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Abstract. Termination poses one of the main challenges for mechanically veri-
fying infinite state systems. In this paper, we develop a powerful and extensible
framework based on the ordinals for reasoning about termination in a general
purpose programming language. We have incorporated our work into the ACL2
theorem proving system, thereby greatly extending its ability to automatically
reason about termination. The resulting technology has been adopted into the
newly released ACL2 version 2.8. We discuss the creation of this technology and
present two case studies illustrating its effectiveness.

1 Introduction

Termination arguments play a critical role in the design and verification of computing
systems. We are interested in providing support for reasoning about the termination
of arbitrary programs written in actual programming languages. To that end, we de-
velop a powerful and extensible framework —based on our previous work on ordinal
arithmetic [15, 16]— for reasoning about termination in the ACL2 theorem proving
system [11, 12].

Our choice of ACL2 for this project was based on two criteria. Since termination is
unsolvable, we wanted a system with theorem proving support and in which termination
plays a key role. ACL2 meets both of these criteria. It is a powerful theorem proving
system which has been applied to several large-scale industrial projects by companies
such as AMD, IBM, Motorola, Rockwell Collins, and Union Switch and Signal. Ter-
mination is a centerpiece of reasoning in ACL2, as all functions admitted using the
definitional principal must be proved to terminate before ACL2 will admit them. This is
accomplished by providing a measure function that maps the function parameters into
the ordinals and showing that recursive calls decrease according to the measure.

In previous work we developed and verified algorithms for ordinal arithmetic. In this
paper, we discuss how we integrated this work with ACL2 version 2.8 [12] to create a
powerful, extensible, general framework for reasoning about termination. It is extensi-
ble in that new techniques and theorems can be added to ACL2 to enhance its ability to
automatically reason about termination, e.g., we proved the well-foundedness of the lex-
icographic ordering over lists of natural numbers, which enables ACL2 to use measure
functions that instead of mapping into the ordinals, map into lists of natural numbers.



The generality of our approach is a byproduct of our focus on providing support for
proving arbitrary termination arguments, not on automatically proving termination for
a decidable fragment of the termination problem. As an example of this generality, our
work has been used to prove Dickson’s Lemma [21], which plays a crucial role in prov-
ing the termination of Buchberger’s algorithm for finding Gröbner bases of polynomial
ideals (see Section 6.2).

Our work can also be used to reason about reactive systems, nonterminating systems
that participate in ongoing interactions with their environments (e.g., networking pro-
tocols and operating systems). In this context, termination arguments are used to prove
liveness properties, which assert that a desired behavior of the system is not postponed
forever. For example, imagine a complicated bus protocol operating on a system with
a dynamic topology. Suppose this protocol partitions long messages into packets that
are sent according to a priority-based scheme. The property stating that the protocol
will never result in deadlock or livelock is a liveness property, which is proved with
termination arguments.

While the current literature on termination is vast, most of the related work is fo-
cused on various restricted instances of the termination problem. For example, much of
the current research on termination is aimed at providing termination proofs for Term
Rewriting Systems (TRSs) [2, 1, 8]. Most of the remaining research is focused on de-
veloping algorithms and heuristics for the automatic generation of appropriate well-
founded measure functions [14, 19, 7, 6, 5]. Since termination is an undecidable prob-
lem, this research focuses on solving decidable fragments and is generally presented in
terms of toy languages that lack the full functionality of programming languages used
in practice. The work we present here, on the other hand, focuses on automating the
process of verifying termination arguments and not on guessing measure functions.

In sections 2 and 3, we give an overview of ACL2 and the ordinals. In Section 4 we
briefly review our previous work on developing efficient algorithms for ordinal arith-
metic. In Section 5, we present the changes we made to ACL2 in integrating our ordinal
arithmetic work. Section 6 contains two case studies illustrating the use of our new tech-
nology. In Section 7, we discuss some lessons we learned in the course of this project.
Finally, we cover the related work in more detail and conclude in Sections 8 and 9.

2 ACL2 Overview

ACL2 stands for “A Computational Logic for Applicative Common Lisp.” It comprises
a programming language, a first-order mathematical logic based on recursive functions,
and a mechanical theorem prover for that logic.

The programming language can best be thought of as an applicative (“side-effect-
free” or “pure functional”) subset of Common Lisp. We assume basic knowledge of
Common Lisp syntax. Because it is a programming language, ACL2 is executable, and
execution can reach speeds comparable to programs written in C [22].

