
Interactive Termination Proofs using
Termination Cores?

Panagiotis Manolios and Daron Vroon

College of Computer and Information Science
Northeastern University

360 Huntington Ave., Boston MA 02115, USA
pete@ccs.neu.edu, daron.vroon@gmail.com

Abstract. Recent advances in termination analysis have yielded new
methods and tools that are highly automatic. However, when they fail,
even experts have difficulty understanding why and determining how
to proceed. In this paper, we address the issue of building termination
analysis engines that are both highly automatic and easy to use in an
interactive setting. We consider the problem in the context of ACL2,
which has a first-order, functional programming language. We introduce
the notion of a termination core, a simplification of the program under
consideration which consists of a single loop that the termination engine
cannot handle. We show how to extend the Size Change Termination
(SCT) algorithm so that it generates termination cores when it fails
to prove termination, with no increase to its complexity. We show how
to integrate this into the Calling Context Graph (CCG) termination
analysis, a powerful SCT-based automatic termination analysis that is
part of the ACL2 Sedan. We also present several new, convenient ways
of allowing users to interface with the CCG analysis, in order to guide it
to a termination proof.

1 Introduction

Recent years have seen great advances in the field of automated proofs of pro-
gram termination (e.g. [1, 3, 8, 11]). In this paper, we will explore one such ter-
mination analysis, the Calling Context Graph (CCG) algorithm, in detail [9, 13].
The motivation for developing the CCG algorithm came from our desire to inte-
grate mechanized program verification into the undergraduate curriculum. We
used ACL2 [6, 5, 7], in part because it is based on a simple, applicative program-
ming language and has a relatively simple logic. One of the first issues students
confront is that functions must be shown to terminate. We wanted to avoid dis-
cussing ordinals and measure functions, so we developed and implemented the
CCG termination analysis, which is able to automatically prove termination for
the kinds of functions arising in undergraduate classes.

? This research was funded in part by NASA Cooperative Agreement NNX08AE37A
and NSF grants CCF-0429924, IIS-0417413, and CCF-0438871.

Unfortunately, any termination analysis (and CCG is no exception) is bound
to fail, either because the program under consideration is non-terminating or
because the analysis is just not powerful enough to prove termination. In this
paper, we address the issue of what to do when that happens. The idea is to
leverage all of the information that was discovered during the termination effort.
For example, the analysis may have discovered that certain loops in the program
are terminating. Rather than throwing out all of that analysis and asking the
user to prove termination from scratch, we want to present the user with an
explanation of why the termination analysis failed. We propose to do that by
generating a termination core, a new program that the termination analysis
cannot prove terminating and which corresponds to a single simple cycle of the
original program. Termination cores reveal the true reason that the termination
analysis failed. Termination cores are a general notion that we believe can be
fruitfully applied to any number of termination analyses, but in this paper we
show how to compute termination cores for algorithms based on Size Change
Termination (SCT) [8].

We start by reviewing CCG analysis in Section 2. We then introduce the
notion of termination cores in Section 3. We prove that the complexity of the
termination core generation problem for SCT is PSPACE-complete and we pro-
vide a practical algorithm. Just reporting termination cores is not enough. We
need a mechanism that enables the user to interact with the termination analy-
sis. We discuss this in Section 4, where we present several new, convenient ways
of allowing users to interface with the CCG analysis, in order to guide it to a
termination proof.

All the techniques described here are implemented in the current version of
ACL2s, the ACL2 Sedan [4, 2], a freely available, open-source, well-supported
theorem prover that is based on ACL2, but was designed with greater usability
and automation as primary design considerations. ACL2s provides a modern
integrated development environment and includes fully automatic bug-finding
methods based on a synergistic combination of theorem proving and random
testing. CCG analysis is an integral part of ACL2s. In extensive experimental
trials, it was able to prove over 98% of the more than 10,000 functions in the
ACL2 regression suite terminating with no user input. ACL2s has been used
at Northeastern University, UT Austin, and Georgia Tech to teach hundreds of
undergraduate students how to reason about programs.

2 Termination Using Calling Context Graphs

We give a brief, simplified overview of the CCG analysis. For a more complete
and detailed treatment, see [9, 13]. The domain for the CCG analysis is a universe
of programs, Prog, written in an applicative first-order functional programming
language. For the sake of simplicity, we limit our discussion here to a very simple
language, part of whose semantics is sketched in Figure 1: F denotes the universe
of function names; X the universe of variable names; V the universe of values; E
the universe of expressions; Hist the universe of histories, which map previously

defined functions to their signature and definitions; and Env the universe of
environments, which map variables to values.

f, g ∈ F v, u ∈ V x, y, z ∈ X e,m ∈ E
h ∈ Hist = F → X ∗ × E ε ∈ Env = X → V

Jif etest then ethen else eelseKh ε =

JethenKh ε if JetestKh ε 6= nil

JeelseKh ε otherwise

Jf e1 e2 . . . enKh ε = JeKh [xi 7→ vi]
n
i=1 where vi = JeiKh ε and h(f) = 〈〈xi〉ni=1, e〉

Fig. 1. A rough sketch of a simple language and its semantics.

