
Integrating Static Analysis and General-Purpose Theorem
Proving for Termination Analysis

Panagiotis Manolios and Daron Vroon
Georgia Institute of Technology

College of Computing
801 Atlantic Drive

{manolios,vroon}@cc.gatech.edu

ABSTRACT
We present emerging results from our work on termination
analysis of software systems. We have designed a static anal-
ysis algorithm which attains increased precision and flexibil-
ity by issuing queries to a theorem prover. We have imple-
mented our algorithm and initial results show that we obtain
a significant improvement over the current state-of-the-art
in termination analyses. We also outline how our approach,
by integrating theorem proving queries into static analyses,
can significantly impact the design of general-purpose static
analyses.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification, F.4.1 [Math-
ematical Logic and Formal Languages]Mechanical Theorem
Proving

General Terms: Algorithms, Verification.

Keywords: Static Analysis, Theorem Proving, Termina-
tion, Liveness, ACL2.

1. OVERVIEW AND MOTIVATION
Termination is of critical importance in the realm of soft-

ware analysis, especially in software verification. Establish-
ing termination allows us to strengthen a partial correctness
result to a total correctness result. Code reachability and
other path analyses sometimes assume the termination of
loops and recursive functions, often producing results that
are not correct unless termination holds. Termination anal-
ysis also plays an important role in the analysis of reactive
systems, non-terminating systems that engage in ongoing in-
teraction with their environments (e.g., operating systems or
networking protocols). In this case, termination arguments
are used to prove liveness properties such as the absence
of deadlock or livelock, by establishing that some desired
behavior is not postponed forever.

In this paper, we present a termination analysis algorithm
that issues queries to a general-purpose theorem prover to
obtain more precise analyses than is possible with traditional

Copyright is held by the author/owner.
ICSE’06, May 20–28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

static analysis techniques. The theorem prover is called in a
controlled, time-limited way; this guarantees that it can be
used in an automatic fashion as a black-box for static anal-
ysis. In addition, the theorem prover can be given general
queries, even ones that are over undecidable fragments of
logic. If the query can be resolved, it improves the precision
of our analysis. If not, then our static analysis algorithm
proceeds as it normally would without the theorem prover.

We believe that general-purpose theorem proving will play
a vital role in termination analysis of software written in
real, feature-rich programming languages. We tested several
state-of-the-art termination analyses based on current static
analysis methods on software written in the ACL2 program-
ming language, a first-order functional language, and found
that existing methods establish termination in only a very
limited number of cases. We then implemented a prelimi-
nary version of our termination analysis algorithm using the
ACL2 theorem prover as a black-box, and found a substan-
tial increase in accuracy over previous methods. In addition,
our analysis gives abstract counter-examples when it fails,
allowing the user to refine the analysis to find a termination
proof, if one exists.

In addition to improving termination analysis, we believe
our method of querying properly configured general-purpose
theorem provers can be useful for static analysis in other
settings. For example, in path-sensitive analyses, the the-
orem prover can help eliminate impossible paths by prov-
ing that incompatibilities exist between various branching
conditions. Overall, we think that such tasks as compiler
optimization, bug isolation, automatic test generation, and
formal software verification can all benefit from our tech-
nique.

After discussing related work, we present an overview of
our preliminary results in Section 2. We conclude with a
discussion of impact and future work in Section 3.

1.1 Related Work
Most of the current state-of-the-art tools in termination

analysis do not make use of general-purpose theorem prov-
ing. Instead, they employ static analysis and decision proce-
dures to reason about a subset of the termination problem.
These include tools for analyzing the termination of pro-
grams with linear and limited polynomial integral behav-
ior [4, 5, 17]. All of these approaches fail for programs that
include looping behaviors that do not fit their limited scope.
For example, they cannot handle recursive function defini-
tions or loops whose termination depends on data structure
invariants.



define f(x) =

if not(integerp(x))

or (x = 0)

then 0

else if x < 0

then f(x+1)

else f(x-1)

1 2

Figure 1: Definition and CCG for f

Currently, the most advanced procedures for proving ter-
mination in pure functional languages and term rewriting
systems are the size-change principle [12] and the depen-
dency pair method [2].