The logic of ACL2 is a first-order predicate calculus with equality, recursive func-
tion definitions, and mathematical induction. The primitive built-in functions are ax-
iomatized. For example, one axiom is (car (cons x y)) = x and another is x
6= nil⇒ (if x y z) = y. After axiomatizing the basic data types, a representa-



tion of the ordinals up to ε0 is introduced along with an ordering relation, “less than,”
defined recursively on this definition. This forms the basis for the principle of mathe-
matical induction in ACL2. To prove a conjecture by induction one must identify some
ordinal-valued measure function. The induction principle then allows one to assume
inductive instances of the conjecture being proved, provided the instance has a smaller
measure according to the chosen measure function.

The ACL2 theorem prover is an example of the so-called Boyer-Moore school of
inductive theorem proving [3, 4]. It is an integrated system of ad hoc proof techniques
that include simplification, generalization, induction and many other techniques. Sim-
plification is, however, the key technique and includes the use of evaluation, conditional
rewrite rules, definitions (including recursive definitions), propositional calculus, a lin-
ear arithmetic decision procedure for the rationals, user-defined equivalence and con-
gruence relations, user-defined and mechanically verified simplifiers, a user-extensible
type system, forward chaining, an interactive loop for entering proof commands, and
various means to control and monitor these features. See the ACL2 online user’s manual
for the full details [12].

ACL2 has been applied to a wide range of commercially interesting verification
problems. We recommend visiting the ACL2 home page [12] and inspecting the links
on Tours, Demo, Books and Papers, and for the most current work, The Workshops and
Related Meetings. See especially [10].

3 Ordinal Overview

Ordinals can most easily be thought of as a transfinite extension of the natural numbers
(0, 1, 2, . . . ). The first infinite ordinal is ω, which is the least ordinal that is greater than
all the natural numbers. The next ordinal is ω + 1, then ω + 2, and so on until we reach
ω+ω, which is denoted ω ·2. We can continue this process to get ω ·2+1, ω ·2+2, . . . ,
ω · 2+ω = ω · 3, and so on. Eventually, we get to ω ·ω, which is denoted ω2. Likewise,
we can keep on counting to ω3 and ω4, and so on. The ordinal ωωω

···

is denoted ε0 and
is the ordinal on which termination reasoning in ACL2 is based.

Not surprisingly, set theorists define the ordinals in terms of sets. Each ordinal is
simply the set of all ordinals less than itself. Thus, the ordinal denoted as 0 is the empty
set, ∅. The ordinal corresponding to 1 is the set containing 0, {0} = {∅}. The ordinal
denoted by 2 is {0, 1} = {∅, {∅}}. The other natural numbers are defined similarly. The
ordinal ω is just the set of all natural numbers, {0, 1, 2, . . .}. Note that this implies that
the “element of operator”, ∈, the proper subset operator, ⊂, and the “less than” operator,
<, are all equivalent on the ordinals.

For the purposes of termination, the most interesting property of ordinals is that
they are well-founded. That is, there is no infinite sequence of ordinals, (α1, α2, . . .),
such that αi > αi+1 for all i > 0. Thus, for any ordinal α, the pair 〈α,<〉 is what is
known as a well-founded structure. In fact, it is a well-ordered structure, which means
α is well-founded under < and for any ordinals β, γ ∈ α, either β < γ, γ < β, or
β = γ.

Proving termination means showing that a program has no infinite computations.
This is generally done by assigning a value to each program state and showing that this



value decreases with each step of the program. If these values range over a well-founded
structure, then by definition, the values cannot decrease infinitely, which proves that
the program terminates. Any well-founded structure can be extended to a well-ordered
structure by making the relation total while preserving well-foundedness. The termina-
tion argument based on the original well-founded structure then directly transfers to this
well-ordered extension. A basic result of set theory is that any well-ordered structure is
order-isomorphic to a unique ordinal. In this sense, ordinals are the most general setting
for termination arguments. This is why Turing says that for proving termination, “it is
natural to give an ordinal number” [18].

3.1 Ordinal Arithmetic

Given a well-ordered structure, 〈A,<A〉, we denote the unique ordinal that is isomor-
phic to this structure as Ord(A,<A).

Ordinal addition is defined as follows. Given two ordinals, α and β, α + β =
Ord(A,<A), where A = ({0} × α) ∪ ({1} × β), and <A is the lexicographic or-
dering on A. Thus addition corresponds to starting with the elements of α and then
tacking on the elements of β.

Ordinal multiplication is defined as follows. Given two ordinals, α and β, α · β =
Ord(A,<A), where A = β×α and <A is the standard lexicographic ordering. In other
words, we create β copies of α.

Ordinal exponentiation is defined by transfinite recursion. Given an ordinal, α 6= 0,
α0 = 1, αβ+1 = αβ · α, and αβ =

⋃
γ<β αγ . For the case where α = 0, we have

00 = 1, and 0β = 0 for all ordinals β 6= 0.
Although the finite ordinals correspond to the natural numbers and therefore en-

joy all the algebraic properties we expect, the infinite ordinals behave differently. For
example, addition and multiplication are not commutative: 2 + ω = ω < ω + 2
and 2 · ω = ω < ω · 2. Also, multiplication only distributes from the left. That is,
α · (β + γ) = (α · β) + (α · γ), but it is not the case that (β + γ) ·α = (β ·α) + (γ ·α).
This makes reasoning about ordinal arithmetic more interesting.