Consider the following function definition:

f x y = if (x < y) then 1 + (f (x+1) y)
else if (x > y) then 1 + (f x (y+1))
else 0

First, we create an abstraction of the program that captures its recursive behav-
iors while ignoring everything else. In f, the value returned in the base case and
the fact that we add 1 to the value returned by each recursive call is irrelevant to
the termination proof. We therefore reduce the program to its calling contexts.
Intuitively, these are the recursive calls of the program along with the conditions
under which each call is made. More formally, given a program F ∈ Prog, a
calling context is a triple, 〈f,G, e〉 ∈ Contexts = F × 2E × E , such that f is a
function defined in F (F can contain several function definitions), e is a call to
a function defined in F , and G is the set of governors of e, i.e., the exact set of
conditions under which e is executed. The calling contexts for f are as follows.

1. 〈f, {x < y}, (f (+ x 1) y)〉
2. 〈f, {not (x < y), x > y}, (f x (+ y 1))〉

Note that, in the governor for the second context, the second condition implies
the first. We could therefore simplify this governor to be {x > y}.

The calling contexts are used to approximate the behavior of the program via
the construction of a Calling Context Graph (CCG), whose nodes are the calling
contexts of the program and whose edges represent possible paths of execution
from one context to the next. The minimal CCG for F is as follows.

?>=<89:;1
((?>=<89:;2 hh

Notice that if x < y, then in the next iteration, x ≤ y, since x is incremented
by 1. Likewise, if x > y, then in the next iteration, x ≥ y since y is incremented
by 1. Therefore, it is not possible for execution of f to move from one context to

the other. This is a critical observation for proving termination, since if the flow
of the program could alternate between the contexts, it could enter an infinite
loop where x was increased, then y, and so on, without x and y ever being equal.

In order to formalize our notion of a CCG, we need the notion of a call substi-
tution. Given a function call, e = f e1 e2 . . . en, to a function with parameters
x1, x2, . . . , xn, the call substitution for e, denoted σe, substitutes each ei for the
corresponding xi.

A CCG is a graph, G = 〈C,E〉, whose nodes, C ⊆ Contexts, and whose
edges, E ⊆ Contexts×Contexts and for any pair of contexts, c1 = 〈f1, G1, e1〉,

c2 = 〈f2, G2, e2〉 ∈ C, if e1 is a call to f2 and
r∧

g1∈G1
g1 ∧

∧
g2∈G2

g2σe1

zh
ε 6=

nil for some ε ∈ Env, then 〈c1, c2〉 ∈ E. Such an environment is called a witness
for 〈c1, c2〉. Notice that it is in general undecidable to determine if an edge must
be in a CCG. This is why the condition for including an edge is an if rather than
an iff. The goal is to create a safe approximation of the minimal CCG. Also, note
that the trivial CCG, defined as the CCG in which there is an edge from c1 to
c2 iff c1 represents a call to the function containing c2, gives us the exact same
information as a standard call graph (in which the nodes are function names
and there is an edge between f and g if f contains a call to g). We use theorem
prover queries to generate CCGs that are smaller than the trivial one [9]. For
example, using the ACL2 theorem prover, we are able to generate the minimal
CCG for f as given above.

The next step in the CCG analysis is to annotate each edge of the CCG
with a generalized size change graph (GSCG). These tell us which values are
decreasing or non-increasing from one context to the next in our CCG. A valid
set of GSCGs for f is as follows.

G1:
1→ 1:

y-x
> //y-x

G2 :
2→ 2:

x-y
> //x-y

GSCGs are then used to annotate the CCG, creating an Annotated CCG
(ACCG). More formally, we define ACCGs and GSCGs as follows.

p, q, r ∈ Lab = {>,≥}
G,H ∈ ACCG = 2Contexts × 2Contexts×GSCG×Contexts

G,H ∈ GSCG = 2E × 2E × 2E×Lab×E ×Contexts×Contexts

Each edge in the ACCG is annotated with a GSCG. We write c1
G−→ c2 to

denote that 〈c1, G, c2〉 is an edge ∈ G. A GSCG is a bipartite graph with a set of
expressions corresponding to the left nodes, a set of expressions corresponding
to the right nodes, a set of labeled edges, and the pair of contexts the GSCG
annotates. The tuple 〈M1,M2, E, c1, c2〉 is a GSCG if for every 〈m1, r,m2〉 ∈ E
we have that Jm1K

h
ε r Jm2K

h
ε for each ε that is a witness for 〈c1, c2〉. We

write m1
r−→ m2 to denote that 〈m1, r,m2〉 is an edge ∈ G.

GSCGs and ACCGs are similar in concept to size change graphs (SCGs) and
annotated call graphs (ACGs) that form the basis of the Size Change Termination
analysis of Lee, Jones, and Ben-Amram for use in their size-change analysis [8].

