
ACL2s: “The ACL2 Sedan”

Peter C. Dillinger, Panagiotis Manolios, Daron Vroon
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280, USA

{peterd,manolios,vroon}@cc.gatech.edu

J Strother Moore
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712-1188, USA

moore@cs.utexas.edu

Abstract

ACL2 is the latest inception of the Boyer-Moore theo-
rem prover, the 2005 recipient of the ACM Software Sys-
tem Award. In the hands of an expert, it feels like a finely
tuned race car, and it has been used to prove some of the
most complex theorems ever proved about commercially de-
signed systems. Unfortunately, ACL2 has a steep learning
curve, and novices tend have a very different experience:
they crash and burn. As part of a project to make ACL2
and formal reasoning accessible to the masses, we have de-
veloped ACL2s, the ACL2 sedan. ACL2s streamlines the
learning process with features not previously available for
ACL2. Our goal is to develop a tool that is “self-teaching,”
i.e., it should be possible for an undergraduate to sit down
and play with it and learn how to program in ACL2 and how
to reason about the programs she writes. The latest version
of ACL2s is a significant step in that direction.

1 Background

“ACL2” stands for “A Computational Logic for Applica-
tive Common Lisp.” It is a programming language, a first-
order mathematical logic based on recursive functions, and
an “industrial-strength” automated theorem prover from the
Boyer-Moore family [7, 4]. ACL2’s power, however, comes
with a steep learning curve. This is not an issue of documen-
tation, which includes tutorials, a user’s manual, academic
papers [7], books [4], and heavily commented, free (GPL)
source code. ACL2s, “the ACL2 sedan,” is an Eclipse-based
development environment for ACL2 that, in many ways, re-
duces the difficulty of learning specification and verification
with ACL2 [3]. ACL2s is freely available on the web [2].

Besides the inherent difficulty of reasoning about a sys-
tem that reasons about other systems, new ACL2 users
would stumble in a few identifiable ways before the intro-
duction of ACL2s [3]. Some first difficulties involved the
GNU Emacs interface to ACL2. It takes a lot of learn-

ing to do interesting things in Emacs, and its connection
to ACL2 is very rudimentary. For example, Emacs doesn’t
know whether a command sent to ACL2 passed or failed,
whether it is expecting command input or some other kind
of input, or even whether it is waiting for more input at
all. With such limitations, it takes some cognitive effort for
new users to avoid unintentional, “silly” interaction, which
might not be easy to recover from. In Section 2, we discuss
how ACL2s addresses these issues with its combination of
script management and command line interfaces.

Another difficulty comes from the ACL2 logic, which
is grounded in a simple programming language. But to ac-
cept functions for logical reasoning, users often need to help
ACL2 prove termination. Thus, it can seem like proofs are
required just to define what we want to prove things about!
In Section 3, we describe a state-of-the-art termination anal-
ysis that ACL2s uses to automatically prove termination
of almost any (correctly terminating) function a new user
would write. Section 3 also describes some other features,
before our conclusion in Section 4.

2 User Interface

Script Management Script management is a well-
known and natural idiom for interacting with an interactive,
extensible theorem prover [1]. Basically, the source code
(or “proof script”) editor tracks two “lines”: the completed
line and the todo line. Since the completed line is never be-
yond the todo line, these induce three (potentially empty)
regions in this order: the completed region, which contains
everything that has been accepted by the theorem prover;
the todo region, which has everything currently being or
scheduled to be processed; and the working region, which
is for editing at will. In ACL2s, the completed region is
read-only with gray highlight, the todo region is read-only
with green highlight, and the editable working region has
no highlight.

The user is granted free manipulation of the todo line,
specifying how much of his work he wants the theorem

29th International Conference on Software Engineering (ICSE'07 Companion)
0-7695-2892-9/07 $20.00 © 2007

prover to process. If the user wants to move the todo line
above the current position of the completed line, then the
completed line must move also, which is effected in the the-
orem prover by undoing the forms no longer in the com-
pleted region. ACL2s also supports instantaneous redoing
of a sequence of undone forms, provided the abstract syntax
of the input matches what was previously undone. The is-
sues of line manipulation in a script management interface
are too numerous to describe here, but ACL2s addresses
them elegantly and robustly.

