
on Automated Deduction, CADE’02, pages 295–313,
2002.

71