The size-change principle involves giving objects a well-
founded “size,” and showing that for all possible infinite ex-
ecution paths, there exists a value that decreases infinitely
often. The strength of this method lies in its backend which
can comprehensively analyze all of the infinite paths of a
function. We use the ideas in the backend in our own ter-
mination analysis. However, the major limitation of the
size-change principle is its frontend, e.g., this analysis does
not account for the conditional branches that govern when
a callsite is reached, which is almost always crucial for ter-
mination analysis. Consider, for example, the function, f,
given in Figure 1. Since the size-change principle does not
consider the tests of if-statements, it must consider infinite
state sequences that cannot occur, including the sequence
that alternates between the two recursive calls. In this case,
x is alternately increased by 1 and decreased by 1. Thus
every two steps, the value of x returns to its original value,
leading to an infinite loop. The size-change principle there-
fore cannot prove the termination of this function. However,
this path is not actually possible, and the function clearly
terminates.

Recently, the size-change principle and dependency pair
method were combined into a single termination analysis,
implemented in a tool called AProVE, that is more powerful
than either technique by itself [18, 8]. However, this analysis
is aimed at logic programming languages and term rewrit-
ing systems; when we applied it to functional languages we
found its effectiveness in determining termination to be quite
limited.

One example of the use of general-purpose theorem prov-
ing for termination analysis is the ACL2 theorem proving
system. ACL2 consists of a programming language, logic,
and theorem prover [10, 9]. The programming language can
roughly be thought of as an applicative superset of a subset
of Common Lisp. The logic axiomatizes the semantics of the
programming language, thereby allowing the user to reason
formally about her programs. The theorem prover makes it
possible for the user to provide only an outline of a proof,
with ACL2 filling in the details. ACL2 is used by a large
community, and has been used for some impressive indus-
trial problems (for more about ACL2 and its applications,
see [11]).

Termination plays a key role in ACL2, as every defined
function (using the definitional principle) must be shown to
terminate before ACL2 will admit it. To do this, ACL2 at-
tempts to guess a well-founded measure for the function and
to prove that it decreases with each recursive call. It does
this by using a simple static analysis to guess a measure,
followed by a call to the theorem prover to attempt to prove

that the measure always decreases. Our recent work has
involved improving ACL2’s ability to successfully complete
such proofs [13, 14, 15, 16]. If ACL2 cannot guess a measure
or if it cannot prove that the measure it guesses decreases,
the user must provide her own well-founded measure and
must use the theorem prover to show that it decreases. This
is often a non-trivial task, and due to ACL2’s limited static
analysis, it is required for all but the most basic of recursive
schemes.

The combination of theorem proving and static analysis is
used in ESC/Java [7] and the SLAM project [3]. However,
neither SLAM nor ESC/Java can reason about the termina-
tion of the code they analyze.

2. PRELIMINARY RESULTS
Our termination analysis is designed for first-order, purely

functional languages. It includes support for a wide variety
of data-types, including strings, symbols, integers, rationals,
characters, lists, trees, and recursive data-types. It also sup-
ports many types of control flow used in such languages,
including recursion and mutual recursion. In other words,
our analysis is designed for real, complete, feature-rich pro-
gramming languages used in practice. Our implementation
operates on software written in the ACL2 programming lan-
guage, which is used in numerous industrial and academic
settings. In this section we give an overview of our analysis
and discuss the implementation and experimental results.

2.1 Termination Analysis

Given a set of definitions, our analysis starts by deter-
mining the relevant branching conditions that lead to the
execution of a callsite, a function call that could potentially
be involved in a loop (e.g., a recursive or mutually-recursive
call). These predicates, along with the name of the function
containing the callsite and the call itself comprise the calling
context.