4 Algorithms for Ordinal Arithmetic

In previous work we developed algorithms for ordinal arithmetic based on a notation
for the ordinals up to ε0. We developed efficient algorithms on succinct notations that
are now used by ACL2 to reason about ordinal expressions in the ground (variable-free)
case. We present here a brief overview of this work.

4.1 Ordinal Notations

The basis for the ordinal notation used in ACL2, for versions prior to version 2.8, is the
following variant of Cantor’s Normal Form Theorem.

Theorem 1. For every ordinal α ∈ ε0, there are unique α1 ≥ α2 ≥ · · · ≥ αn > 0
such that α > α1 and α = ωα1 + · · · + ωαn + p.



Table 1 Ordinal Arithmetic Complexity Results

Function Complexity
(ocmp a b) O(min(#a, #b))
(o-p a b) O(#a(log #a))
(o+ a b) O(min(#a, |a| · #(o-first-expt b)))
(o- a b) O(min(#a, #b))
(o* a b) O(|(o-first-expt a)||b| + #(o-first-expt a) + #b)
(o^ a b) O((natpart b)[|a||b| + |(o-first-expt a)||a| + #a]

+#(o-first-expt (o-first-expt a))|b| + #b)

With this notation, the ACL2 representation of the ordinal α ∈ ε0, with normal form
ωα1 + · · · + ωαn + p, is:

ACL2(α) = (ACL2(α1) ACL2(α2) . . . ACL2(αn) . p)

For example, ω + 2 is (1 . 2) in ACL2 and ωω + ωω + ω2 + 3 is ((1 . 0) (1
. 0) 2 . 3) in ACL2.

The basis for our ordinal notation, which is used in the newly released ACL2 version
2.8, is based on the following variant of Cantor’s Normal Form Theorem. The idea is
to collect terms with the same exponent using the left distributive property of ordinal
multiplication over addition.

Theorem 2. (Cantor Normal Form) For every ordinal α ∈ ε0, there are unique n, p ∈
ω, α1 > · · · > αn > 0, and x1, . . . , xn ∈ ω\{0} such that α > α1 and α = ωα1x1 +
· · · + ωαnxn + p.

With this notation, the ACL2 representation of the ordinal α, with normal form ωα1x1+
· · · + ωαnxn + p, is:

CNF (α) = ((CNF (α1) . x1) (CNF (α2) . x2) . . . (CNF (αn) . xn) . p)

The difference between the notations is conceptually trivial, but important because the
notation based on Theorem 2 is exponentially more succinct than the one based on
Theorem 1, where the size of an ordinal under a given representation is the number
of bits needed to denote the ordinal in that representation. To see this, consider ω · k:
it requires O(k) bits with the representation in Theorem 1 and O(log k) bits with the
representation in Theorem 2.

4.2 Algorithms for Arithmetic

Despite the fact that ordinals have been studied for over 100 years, and that ordinal
notations play a critical role in several fields of mathematics, we could not find a com-
plete set of algorithms for the standard arithmetic operators on ordinal notations. We
therefore defined efficient algorithms for ordinal ordering (<), addition, subtraction,
multiplication, and exponentiation for our ordinal notation. Analysis of the correctness



Fig. 1 Basic Ordinal Functions

(defun natp (x)
(and (integerp x)

(<= 0 x)))

(defun posp (x)
(and (integerp x)

(< 0 x)))

(defun o-finp (x)
(atom x))

(defmacro o-infp (x)
‘(not (o-finp ,x)))

(defun o-first-expt (x)
(if (o-finp x)

0
(caar x)))

(defun o-first-coeff (x)
(if (o-finp x)

x
(cdar x)))

(defun o-rst (x) (cdr x))

(defun make-ord (fe fco rst)
(cons (cons fe fco) rst))

and complexity of these algorithms can be found in [15], and the complexity results are
summarized in Table 1. Complexity is given in terms of the length (denoted | |) and size
(denoted # ) of the arguments. The length of an ordinal is the length of its list repre-
sentation, and the size is 1 for natural numbers and the sum of the sizes of the ordinal’s
exponents for infinite ordinals. The complexity of o^ is given in terms of natpart,
which returns the natural number at the end of the list representation of an ordinal.