“Undo” Problem The reason ACL2s is the first and
only effective script management interface for ACL2 is that
there’s no simple strategy for undoing the effects of arbi-
trary input forms submitted to ACL2. After all, the input
could itself be one of several “undo” commands! A naive
implementation would make it easily possible to get one’s
script into a state in which the completed region would not
be accepted by a fresh session, breaking a key invariant
of any good script management interface: reprocessing the
completed region in a fresh session should result in the same
observable theorem prover state.

ACL2s solves the “undo” problem by extending ACL2
with its own more powerful layer for remembering and re-
covering previous states. To be efficient, the states are in-
complete, but they are able to undo the effects of a large,
identifiable subset of possible ACL2 operations. Rather
than restricting the user’s freedom, ACL2s prints a warn-
ing when it undoes something that may have had effects it
can’t undo. Restarting a session to reprocess the completed
region takes just one click.

With a Command Line The script management inter-
face in the source editor is not enough when a user wants
to know why ACL2 rejects a particular input form. The ses-
sion editor provides ACL2’s textual output in such cases,
along with the entire input/output history for that session.
Input can come from the todo region of the script manage-
ment interface or it can be typed directly into the bottom
of the session editor, making it a command-line interface to
the same session.

The motivation for retaining a command line interface is
that some ACL2 input, such as queries or stateless function
calls, does not make sense from a script management inter-
face. Likewise, “stateful” input belong in the script manage-
ment interface, so that it can become part of the completed
region. Instead of restricting the kinds of input that can be
used from the two interfaces, ACL2s copies input submitted
at the command line to the completed region if and only if
it is “stateful” input.

3 Language Extensions

CCG Termination Analysis ACL2 includes an ad-
vanced termination analysis based on “Context Calling

Graphs” (or CCGs) [6, 5], which significantly enhances
ACL2’s ability to recognize terminating function definitions
with no user guidance. For example, against the ACL2
regression suite, which covers topics from set theory to
processor verification, CCG analysis automatically proves
98.7% of the 10,000 functions terminating, including 68.2%
of those that previously required explicit user hints.

Session Modes Analogous to “language levels” in
DrScheme [8], ACL2s offers several “session modes” that
configure ACL2 for development at a certain depth of
understanding. This begins with Programming mode,
which ignores anything related to proofs, soundness, or effi-
cient implementation. Recursion & Induction mode adds
proof capability without much concern for building coher-
ent proof rules. ACL2s mode is just like ACL2 but has
CCG termination analysis. Compatible mode retains com-
patibility with with official ACL2 releases.

4 Conclusion

ACL2s has put a modern, intuitive face on ACL2 devel-
opment. In fact, we have required use of ACL2s in two
graduate courses that previously recommended ACL2 with
Emacs, and the sense has been that ACL2s lowers barri-
ers to learning specification and verification in ACL2. Af-
ter a short demonstration, students are able to go home,
download the tool, go through our tutorial, and then focus
on ACL2 the programming language, ACL2 the logic, and
ACL2 the extensible theorem prover.

We plan to continue improving ACL2s so that it can be
even more “intuitive” and “self-teaching”, and hope to use
it in an undergraduate environment soon.

References

[1] Y. Bertot and L. Théry. A generic approach to building
user interfaces for theorem provers. Journal of Symbolic
Computation, 25(2):161–194, 1998.

[2] P. C. Dillinger and P. Manolios. ACL2s home page.
http://www.cc.gatech.edu/∼manolios/acl2s/.

[3] P. C. Dillinger, P. Manolios, D. Vroon, and J. S. Moore.
ACL2s: The ACL2 Sedan. In User Interfaces for Theorem
Provers. ENTCS, 2006.

[4] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided
Reasoning: An Approach. Kluwer Academic Pub., July 2000.

[5] M. Kaufmann, P. Manolios, J. S. Moore, and D. Vroon. In-
tegrating CCG analysis into ACL2. In Eighth International
Workshop on Termination, August 2006. Part of FLOC ’06.

[6] P. Manolios and D. Vroon. Termination analysis with calling
context graphs. In Computer-aided Verification (CAV) 2006,
LNCS. Springer-Verlag, 2006.

[7] J. S. Moore and M. Kaufmann. ACL2 home page.
http://www.cs.utexas.edu/users/moore/acl2/.

[8] PLT of Northeastern University. DrScheme, 2006. See URL
http://www.drscheme.org/.

29th International Conference on Software Engineering (ICSE'07 Companion)
0-7695-2892-9/07 $20.00 © 2007