Next, we construct a reachability graph of the calling con-
texts, which we call the calling context graph (CCG). This is
similar to a static callgraph, but the use of theorem proving
allows us to get a far more detailed picture of the system
behavior. Recall that a callgraph has function names for
nodes, and an edge from f to g if f contains a call to g.
In the CCG, the nodes are calling contexts, and there is an
edge from c1 to c2 if there are values for the parameters of
the function containing c1 such that the conditions under
which c1 is called are met, and the call c1 results in the con-
ditions under which c2 is called being met (in which case
the call of c2 is executed next). We use the theorem prover
to attempt to prove that a c1 call cannot lead to a c2 call,
in which case we do not add an edge in the CCG. If the
theorem prover fails to prove this conjecture or times out,
then we add the edge to the graph. This gives us an over-
approximation of system behavior, i.e., no realizable system
behavior is ignored.

Consider the CCG in Figure 1 for the function f. The
callgraph for this function has one node, f, with a self-loop.
All this tells us is that function f can call itself. Note that
the CCG has 2 nodes, one for each calling context, and
each has a self loop. There are no edges between the two
contexts. This is because if x is a negative integer, x+1 is
either a negative integer or 0, and if x is a positive integer,
x-1 is either a positive integer or 0. This gives us the added



information that the execution of one context only leads
to further executions of the same context. This is a key
insight for the termination analysis, since it rules out the
possibility that the value of x infinitely fluctuates between
a finite number of values.

What remains is to determine that there is no execution
of the program that corresponds to an infinite path through
the CCG. Since every infinite path through the CCG must
have an infinite suffix with nodes in exactly one non-trivial
strongly-connected component (SCC), we separate the CCG
into its non-trivial SCCs, and continue with our analysis on
each SCC. For the CCG in Figure 1, this means that we can
analyze each of the two self-loops separately.

At this point, a set of calling context measures (CCMs)
is created for each calling context. These are expressions
over the parameters of the function containing the context
that return a value in a well-founded domain. This is done
through a combination of general heuristics and reusable
system-defined patterns. By default, a CCM is created for
each parameter of the parent function of the context by ap-
plying to the parameter a fixed mapping from ACL2 objects
into the natural numbers. For each edge in the CCG, a CCM
function is created that takes in a CCM from each adjacent
context, and returns either >, >=, or none. The function
must follow the rules that if > is returned, then if the con-
ditions of both contexts are met, the CCM from the source
of the edge must always be greater than the CCM from the
sink of the edge. Likewise, if >= is returned, it must be the
case that under the conditions of both contexts, the CCM
from the source of the edge must never be less than that of
the sink of the edge. Once again, the theorem prover is used
to determine the values returned by each CCM function.

The annotated CCG is now analyzed to determine if for
every infinite path through the CCG, there is at least one
CCM that never increases and which also decreases infinitely
often. This analysis can be accomplished using an approach
that is similar to the analysis of “size change graphs,” which
is handled by the backend of the size-change approach. If
our analysis terminates, we are done; otherwise, we report a
failure to prove termination and provide an abstract coun-
terexample that shows a repeating sequence of calls that our
analysis cannot prove terminating.

2.2 Preliminary Experimental Results

We have implemented a preliminary version of our algo-
rithm using the ACL2 theorem proving system. Our imple-
mentation includes the analyses described in the previous
section, as well as a few other analyses that are still under
development. We ran the implementation on the library of
books distributed with the ACL2 theorem prover, which is
a collection of published projects by ACL2 users. We fo-
cused on the 84 functions for which the users were forced to
provide their own measures or proof hints. Of these, our al-
gorithm automatically proved 60 of them terminating with
no user interaction (and without the original user provided
hints and measures). The following examples are taken from
these experiments.