Here we present the ordinal addition algorithm as an example. The basic ordinal
functions on which our arithmetic algorithms are based are given in Figure 1. Note that
natp and posp are recognizers for natural numbers and positive integers, respectively.
The function finp and macro infp recognize whether or not an ordinal is finite. Note
that (make-ord a b c) constructs an ordinal in our representation where a is the
first exponent, b is the first coefficient, and c is the rest of the ordinal: ((a . b) .
c). The functions o-first-expt, o-first-coeff, and o-rst deconstruct an
ordinal, returning the first exponent, first coefficient, and rest of an ordinal, respectively.

Given these definitions, binary addition of two ordinals in our notation is defined as
follows:
(defun ob+ (x y)
(let* ((fe-x (o-first-expt x)) (fco-x (o-first-coeff x))

(fe-y (o-first-expt y)) (fco-y (o-first-coeff y))
(cmp-fe (ocmp fe-x fe-y)))

(cond
((and (o-finp x) (o-finp y)) (+ x y))
((or (o-finp x) (eq cmp-fe ’lt)) y)
((eq cmp-fe ’gt) (make-ord fe-x fco-x (ob+ (o-rst x) y)))
(t (make-ord fe-y (+ fco-x fco-y) (o-rst y))))))

where (ocmp a b) is a function that returns lt, gt, or eq if a is less than, greater
than, or equal to b, respectively.

The correctness of this algorithm relies heavily on the properties of so-called addi-
tive principal ordinals, which are ordinals of the form ωβ where β is an ordinal greater
than 0. There are two properties of these ordinals that concern us. The first is that they



are closed under addition. That is, α < ωγ and β < ωγ implies that α + β < ωγ .
The second is the additive principal property, which states that α < ωβ implies that
α + ωβ = ωβ . Here we give several examples to illustrate ordinal addition. Multiplica-
tion and exponentiation are much more complex.

The first is (ω5 + 8) + (ω23 + ω7 + 1). By associativity and the closure of additive
principal ordinals, we have (ω5+8)+(ω23+ω7+1) = ω5+(8+ω23)+ω7+1 =
(ω5 + ω23) + ω7 + 1 = ω23 + ω7 + 1. This corresponds to the second case of our
algorithm. For the second example, consider (ω2 + ω5 + 8) + (ω23 + ω7 + 1). This is
equal to ω2 + (ω23 + ω7 + 1) by our last example. By the left distributive property of
multiplication, this is equal to ω24 + ω7 + 1, which corresponds to the last case of our
algorithm. Finally, consider (ω3 +ω2 +ω5+8)+(ω23+ω7+1). By our last example,
this is equal to ω3 + ω24 + ω7 + 1, which is already in normal form. This corresponds
to the third case of our algorithm.

5 Changes to ACL2

In this section, we discuss how we integrated our new ordinal arithmetic results with
ACL2 to make a powerful, extensible, general tool for reasoning about program ter-
mination. We partition this discussion into two sections. In Section 5.1, we give an
overview of the interface changes, the changes that users of ACL2 will notice. This
includes alterations to the core ACL2 logic and our library. In Section 5.2, we discuss
the internals of our library, including how we tuned it to maximize its efficiency and
effectiveness.

5.1 Interface Changes

The first and most fundamental change we made was to the ACL2 logic itself, which
now uses our ordinal representation as its foundation for reasoning about induction,
well-foundedness, and termination. This involved adding the helper functions in Fig-
ure 1, the ordering function, o<, the ordinal recognizer predicate, o-p, and the macros
o<=, o>, and o>=. Once the new ordinal functions were added, we updated the affected
sections of the logic to use our ordinal notation. We did not add our arithmetic functions
to the base “ground-zero” ACL2 theory, but included them in a library so as to maintain
the simplicity and minimality of the ground-zero theory.

The next change to ACL2 was to improve its ability to reason about arithmetic
over the natural numbers and positive integers using the natp and posp functions.
This was crucial for our ordinal arithmetic library, and in order to better integrate these
results into ACL2, we created a library, natp-posp, based on these results and added
it to the arithmetic module, a collection of theorems about arithmetic over the integers,
rationals, and complex rationals. The result is an arithmetic module with better support
for reasoning about natural numbers and positive integers.

Our library is comprised of several books, files of definitions and theorems. Here we
review the top-level books that a typical ACL2 user might want to use. The ordinals
and ordinals-without-arithmetic books provide an easy way to access all of
our results about ordinal arithmetic. The difference between these books is simply that



ordinals-without-arithmetic does not include ACL2’s arithmetic module,
which is useful for users who use different arithmetic modules.

The lexicographic-ordering book contains a proof of the well-foundedness
of lists of natural numbers under the lexicographic ordering, allowing ACL2 to use the
lexicographic order on naturals to prove termination, instead of the ordinals. This book
is valuable for two reasons. First, it is a good tool for teaching new ACL2 users, as the
lexicographic order on the naturals is simpler to explain than the ordinals. This allows
new users to more quickly and easily start reasoning about termination. Second, it pro-
vides an example for more experienced users of how to use our library to prove that an
ordering is well-founded.