The differences are that GSCGs have arbitrary expressions rather than just
variables for nodes, and ACCGs mirror the recursive flow from recursive call
to recursive call rather than from function to function. The result is a more
detailed analysis of program behavior. However, structurally, these concepts are
the same, which allows us to apply the size change analysis to ACCGs as follows.

Definition 1. A multipath π through an ACCG G is a (potentially infinite)
path in G: π = f0

G1−−→ f1
G2−−→ f2

G3−−→ · · · .

We write Gω for the set of infinite multipaths over G and G+ for the set of finite,
nonempty ones. We sometimes write G1, G2, . . . or 〈Gi〉 to describe a multipath
when the function names are irrelevant. Paths in ACCGs are called multipaths
because their elements are graph structures and may contain many threads.

Definition 2. A thread in a multipath π = 〈Gi〉 is a sequence of size-change
edges 〈xi−1

ri−→ xi〉 such that xi−1
ri−→ xi ∈ Gi for all i > 0.

For example, consider the multipath f
G1−−→ f

G1−−→ f. Its only thread is y-x
>−→

y-x
>−→ y-x. A thread tells us that the values of certain expressions do not

increase during a sequence of calls, and can be used to prove termination as
follows.

Definition 3. The Size Change Termination (SCT) problem takes an
ACCG as input and returns true if every infinite multipath through the ACCG
has a suffix with a thread 〈mi

ri−→ mi+1〉 such that infinitely many ri = >, or
false otherwise.

By well-foundedness, no infinite path through the ACCG that has such a thread
can be an actual computation.

Theorem 1 (Lee, et al. [8]). SCT is PSPACE complete.

The SCT problem can be solved by composing GSCGs to create new GSCGs
representing multiple transitions in the ACCG.

Definition 4. Composition of GSCG labels and GSCGs is defined as follows.

1. p · q =
{
≥ if p =≥ and q =≥
> otherwise

2. G1 · G2 = 〈M1,M3, E, c1, c3〉, where G1 = 〈M1,M2, E1, c1, c2〉, and G2 =
〈M2,M3, E2, c2, c3〉, and E = {m1

p·q−−→ m3 | m1
p−→ m2 ∈ G1 ∧ m2

q−→ m3 ∈
G2}

Definition 5. The evaluation of π = 〈G1, G2, . . . , Gn〉 ∈ G+ is JπK = G1 ·
G2 · · ·Gn.

Proposition 1. m r−→ m′ ∈ JπK iff there exists a thread m r1−→ m1
r2−→ · · · rn−1−−−→

mn−1
rn−→ m′ in π, with r = r1 · · · · · rn.

Composition occurs until a fixed point is reached, at which point certain
GSCGs, called idempotents are examined. An idempotent is a GSCG, G, of
the form 〈M,M,E, c, c〉 such that G · G = G. If all idempotents have an edge,
e
>−→ e ∈ G, then the algorithm returns true. Otherwise, it returns false.

Theorem 2 (Lee et al. [8]). The algorithm above solves SCT.

Theorem 3 (Manolios and Vroon [9]). If a program, D ∈ Prog has a
corresponding ACCG, G, such that SCT(G) = true, D is terminating on all
inputs.

3 Termination Cores

The idea behind termination cores is to present the user with a single simple
cycle that embodies the reason for a failure to prove termination. We want this
to be a general notion that applies to any termination prover, so we begin by
defining a general notion of a termination analysis.

Definition 6. A termination analysis, T , is a function that takes in a set of
function definitions, F , and returns true or false, such that if T (F) = true,
it is the case that the definitions of F will terminate for all inputs according to
the semantics of the language.

When the termination analysis fails, we want to create a new program that
is simpler than the original, but still reflects the reason for the failure. We there-
fore must link the recursive behaviors of two programs, which we express as a
relationship between their CCGs.

Definition 7. Two calling contexts, c, c′ of the form 〈f,G, (g e1 . . . en)〉 and
〈f ′, G, (g′ e1 . . . en)〉, respectively, are said to be similar, denoted c ∼ c′. We
can denote c′ as [c]f

′

g′ , or c as [c′]fg .

Using this notion of context similarity, we develop the notion of a similarity-
preserving path homomorphism between ACCGs that will form the basis of our
definition of termination cores. We begin by defining path homomorphism.

Definition 8. Given two directed graphs, G = (C,E), G′ = (C ′, E′), a path ho-
momorphism is a function φ : C → C ′ such that 〈c1, c2〉 ∈ E ⇒ 〈φ(c1), φ(c2)〉 ∈
E′. If such a φ exists, we say that G is homomorphic to G′. If C and C ′ are sets
of contexts, we say φ is similarity-preserving if c ∼ φ(c) for all c ∈ C.

In other words, a similarity-preserving homomorphism from G to G′ demon-
strates that the original program associated with G′ contains a superset of the
recursive behaviors of the new program associated with G.