The example in Figure 2 follows a common induction
scheme that was used in several of the functions in our ex-
periments. The upto function, given integers i and max such
that i ≤ max, counts from i to max, returning the difference
between max+1 and i. It does this by incrementing i un-

define upto (i, max) =

if integerp(i) and

integerp(max) and

i <= max

then upto(i+1, max) + 1

else 0

Figure 2: upto function definition

define h(x, y, i) =

if zp(x) or zp(i)

then

list(x, y, i)

else

list(h(x-1, y-1, g(y-1)),

h(x, f(y), i-1))

Figure 3: h function definition

til it is greater than max. Neither the current version of
ACL2 nor the other methods cited in Section 1.1 can auto-
matically prove this function terminating. Our algorithm,
on the other hand, does prove upto terminating, choosing
nfix((max + 1) - i) as a CCM, where nfix(x) returns x

if x is a natural number and 0 otherwise.
The code in Figure 3 calls several functions, f and g,

whose definitions are not known during termination anal-
ysis. These functions are so-called encapsulated, meaning
that only certain properties of the functions are known,
but not their definitions. Encapsulation is a powerful and
useful mechanism for information hiding, allowing one to
prove theorems that apply to a wide range of functions (e.g.,
to functions that satisfy commutativity and associativity).
What we know about the encapsulated functions f and g is
that g always returns an integer no less than 2. In addition,
the zp function returns false when given a positive integer,
and true otherwise. Thus, there are two recursive calls made
when both x and i are positive integers. In the first, x and
y are decreased by one, but we do not know what happens
to i. In the other, x remains the same, i is decreased by
one, and we do not know what happens to y.

As before, none of the current state-of-the-art techniques
presented in Section 1.1 can automatically prove termina-
tion. For example, in ACL2’s current analysis, the user
must provide a measure that decreases with every recur-
sive call. A valid measure is the tuple 〈nfix(x), nfix(i)〉,
where the well-founded relation used is the lexicographic or-
dering on tuples of natural numbers. In the first recursive
call, nfix(x) is decreased, so the overall measure decreases
even though we do not know what happens to nfix(i). In
the second case, nfix(x) remains the same and nfix(i)

decreases, so the overall measure decreases.
Our method, by examining the conditions under which

the recursive calls are made, can determine that it is deal-
ing with positive integers, and therefore it determines when
the CCMs are decreasing. This leads to the construction of
an annotated CCG for which our algorithm can determine
that any infinite path reaching the first context infinitely
often leads to x decreasing infinitely often, and that any
path reaching the second context infinitely often causes i to
decrease infinitely often. Thus, since x and i range over a
well-founded structure, the function must terminate.



3. IMPACT AND FUTURE DIRECTIONS

We have presented an overview of a technique for proving
termination of programs written in a first-order functional
language. We use a static analysis algorithm that includes
queries to a general-purpose theorem prover. By combining
static analysis with theorem proving, we attain increased
precision. Our initial experimental results show that such
an analysis significantly improves upon the current state-of-
the-art in termination analysis, whether based on standard
static analysis or theorem proving techniques.

Based on these initial results, we are currently developing
a more extensive suite of techniques for utilizing theorem
proving in the context of termination analysis. These tech-
niques allow us to further refine CCGs, thereby attaining
increased precision. We are also considering methods for
more aggressive abstractions that prune irrelevant and re-
dundant parts of the CCG.

Our technique currently presents an abstract counterex-
ample when it cannot prove termination. This may or may
not be an actual counterexample to the termination of the
system. To handle the case where it is not a true counterex-
ample, we are developing techniques to assist the user in
proving termination. We are also investigating methods for
automatically determining the feasibility of abstract coun-
terexamples. If the abstract counterexample generated is
spurious, we would like to refine our termination analysis
in a way that rules out this counterexample in the future.
That is, we are developing a termination analysis algorithm
that uses the counterexample-guided abstraction-refinement
framework.

Another (more long-term) goal of our work is to extend
our analysis to deal with imperative languages such as C. We
plan on doing this by taking advantage of various static anal-
yses, including data-flow, control-flow, alias analysis, etc.,
and taking advantage of the fact that Static Single Assign-
ment (SSA), the popular intermediate language used for the
analysis and optimization of imperative programs, is con-
ceptually a kind of pure functional language [1]. This will
allow us to generate CCGs for imperative languages that
we can then analyze using the framework described in this
paper.