The e0-ordinal book is useful for transfering legacy results to the new version
of ACL2. It includes the predicate recognizing the old ordinals, e0-ordinalp, the
corresponding ordering function, e0-ord-<, and functions for converting ordinals in
this notation to and from ordinals in our notation (atoc and ctoa respectively). These
functions are proved to be order-isomorphisms and inverses of each other.

We used our ordinal arithmetic library to certify the ACL2 regression suite, which
is a collection of hundreds of books that formalize mathematical concepts in ACL2
and provide case studies illustrating how to model and verify large systems such as
microprocessors. To deal with books that explicitly mention the old ordinals only in
termination proofs, this requires simply using the old ordinal representation, which,
given the isomorphism result in the e0-ordinal book, involves one call to set-
well-founded-relation. However, some books contain more significant reason-
ing about the old ordinals and therefore require the full power of the ordinal isomor-
phism result; an example appears in Section 6.1.

5.2 Internal Engineering of the Books

Creating an efficient and robust library required a considerable amount of effort and in
this section we discuss some of the issues.

First, we configured ACL2 to reason about the representation of the ordinals and the
basic operations on them in an algebraic fashion. While ACL2 is a typeless language, it
is still possible to use algebraic specifications by defining constructors and destructors
for the ordinals, proving that they satisfy the appropriate properties, and then disabling
the definitions. Since ACL2 is not able to use the definitions of the functions, it is forced
to reason using only the algebraic theory. We did this for the functions make-ord,
o-first-expt, o-first-coeff, and o-rst (see Figure 1). Besides the obvious
advantages of algebraic specifications, this approach is more efficient, as otherwise the
rewrite rules for manipulating ordinals are in terms of lists (which is how the ordinals
are represented), but these rules interact with ACL2’s rules for reasoning about lists,
leading to inefficiencies.

Next, we related the most efficient version of our algorithms [15] with a simpler but
less efficient version [16] using a new feature of ACL2 called mbe (“must be equal”).
This feature allows the user to give two definitions for a single function, which must
be proved to be equivalent under some guard conditions that characterize the intended
domain of application. The logic definition is used by ACL2 during proof attempts.
The exec definition is used as the executable version of the function, when the function



is applied to the intended domain. This allows us to execute using efficient definitions,
but to reason using simpler, cleaner definitions. We used mbe for ordinal multiplication
and exponentiation.

Finally, we profiled the books. We used proof analysis tools provided by ACL2 to
find sources of inefficiency in proof attempts. Theorems proved by the user cause the
ACL2 system to behave differently depending on how they are tagged. Thus, as one can
imagine, a large collection of theorems such as those in the ordinal library can interact
in very subtle and complex ways. This makes finding sources of inefficiency difficult.
For example, we originally had the following rule.
(defthm fe-o-p
(implies (o-p a) (o-p (o-first-exp a)))
:rule-classes ((:forward-chaining)))

Once this rule is admitted, ACL2 will add (o-p (o-first-exp a)) to the con-
text, the set of things it knows, when (op a) appears in the context. Note that this will
not cause an infinite loop since ACL2 has heuristics for applying forward chaining rules
that avoid this. Therefore, this seemed like a harmless rule to us. However, when com-
bined with other forward chaining rules triggered by (o-p (o-first-exp a)),
this rule gave us a significant slowdown in the verification of our books. In order to fix
this, we changed the theorem to this.
(defthm fe-o-p
(implies (o-p a) (o-p (o-first-exp a)))
:rule-classes ((:forward-chaining

:trigger-terms ((o-first-exp a)))
(:rewrite :backchain-limit-lst (5))))

The new trigger term insures that (o-first-exp a) is mentioned somewhere in
the theorem before the rule is used. This significantly cuts down on the number of times
this rule, and the rules that are triggered by it, are used. We also tagged this theorem to
be used as as rewrite rule, but only if the hypothesis can be proved in 5 or less steps.
Profiling is a crucial part of engineering an effective library of theorems. We therefore
carefully profiled our library, and the result was an order of magnitude improvement in
performance.

6 Using the New Ordinals : Two Case Studies

In this section we provide two case studies illustrating the use of our ordinal library in
ACL2. The first demonstrates how existing libraries making significant use of the ordi-
nals in the old representation can easily be altered to use our new representation. The
second case study illustrates how other users have used our ordinal arithmetic library to
mechanically prove complex termination arguments.