Definition 9. Let T be a termination analysis, F be a set of function definitions
such that T (F) = false, and G = (C,E) be a CCG for F . Then a termination
core for F modulo T , is a set of function definitions, F ′ that satisfy all of the
following:

– The trivial CCG, G′ = (C ′, E′), of F ′ is a simple cycle,
– There exists a similarity-preserving path homomorphism, φ : G′ → G,
– T (F ′) = false.

Thus, the termination core is a single loop through the original program for
which the termination analysis fails. The Termination Core modulo T (TCT) is
the problem of finding such cores.

Definition 10. Given a termination analysis T , the termination core mod-
ulo T (TCT) problem takes a program P as input and generates null if
T (P) = true and a termination core for P modulo T otherwise.

3.1 Termination Cores in CCG via Size Change Cores

In order to create termination cores for CCG, we use the notion of size change
cores (SCC).

Definition 11. A size change core is a finite multipath of the form π =
c
G1−−→ c1

G2−−→ · · · Gn−−→ c such that, πω has no suffix with a corresponding thread
of infinite descent.

Proposition 2. SCT(G) = false iff there exists a size change core for G.

Proof. By the definition of SCT, it is clear that if such an SCC exists, SCT (G) =
false. For the other direction, suppose SCT (G) = false. Then by Theorem 2,
there exists π = c

G1−−→ c1
G2−−→ · · · Gn−−→ c such that JπK is idempotent and has no

edge of the form m
>−→ m. Notice that π is an SCC: by Proposition 1, there is

no thread for π, m r1−→ m1
r2−→ · · · rn−→ m such that one of r1 · · · rn is “>”. Now,

suppose that πω has a suffix with an infinitely decreasing thread. By the pigeon
hole principle, this means that there exists some k and m such that πk has a
thread m

r1−→ m1
r2−→ · · · rnk−−→ m such that some ri is “>”. By Proposition 1,

this means that
q
πk

y
has an edge m >−→ m in it. But

q
πk

y
= JπK since JπK is

idempotent. Therefore, no such edge can exist. ut

Consider the following function:

f a b c d = if (a > 0 and b > 0 and c > 0 and d > 0)
then 1 + (f (b+1) (a-1) (c+1) (d-1))

+ (f (b-1) (a+1) (c-1) (d+1))
else 0

The contexts for this function are as follows.

1. 〈f, {a > 0, b > 0, c > 0, d > 0}, (f (b+1) (a-1) (c+1) (d-1))〉
2. 〈f, {a > 0, b > 0, c > 0, d > 0}, (f (b-1) (a+1) (c-1) (d+1))〉

Suppose we use the measures a, b, c, and d for both contexts. Then we get the
following ACCG.

?>=<89:;1G1

((
G1

**?>=<89:;2 G2hh

G2

jj

G1: a >
++WWWWWWWWW a

b b
c c

d
> //d

G2: a a

b

> 33ggggggggg b
c

> //c
d d

Notice, then, that an SCC for this program is 1 G1−−→ 1 G1−−→ 2 G2−−→ 1, for
which there is no thread at all. The problem is that this is not a simple cycle.
In order to create a termination core, then, we must derive a simple cycle that
corresponds to an SCC. We do this by renaming the functions in the contexts
in order to distinguish between occurrences of a single context in the loop.

Definition 12. Given a cycle c = c1, c2, . . . , cn, c1 in an ACCG, and a sequence
of fresh, distinct function symbols, f = 〈fi〉ni=1 ∈ Fn, the similar simple

cycle with respect to f , denoted [c]f , is the sequence c′ = 〈[ci]fi

fi+1
〉 where

fn+1 = f1. Given a cyclical multipath, π = c1
G1−−→ c2

G2−−→ · · · Gn−−→ c1, the set of
similar simple cyclical multipaths with respect to f , denoted [π]f is the

set containing all π′ = [c1]f1f2
G′1−−→ [c2]f2f3

G′2−−→ · · · G
′
n−−→ [c1]f1f2 such that each G′i is a

subgraph of the corresponding Gi.

The two key features of similar simple cyclical multipaths are that they are
simple cycles and that they preserve the non-terminating behavior of an SCC.
Thus, we get the following result.

Lemma 1. Let π = 〈Gi〉ni=1 be an SCC and π′ = 〈G′i〉ni=1 ∈ [π]f . Then π′ is an
SCC of the ACCG consisting of the contexts, edges, and GSCGs of π′.

Proof. By definition, there is no infinitely decreasing thread corresponding to
πω. But every thread of πω is a thread of π′ω by construction. Therefore, there
is no infinitely decreasing thread corresponding to π′ω. By definition, this makes
π′ an SCC.

Returning to our example, we can construct a similar simple cycle to our
SCC as follows:

1. 〈f0, {a > 0, b > 0, c > 0, d > 0}, (f1 (b+1) (a-1) (c+1) (d-1))〉
2. 〈f1, {a > 0, b > 0, c > 0, d > 0}, (f2 (b+1) (a-1) (c+1) (d-1))〉
3. 〈f2, {a > 0, b > 0, c > 0, d > 0}, (f0 (b-1) (a+1) (c-1) (d+1))〉

We use a similar simple cycle to an SCC to create a corresponding termination
core. We do this by creating a trivial function for each context in the similar
simple cycle as follows.