From our preliminary experimental results, we expect that
our work will significantly extend what can be done with
termination analysis. By incorporating queries to a general-
purpose theorem prover, our analyses can be used to rea-
son about the many possible sources of looping behavior
in feature-rich programming languages, including arbitrary
arithmetic operations and data structures. The result is
increased accuracy when automatically reasoning about ter-
mination. Such reasoning is useful in numerous software
analyses and verification techniques, ranging from proving
total functional correctness, to determining reachability, to
various path analyses, to reasoning about reactive systems.

Finally, we expect that techniques we have presented, in
which general-purpose theorem provers are queried in the
context of static analysis algorithms and methods, can be
used to construct improved compiler optimizations, bug iso-
lation techniques, automatic test generation methods, and
software verification techniques, because the queries to the
theorem prover can only improve the precision of the under-
lying static analyses.

4. REFERENCES
[1] Andrew W. Appel. SSA is functional programming. SIGPLAN

Not., 33(4):17–20, 1998.

[2] Thomas Arts and Jürgen Giesl. Termination of term rewriting
using dependency pairs. Theoretical Computer Science,
236:133–178, 2000.

[3] Thomas Ball and Sriram K. Rajamani. Automatically
validating temporal safety properties of interfaces. In Spin
2001, Workshop on Model Checking Software, volume 2057 of
LNCS, pages 103 – 122. Springer–Verlag, May 2001.

[4] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma.
Termination of polynomial programs. In Cousot [6], pages
113–129.

[5] Patrick Cousot. Proving program invariance and termination
by parametric abstraction, lagrangian relaxation and
semidefinite programming. In Cousot [6], pages 1–24.

[6] Radhia Cousot, editor. Verification, Model Checking, and
Abstract Interpretation, 6th International Conference,
VMCAI 2005, volume 3385 of Lecture Notes in Computer
Science. Springer, 2005.

[7] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. Extended static
checking for java. In PLDI ’02: Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language
design and implementation, pages 234–245, New York, NY,
USA, 2002. ACM Press.

[8] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke.
Automated termination proofs with AProVE. In Proceedings
of the 15th International Conference on Rewriting
Techniques and Applications (RTA-04), volume 3091 of
LNCS, pages 210–220. Springer–Verlag, 2004.

[9] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore,
editors. Computer-Aided Reasoning: ACL2 Case Studies.
Kluwer Academic Publishers, June 2000.

[10] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore.
Computer-Aided Reasoning: An Approach. Kluwer Academic
Publishers, July 2000.

[11] Matt Kaufmann and J Strother Moore. ACL2 homepage. See
URL http://www.cs.utexas.edu/users/moore/acl2.

[12] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The
size-change principle for program termination. In ACM
Symposium on Principles of Programming Languages,
volume 28, pages 81–92. ACM Press, 2001.

[13] Panagiotis Manolios and Daron Vroon. Ordinal arithmetic:
Algorithms and mechanization. Journal Of Automated
Reasoning. To Appear.

[14] Panagiotis Manolios and Daron Vroon. Algorithms for ordinal
arithmetic. In Franz Baader, editor, 19th International
Conference on Automated Deduction – CADE-19, volume
2741 of LNAI, pages 243–257. Springer–Verlag, July/August
2003.

[15] Panagiotis Manolios and Daron Vroon. Ordinal arithmetic in
ACL2. In Matt Kaufmann and J Strother Moore, editors,
Fourth International Workshop on the ACL2 Theorem
Prover and Its Applications (ACL2-2003), July 2003. See
URL
http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/.

[16] Panagiotis Manolios and Daron Vroon. Integrating reasoning
about ordinal arithmetic into ACL2. In Formal Methods in
Computer-Aided Design: 5th International Conference –
FMCAD-2004, LNCS. Springer–Verlag, November 2004.

[17] Andreas Podelski and Andrey Rybalchenko. A complete
method for the synthesis of linear ranking functions. In
Verification, Model Checking, and Abstract Interpretation,
5th International Conference, VMCAI 2004, volume 2937 of
Lecture Notes in Computer Science, pages 239–251. Springer,
2004.

[18] Reneé Thiemann and Jürgen Giesl. Size-change termination for
term rewriting. Technical Report AIB-2003-02, RWTH Aachen,
January 2003.