6.1 Legacy Books: Multiset Case Study

ACL2’s multiset ordering library [20] makes significant use of the ordinals. A multiset
is a set in which items can appear more than once. For example, {1, 3, 2, 2, 4} is a
multiset over the natural numbers which contains two 2’s. Given a set, A, with an order
<, the multiset order, <mul, of multisets over A is defined as follows. N <mul M iff



Fig. 2 Original Multiset Results

(encapsulate ((mp (x) booleanp)
(rel (x y) booleanp)
(fn (x) e0-ordinalp))

...

(defthm rel-well-founded-relation-on-mp
(and (implies (mp x) (e0-ordinalp (fn x)))

(implies (and (mp x) (mp y) (rel x y))
(e0-ord-< (fn x) (fn y))))

:rule-classes :well-founded-relation))

...

(defthm multiset-extension-of-rel-well-founded
(and (implies (mp-true-listp x)

(e0-ordinalp (map-fn-e0-ord x)))
(implies (and (mp-true-listp x)

(mp-true-listp y)
(mul-rel x y))

(e0-ord-< (map-fn-e0-ord x)
(map-fn-e0-ord y))))

:rule-classes :well-founded-relation)

there exist multisets X and Y (over A), such that ∅ 6= X ⊆ M , N = (M − X) ∪ Y ,
and ∀y ∈ Y , ∃x ∈ X such that y <A x. If we restrict ourselves to finite sets, then if
<A is well-founded, it can be shown that so is <mul. The multiset library provides a
macro called defmul which, given a well-founded relation over a set and a recognizer
for that set, automatically generates the corresponding multiset relation and proves it to
be well-founded.

The defmul macro depends on results proved in another book, called multi-
set, which provides useful lemmas about multisets, and uses ACL2’s encapsulate
feature to prove in general that a multiset extension of a well-founded relation is well-
founded (See Figure 2). The encapsulated code hides the details of the functions from
the rest of the book. All that is known outside the encapsulate is that mp and rel
return boolean values, fn returns an ordinal in the old representation, and rel has
been proved to be well-founded on the set recognized by mp using the embedding fn.
Following this encapsulate, there are a number of lemmas about these functions based
only on that information, which culminate in the proof of the well-foundedness of the
multiset extension of rel.

There are two problems in certifying this book using the new version of ACL2. The
first is that the original theorem declaring the well-foundedness of rel is no longer
a proof of well-foundedness. The embedding, fn must return an ordinal in the new
representation in an order-preserving way. The second problem is that the final theorem



about the well-foundedness of the multiset extension must also be altered to use our
new ordinals.

The solution is relatively simple, and relies on the results of our e0-ordinal
book. Using our conversion functions, ctoa and atoc, we transfered the results of the
multiset book to results about the new ordinal notation. First, we altered the encapsulate
so that fn and the well-foundedness result were in terms of the new ordinals. This sim-
ply required replacing e0-ordinalp and e0-ord-< by o-p and o<, respectively.

Next, we added the following macro.

(defmacro fn0 (x) ‘(ctoa (fn ,x)))

This simply converts the ordinal in the new notation given by fn into the correspond-
ing ordinal in the old representation. The theorems involving fn were changed to use
fn0 instead. After the final result (which we renamed and retagged as a rewrite rule),
we added the following lines of code to convert the results into a valid well-founded-
relation argument using the new ordinal notation.

(defun map-fn-op (x)
(atoc (map-fn-e0-ord x)))

(defthm multiset-extension-of-rel-well-founded
(and (implies (mp-true-listp x) (o-p (map-fn-op x)))

(implies (and (mp-true-listp x)
(mp-true-listp y)
(mul-rel x y))

(o< (map-fn-op x) (map-fn-op y))))
:rule-classes :well-founded-relation)

Finally, we changed the defmulmacro so that it uses the new theorem and function
names. With this approach, we did not have to alter the lemmas about the old ordinals
in multiset. Doing so would have required essentially modifying the entire book.
This “wrapping” method can be used to quickly and easily update old libraries so that
they can be certified using the new ordinals.

6.2 New Results: Dickson’s Lemma Case Study

Our library was used by Sustik to give a constructive proof of Dickson’s Lemma [21].
This is a key lemma in the proof of the termination of Buchberger’s algorithm for find-
ing a Gröbner basis of a polynomial ideal, and is therefore an important step toward
the larger goal of formalizing results from algebra in ACL2 [17]. Sustik made essential
use of the ordinals and our library, as his proof depends heavily on the ordinals and
could not have been proved in older versions of ACL2 without essentially building up
a theory of ordinal arithmetic similar to our own. Our library was able to automatically
discharge all the proof obligations involving the ordinals.