Definition 13. Given a calling context, c = 〈f, {e1, e2, . . . , en}, e〉, the mini-
mal function definition for c is the following function, where 〈xi〉mi=1 are the
parameters for function f .1

1 Notice that we can return anything at all in the else case below. In our implemen-
tation, we return the list of parameters for technical, ACL2-related reasons.

f x1 x2 . . . xm =
if (e1 and e2 and . . . and en) then e else
[x1; x2; . . .; xm]

The point is to use the similar simple cycles to construct the minimal defini-
tions. In the case of our example, we have the following.

f0 a b c d = if (a > 0 and b > 0 and c > 0 and d > 0)
then (f1 (b+1) (a-1) (c+1) (d-1))
else [a; b; c; d]

f1 a b c d = if (a > 0 and b > 0 and c > 0 and d > 0)
then (f2 (b+1) (a-1) (c+1) (d-1))
else [a; b; c; d]

f2 a b c d = if (a > 0 and b > 0 and c > 0 and d > 0)
then (f0 (b-1) (a+1) (c-1) (d+1))
else [a; b; c; d]

What remains is to prove that this corresponds to a termination core in
general. Our work thus far allows us to prove that the resulting functions satisfy
the first two conditions of termination cores.

Lemma 2. Let π = c1
G1−−→ c2

G2−−→ · · · Gn−−→ c1 be a size change core for ACCG
G, c = c1, c2, . . . , cn, c1, f be a sequence of fresh, distinct function names, and
c′ = [c]f = c′1, c

′
2, . . . , c

′
n, c
′
1. Then the trivial CCG, G′ of the minimal function

definitions of c′, is a simple cycle such that there exists a similarity-preserving
path homomorphism from G′ to G.

Proof. This follows from the freshness and distinctness of the function names in
f . ut

All that remains, then, is to show that our construction results in functions
that cannot be proved terminating by our analysis. In order to do this, we need
to make some assumptions about the construction of ACCGs. Intuitively, we
need to assume that we are consistent in our choice of measures and our ability
to prove the necessary queries. We require that our ACCG generator is not
“smarter” when analyzing the termination core than it is when analyzing the
the original function.

Definition 14. Let build-accg : Prog→ ACCG be a function that computes
an ACCG corresponding to the input program. Then we say that build-accg
is monotonic if when given P, P ′ ∈ Prog such that there exists a similarity-
preserving homomorphism, φ from the trivial CCG of P to the trivial CCG
of P ′, the following conditions hold, where GP = build-accg(P) and GP ′ =
build-accg(P ′):

– c1
G−→ c2 ∈ GP if the call of c1 is a call to the function containing c2 and

φ(c1) G′−→ φ(c2) ∈ GP ′ , and

– For all c1
G−→ c2 ∈ GP and φ(c1) G′−→ φ(c2), G is a subgraph of G′.

From this point forward, we assume a fixed, monotonic build-accg. The
interesting about this monotonicity property for us is that it means that the
ACCG we construct for our termination core contains a similar simple multipath
to the SCC we used to construct it. More formally, we have the following.

Lemma 3. Let P be a program and GP = build-accg(P) such that π is an
SCC for GP that traverses contexts c. Then if c′ = [c]f and P ′ is the set of
minimal function definitions for c′, then the multipath π′ that visits in order the
contexts of c′ in GP ′ = build-accg(P ′) is a similar simple multipath to π.

Proof. Follows from the definition of monotonicity. ut

Now we fix our definition of ccg and ccg-tc, our termination analysis and
termination core solver, respectively; but first, we introduce the size change core
problem.

Definition 15. The Size Change Core (SCC) problem takes an ACCG, G,
as input and returns a size change core if SCT(G) = false and null otherwise.

Definition 16. We define ccg as SCT (build-accg(P)). We define ccg-tc :
Prog→ Prog as follows: Given program, P ,let π = SCC(build-accg(P)). If
π = null, return null. Otherwise, return the minimal function definitions for
[π]f for some fresh function names, f .

Based on the work we’ve done so far, it is fairly straightforward to prove the
following.

Theorem 4. ccg-tc solves TCccg.

Proof. By the definition of SCC, ccg-tc(P) returns null iff ccg(P) = true, so
we only need to concern ourselves with the case in which ccg(P) = false.

If ccg-tc(P) produces a program’ P ′, then P ′ satisfies the first two properties
of a termination core by Lemma 2. It satisfies the final property by a combination
of Lemma 3 with Lemma 1. ut

3.2 Constructing Size Change Cores in CCG

We prove that SCC ∈ PSPACE . To do this, we use a characterization of the
problem using Büchi automata. Given an ACCG, G, consider the two sets of
infinite multipaths:

FLOWω = Gω

DESCω = {π ∈ Gω | π has a suffix with an infinitely decreasing thread}

By results in [8], both FLOWω andDESCω are ω-regular subsets of GSCGω

for which there are Büchi automata that solve each in space polynomial with

respect to the size of the original program. Note that SCT is equivalent to de-
termining if FLOWω ⊆ DESCω. This, in turn can be expressed as the problem
of determining that FLOWω ∩DESCω is empty.