Dickson’s Lemma states that, given an infinite sequence of monomials, m0,m1,m2,

. . ., there exists i, j ∈ N such that i < j and mi divides mj . Sustik’s argument involves
mapping initial segments of the monomial sequence into the ordinals such that if Dick-
son’s lemma fails, the ordinal sequence will be decreasing. Thus, the existence of an



infinite sequence of monomials such that no monomial divides a later monomial im-
plies the existence of an infinite decreasing sequence of ordinals, which is not possible
due to the well-foundedness of the ordinals.

This proof relies heavily on ordinal addition and exponentiation. For example, sets
of monomials, which are represented as lists of tuples of natural numbers, are mapped
to the ordinals by the following function.
(defun tuple-set->ordinal-partial-sum (k S i)
(cond ((or (not (natp k)) (not (natp i))) 0)

((zp k) 0)
((equal k 1)
(tuple-set-min-first S))

((<= (tuple-set-max-first S) i)
(o^ (omega) (o+ (tuple-set->ordinal-partial-sum

(1- k) (tuple-set-projection S) 0)
1)))

(T (o+ (o^ (omega)
(tuple-set->ordinal-partial-sum
(1- k) (tuple-set-filter-projection S i) 0))

(tuple-set->ordinal-partial-sum k S (1+ i))))))

Key lemmas about this function therefore required sophisticated reasoning about the
behavior of ordinal addition and exponentiation. One such lemma is as follows.
(defthm map-lemma-3.2
(implies (and (tuple-setp k A) (natp k) (< 1 k) (natp i))

(o< (o^ (omega) (tuple-set->ordinal-partial-sum
(1- k)
(tuple-set-filter-projection A i)
0))

(tuple-set->ordinal-partial-sum k A i))))

This and other similar theorems require results about ordinal arithmetic including the
following: (1) α < β ⇒ γ + α < γ + β, (2) α ≤ β ⇒ α + γ ≤ β + γ, (3)
α ≤ β ∧ γ ≤ δ ⇒ α+γ ≤ β+δ, (4) α < β ⇒ γα < γβ , and (5) α ≤ β ⇒ αγ ≤ βγ .

Initially, Sustik used a preliminary version of our library, and he needed 26 addi-
tional theorems about ordinal arithmetic for his proof. After streamlining our library,
no additional ordinal arithmetic lemmas were required, and the results specific to Dick-
son’s Lemma, such as those above, were discharge twice as quickly. The overall result
was a 70.5% speedup in the verification of the Dickson’s Lemma library. This is an
example of the kind of termination proof that would be quite difficult to fully automate.

7 Lessons Learned

During this project we learned several lessons that we believe will be of benefit to users
working on large projects in ACL2 and similar systems. These include lessons about
the features and shortcomings of ACL2, as well as lessons about effectively designing
and implementing large projects in ACL2. Here, we share some of these lessons.

One invaluable feature of ACL2 is its regression suite. This large collection of books
includes the formalization of many mathematical theories and industrial case studies,



making it a valuable testbed for new features. Running the regression suite on our al-
tered version of ACL2 stressed our library and helped us maximize its efficiency and
effectiveness. Along the way we learned two valuable lessons. The first is that it is im-
portant to have a general way of integrating results into the regression suite. In our case,
we used the ordinal isomorphism results, as we illustrate in Section 6.1, to transfer re-
sults about the old ordinals to the new ordinals; this saved us from having to understand
the details of existing books. The second lesson we learned is that the regression suite
can reveal patterns in the use of ACL2 that can inspire new improvements. For exam-
ple, we did not originally plan on integrating our results about natp and posp with
the arithmetic module. However, when working with the regression suite, we found that
many libraries contained functions similar to natp and posp, and this prompted us to
create a separate book that we added to the arithmetic module.

Another feature of ACL2 is its extensive documentation [12]. It describes each
ACL2 feature and function in detail, and an important part of integrating our work into
ACL2 was updating the documentation. This included describing our functions, but,
more importantly, it required us to reason at the meta-level, providing a hand-written
proof of the well-foundedness of our ordinal notation (which does not appeal to the
ordinals), in order to demonstrate the soundness of our new additions to ACL2. Thus,
updating the documentation is important both for keeping users up-to-date with the cur-
rent features of ACL2 and for arguing at a meta-level about the soundness of the ACL2
logic.

As we mentioned earlier, profiling was a crucial step in making our library more
efficient. What we found is that this is actually very difficult to do in ACL2. There is a
mechanism called accumulated-persistance that allows the user to gauge the
performance of each individual rule. However, many performance problems come from
the interaction among the rules, not from each rule’s individual performance. We think
that ACL2 users would benefit from a mechanism for analyzing this interaction. For
example, one can imagine having a mechanism for reporting the amount of time spent
on rules of each class (e.g., forward chaining rules versus rewrite rules). Since rules of
one class often trigger other rules of the same class, this could prove to be useful.