What we want is to find π ∈ A = FLOWω ∩ DESCω when such a π ex-
ists. One idea is to construct the Büchi automaton corresponding to A and to
search for such a path. Unfortunately, this does not work because complement-
ing a Büchi automaton can lead to an exponential blowup. Fortunately, there
are methods that allow us to traverse A in polynomial space without actually
constructing it [10]. The PSPACE completeness of SCC can then be proved as
follows.

Theorem 5. SCC is PSPACE complete.

Proof. Showing PSPACE hardness is trivial. By Proposition 2, SCT is reducible
to SCC, and by Theorem 1, SCT is PSPACE-complete.

To show that SCC is in PSPACE, we non-deterministically find a multipath
π = π1π2 ∈ A such that s π1−→ a

π2−→ a for some initial state s and accepting
state a, using the following algorithm, where S0 is the set of initial states, S is
the set of states, and F is the set of final states of A. Also, the alphabet of A is
the set of GSCG’s of the ACCG G.

1: s← s0 ← choose(S0); a← choose(F)
2: for i = 1 to |S| do

3: s← choose({t ∈ S | s G−→ t ∈ A})
4: if s = a then
5: for i = 1 to |S| do
6: G← choose(G)
7: s← choose({t ∈ S | s G−→ t ∈ A})
8: Output G
9: if s = a then
10: return found
11: return null
12: return null

Here, choose denotes a non-deterministic choice of an element in the given set if
such an element exists. If not, it causes the entire algorithm to halt and return
null. Note thatA is non-empty iff such a path exists [12]. However, the algorithm
only outputs π2. By the definition of A, we see that π1π

ω
2 is an infinite multipath

such that no suffix of the multipath has an infinitely decreasing thread. Thus, πω2
is also such a multipath, since any suffix of πω2 is a suffix of π1π

ω
2 . By definition,

this makes πω2 a size change core. Therefore, this algorithm solves SCC.
At any given point, all we are storing is four states (s0, a, s, and t), two

counters between 1 and |S|, and a single GSCG, G. All of this plus determining
if s G−→ t ∈ A can be done in polynomial space. Therefore, SCC ∈ NPSPACE =
PSPACE . ut

Definition 17. An enhanced size change graph (ESCG) is a triple, 〈G, p, l〉
where G is a GSCG and one of the two conditions hold:

– p = G is an GSCG and l = 1, or
– p is a pair of ESCGs, 〈H ′, H ′′〉 such that G = G′ ·G′′, and l = l′+ l′′, where
H ′ = 〈G′, p′, l′〉 and H ′′ = 〈G′′, p′′, l′′〉.

The enhancement of an existing GSCG, G, denoted G, is the ESCG, 〈G,G, 1〉.

Definition 18. The corresponding multipath of an ESCG, H = 〈G, p, l〉,
denoted path(H), is G if p = G, and path(H1)path(H2) if p = 〈H1, H2〉.

Definition 19. The composition of two ESCGs, H1 = 〈G1, p1, l1〉 and H2 =
〈G2, p2, l2〉, denoted H1 ·H2 is the ESCG, 〈G1 ·G2, 〈H1, H2〉, l1 + l2〉.

Lemma 4. Given an ESCG, H = 〈G, p, l〉, G = Jpath(H)K.

Let S′ ← the enhancements of all the GSCGs of the ACCG.
Let ≺ s.t. 〈G, p, l〉 ≺ 〈G′, p′, l′〉 iff l < l′.
repeat

S ← S′

for all H = 〈G, p, l〉, H ′ = 〈G′, p′, l′〉 ∈ S do
if ∃H ′′ = 〈G′′, p′′, l′′〉 ∈ S′ s.t. G′′ = G ·G′ then

S′ ← S′ − {H ′′} ∪min≺{H ·H ′, H ′′}
else

S′ ← S′ ∪ {H;H ′}
until S = S′

if ∃H = 〈G, p, l〉 s.t. G is idempotent with no edge of the form m
>−→ m then

return path(H)
else

return true

Fig. 2. An algorithm for solving SCC.

Theorem 6. The algorithm given in Figure 2 solves SCC.

Proof. The algorithm behaves exactly as the one in Theorem 2, except that we
keep track of which ESCGs were composed to create each new ESCG and the
length of the path corresponding to the ESCG. Thus there exists an idempotent
ESCG without an edge m >−→ m iff SCT also discovers such an edge. Therefore,
if SCT (G) = true, SCC(G) = null, and if SCT (G) = false, SCC(G) returns
a circular multipath, π such that JπK is idempotent and contains no edge of the
form m

>−→ m. Suppose there was some decreasing thread corresponding to πω.
Then by the pigeon hole principle, there would be some k such that πk such
that there existed a decreasing thread from some m to itself. By Proposition 1,
this means that

q
πk

y
would have an edge m >−→ m. But by the definition of

idempotence,
q
πk

y
= JπK, and we already stated that no JπK has no edge of

the form m
>−→ m. Therefore, there is no infinite decreasing thread for πω. By

definition, then, π is an SCC. ut

Theorem 7. The algorithms in Theorem 2 and Figure 2 have the same com-
plexity.