Another shortcoming of the ACL2 system is the naming scheme, which it has bor-
rowed from Lisp. Namespace collisions can be avoided in ACL2 by creating new pack-
ages. For example, we could have created a package called ORD, and defined all our
functions in that package (e.g., ORD::o<). In fact, this would have been useful for us,
since we found functions called op (the original name of our predicate function) and
natp in several libraries in the regression suite. However, referring to one package
from another involves either prefixing symbols with package names or importing sym-
bols into the current package (thus causing namespace issues again). It usually takes
several iterations to determine which symbols a package should import, but the ACL2
implementation requires restarting ACL2 for every such change. In the end, we found
it easier to rename our predicate function to o-p and to rename or delete the natp
functions found in other books. ACL2 users would benefit from a better mechanism for
dealing with namespace issues.

Our use of algebraic specifications to deal with make-ord, o-first-expt,
o-first-coeff, and o-rst sped up our books, but it took several iterations to



discover where abstraction should be used. We found that algebraic specifications are
often more trouble than they are worth. When in doubt, we recommend starting with
little or no abstraction, and adding more based on how functions are being used in proof
attempts. If the theorem prover seems to be struggling with the underlying representa-
tion, then perhaps abstraction can help.

Finally, we learned the value of recording lessons learned while working on a big
project in ACL2. We have noticed through past experience that users (including us) of-
ten make the same mistakes repeatedly. They have to rediscover ways to improve their
libraries or avoid pitfalls. Having a record of these tips, tricks, and lessons can poten-
tially be a valuable time-saver when working on new projects. They are also valuable
for finding difficulties with ACL2 such as the ones we presented here, which can be
used to improve the theorem-proving system and may provide insight that will help
developers of other theorem proving systems as well.

8 Related Work

There has been a significant amount of work dealing with the problem of termination
in recent years. Much of it has focused on the termination of term rewriting systems
(TRSs). Current techniques for proving the termination of TRSs can be found in [2].
One such method is the interpretation method, which involves mapping terms into a
well-founded set and showing that the left-hand-side of rewrite rules map to a bigger
value than the corresponding right-hand-side for all rules. Another method involves
simplification orders which are orders over terms such that terms are always greater
than their subterms. This often involves extending a well-founded order on the signa-
ture of the TRS to apply to all terms. Popular simplification orders include the lexi-
cographic path ordering and Knuth-Bendix orderings. One method for proving termi-
nation of TRSs using simplification orders is called the dependency pair method [1].
Recent work focusing on automating this method has met with some success [8]. These
methods, while useful in the context of theorem proving and optimization in compilers,
are designed for TRSs rather than programming languages used in practice. They there-
fore have not been shown to scale to the complexities of actual programming languages.

Another approach to termination is the size-change principal [14]. This method in-
volves using a well-order on function parameters, analyzing recursive calls to label any
clearly decreasing parameters. All possible infinite sequences of function calls are then
checked to be sure that there are infinite decreases and only finitely many possible in-
creases in the values of arguments to recursive function calls. This is similar but much
less sophisticated than ACL2’s termination reasoning. For example, there is no explicit
description on how to determine if a function parameter “decreases.” The examples are
based on a simple toy language, and the analysis of arguments of the form (f x),
where f is a user-defined function, is not considered. Only primitive operations are
dealt with. The conditions under which recursive calls are made are not taken into ac-
count, e.g., if a recursive call is made in the else branch of an if statement, we know that
the test of the if statement is false at that point. This information is often necessary for
establishing termination.



There are many other methods that can potentially be extended to deal with full pro-
gramming languages. Podelski and Rybalchenko give a complete method for proving
termination of non-nested loops with linear ranking functions [19]. Dams, Gerth, and
Grumberg give a heuristic for automatically generating ranking functions [7]. Colón
and Sipma give two algorithms for proving termination, one which synthesizes linear
ranking functions, but is limited to programs with few variables, and one which is more
heuristic in nature and converges faster on the invariants it can discover [6, 5].

What is novel about our approach is that we focus on extendability and general-
ity. The result is a system into which new heuristics and techniques (such as the ones
cited above) can be incorporated in order to improve automation. However, when these
techniques fail (as they eventually must, since termination is undecidable), the user can
interact with the theorem prover to find a proof.

9 Conclusions and Future Work

We have developed a general framework based on the ordinals for proving program
termination, which has been incorporated into ACL2 v2.8. The resulting system allows
us to prove termination in a general context for arbitrary programs and in a highly
automated fashion, as we demonstrated with the case study of Dickson’s Lemma. For
future work, we plan to add decision procedures and heuristics to our framework to
further automate ACL2’s ability to reason about termination. We also plan to use ACL2
as a back-end reasoning engine, combined with a front-end system containing static
analysis techniques in order to reason about the termination of programs written in
imperative languages such as C and Java.
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