Proof. To the original data structures, we add pointers to two ESCGs and an
integer representing the length of a path whose evaluation leads to the cor-
responding ESCG. Since there can be exponential ESCGs, these added fields
require linear length in the size of the original problem. In the loop itself, we
perform one addition and one comparison of the lengths, which takes linear time,
and create two pointers to the ESCGs being composed, which takes constant
time. This is eclipsed by the composition of the GSCGs, which has complexity
that is polynomial and greater than linear. Thus, there is no overall change in
the complexity from the SCT algorithm to the SCC algorithm. ut

4 Interactive CCG

Termination core analysis, as described in this paper is implemented in ACL2s,
the ACL2 Sedan. When reporting termination cores to ACL2s users, our goal
is to give as specific and concrete a reason for the failure to prove termination
as possible, taking into account everything the termination prover discovered in
its proof attempt. The hope is that termination cores will be effective tools for
helping users efficiently debug failed termination proofs.

Once a user figures out why the termination proof attempt failed, she must
then be able to interact with the termination engine, in order to guide it towards
a proof. We have developed a clean and intuitive interface that gives the user
a way to interact with the theorem prover without getting bogged down in the
details of CCG analysis. The interface is based on the three possible reasons
CCG can fail to prove termination.

The first and most obvious source of failure is a non-terminating program. In
this case, our analysis will reach a point at which it finds an SCC that represents
an actual infinite run of the program. This is particularly useful in programs with
multiple recursive behaviors, as it enables the user to find the relevant code and
make revisions. Consider, for example, the following program. The reader is
encouraged to figure out what is going on before reading further.
f1 w r z s x y a b zs =
if (a > 0) then

f2 w r z 0 r w 0 0 zs
else w = r^zs

f2 w r z s x y a b zs =
if z > 0 then

f3 w r z s x y y s zs
else f1 s r (z-1) 0 0 0 0 0 zs

f3 w r z s x y a b zs =
if a > 0 then

f3 w r z s x y (a-1) (b+1) zs
else f2 w r z b (x-1) y 0 0 zs

ACL2s produces the following core:

f3_0 w r z s x y a b zs =
if a <= 0 then
f2_0 w r z b (x-1) y 0 0 zs

else
[w; r; z; s; x; y; a; b; zs]

f2_0 w r z s x y a b zs
if z > 0 then
f3_0 w r z s x y y s zs

else
[w; r; z; s; x; y; a; b; zs]

From the termination core, we see that the only value consistently decreasing
in this loop is x, which decreases by 1 each time through the loop. The problem is
that there is no test to see that x is positive. Instead, we check that z is positive.
This is easily remedied by changing z > 0 to x > 0 in the definition of f2. Does
the program terminate now? Readers are encouraged to construct a measure
and to mechanically verify it. (It took us about 20 minutes.) If we submit the
updated program, CCG analysis proves termination in under 2 seconds, fully
automatically with no user guidance.

The above program was generated by applying weakest precondition analysis
to a triply-nested loop. An expert with over a decade of theorem proving expe-
rience spent 4–6 hours attempting to construct a measure function that could
be used to prove termination, before giving up. So, this example highlights how
useful termination analysis can be and how termination core analysis can help
users discover and correct termination bugs.

A second reason that CCG analysis may fail to prove termination is that it
may fail to guess the necessary Calling Context Measures (CCMs) [9, 13]. Calling
context measures can be thought of as building blocks for conventional measures.
We use simple heuristics to guess CCMs, and while they are effective for many
programs, they are certainly not complete. Consider, the following program.

dec x = if x <= 0 then 255 else x-1
f x = if x = 1 then 0 else 1 + (f (dec x))

Our heuristics choose |x| as the CCM for the sole recursive call in f. However,
this measure does not always decrease across the recursive call. For example, if
x is 0, (dec x) is 255. The reader is encouraged to prove termination using the
standard measure-based approach.

The termination core produced by our algorithm is as follows.

f_0 x = if x = 1 then [x] else (f_0 (dec x))

This termination core is not terribly helpful, since it has the exact same
looping behavior as the original. However, our core generator also lists the CCMs
chosen for each context, as well as the edges of the relevant GSCGs. For our
example, our analysis will inform the user that the sole CCM chosen was |x|,
which cannot be shown to be non-increasing or decreasing from one iteration of
the loop to the next. A quick look at the definition of dec confirms that this is
not an appropriate CCM. However, (dec x) is a useful CCM. That is, it is easy
to prove that if x is not 1, (dec (dec x)) < (dec x).

We provide an interface that allows users to override the heuristics for guess-
ing CCMs by providing one of two hints to the CCG algorithm. The first is

the :CONSIDER hint, which takes a list of expressions over the parameters of the
function to which the user wishes to apply the hint. This tells the CCG analysis
to add the given CCMs to those heuristically generated for all the contexts in
the function to which it is applied. In our example, a :CONSIDER [(dec x)]
hint will result in measures {|x|, (dec x)} for the sole context.

In some cases, users may want even more control. For example, |x| is irrelevant
for the termination proof. Such CCMs lead to needless theorem prover queries.
Therefore, we also provide a :CONSIDER-ONLY hint. This is identical in usage
to the :CONSIDER hint, but tells the CCG analysis to use only those measures
provided by the user for the given function. Thus, the hint :CONSIDER-ONLY
[(dec x)] in our example will result in (dec x) being the only measure for the
sole context. Giving this hint leads to a simpler termination proof.

The final reason that CCG may fail to prove termination is that it was unable
to prove a necessary theorem about either the exclusion of an edge from the CCG
or about the relationship between two measures across a recursive call. Consider,
for example the following definition of merge sort.

mergesort x =
if x = [] or tl x = []
then x
else mergelists (mergesort (evens x)) (mergesort (odds x))

Here, (evens [e0; e1; . . .; en]) returns [e0; e2; . . .] and odds applied
to the same list returns [e1; e3; . . .]. Our analysis produces the following core:

mergesort_0 x = if not (x = []) and (not (tl x = []))
then mergesort_0 (evens x) else [x]

It also tells us that the sole measure |x| (i.e., the length of x) could not be shown
to be decreasing. The problem is that the theorem prover was unable to prove
that evens always returns a list that is smaller than the input if that input list
has 2 or more elements in it. It turns out that ACL2d needs some guidance to
get this proof to go through. If we prove this lemma, termination still fails, but
we get a new core.

mergesort_0 x = if not (x = []) and (not (tl x = []))
then mergesort_0 (odds x) else [x]

We have the same problem with odds that we had with evens. A similar lemma
leads to a successful termination proof. Note the interactive nature of this pro-
cess. There were two different reasons for CCGs inability to prove termination.
Rather than simply giving up, the CCG analysis shows the user each reason for
non-termination, one at a time, thereby enabling the user to successfully address
these issues and prove termination.

5 Conclusions

We examined the issue of building termination analysis engines that are both
highly automatic and easy to use in an interactive setting. The challenge is in un-

derstanding and then dealing with failure. To this end, we introduced the notion
of a termination core, a simplification of the program under consideration which
consists of a single loop that the termination engine cannot prove terminating.
Termination cores are used to help users understand why a termination analy-
sis engine failed to prove termination. We showed how to extend Size Change
Termination so that it generates a termination core when it fails to prove ter-
mination. We showed that this is a PSPACE-complete problem and presented a
practical algorithm that adds termination core generation to the Calling Context
Graph termination analysis, a recent, powerful termination analysis that is part
of the ACL2 Sedan. We also presented several convenient ways of allowing users
to interact with CCG analysis, so that they can guide it to a termination proof
after analyzing the termination core that was generated. These techniques are
implemented in the ACL2 Sedan, a freely available, open-source, well-supported
theorem prover that is based on ACL2, but was designed with greater usability
and automation as primary design considerations.

References

1. James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic proofs of
program termination in separation logic. In POPL ’08, pages 101–112. ACM,
2008.

2. Harsh Raju Chamarthi, Peter C. Dillinger, Panagiotis Manolios, and Daron Vroon.
ACL2 Sedan homepage. See URL http://acl2s.ccs.neu.edu/.

3. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for
systems code. In PLDI ’06, pages 415–426. ACM, 2006.

4. Peter C. Dillinger, Panagiotis Manolios, Daron Vroon, and J. Strother Moore.
ACL2s: “The ACL2 Sedan”. Electr. Notes Theor. Comput. Sci., 174(2):3–18, 2007.

5. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors. Computer-
Aided Reasoning: ACL2 Case Studies. Kluwer Academic Publishers, June 2000.

6. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, July 2000.

7. Matt Kaufmann and J Strother Moore. ACL2 homepage. See URL http://-

www.cs.utexas.edu/users/moore/acl2 (08/2007).
8. Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle

for program termination. In POPL ’01, volume 28, pages 81–92. ACM, 2001.
9. Panagiotis Manolios and Daron Vroon. Termination analysis with calling context

graphs. In CAV ’06, pages 401–414. Springer, 2006.
10. A. Prasad Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for

büchi automata with applications to temporal logic. Theor. Comput. Sci., 49(2-
3):217–237, 1987.

11. Reneé Thiemann and Jürgen Giesl. Size-change termination for term rewriting.
Technical Report AIB-2003-02, RWTH Aachen, January 2003.

12. Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In
Banff Higher order workshop conference on Logics for concurrency, pages 238–266.
Springer, 1996.

13. Daron Vroon. Automatically Proving the Termination of Functional Programs.
PhD thesis, Georgia Intitute of Technology, 2007.

