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Abstract. Building verified computing systems such as a verified compiler or
operating system will require both software and hardware verification. How can
we decompose such verification efforts into mostly separate tasks, one involving
hardware and the other software? What theorems should we prove? What specifi-
cation languages should we use? What tools should we build? To what extent can
the process be automated? We address these issues, using as a runningexample
our recent and on-going work on refinement-based pipelined machineverification.

1 Introduction

The ultimate goal of the formal verification community is to mechanically verify com-
puting systems from the subatomic level up to high-level specifications. In principle,
we know that this is possible. It is possible to describe the standard model, quantum
mechanics, string theory, and, in general, whatever physical or computational theory
we desire, using first-order logic.

However, it does not currently seem feasible to do this: the human effort required
is daunting. The differences in size and speed between the subatomic level and higher-
level subsystems such as disk arrays are astronomical. In addition, the subatomic level
is inherently continuous and probabilistic; in fact, current semiconductor devices not
only depend on quantum effects, but even take advantage of them. On the other hand,
higher-level abstractions tend to be discrete and (non)deterministic.

The main focus of this paper is on hardware-software co-verification, a central part
of the verification challenge which exhibits many of the characteristics of the general
problem,e.g., it spans multiple abstraction levels. Hardware verification has been an
active area of research for the last few decades and softwareverification is currently
receiving renewed attention. Eventually, these now mostlydisparate fields will have to
be combined, if we are to truly verify computing systems. It is not just that it is desir-
able to have a verified hardware base for our software; many challenge problems,e.g.,
building a verified compiler [7] or operating system, inherently involve both software
and hardware.

In the remainder of this paper, we briefly expand upon some of the issues that arise
in extending current work on hardware verification to enablesoftware verification. Our
viewpoints are shaped by our recent and on-going work on automating proofs of cor-
rectness for pipelined machines, which we use as a running example.
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We start in Section 2 by considering what Dijkstra called the“pleasantness” prob-
lem: what theorems should we prove? We outline a theory of refinement, our answer to
the pleasantness problem as it pertains to pipelined machine verification, in Section 3.
We then look at pragmatics such as: what specification language to use (Section 4) and
how to automate (Section 5) and evaluate (Section 6) the results. In Section 7, we dis-
cuss some of our recent work on hardware-software co-verification. This work has led
us to start developing tools, a topic discussed in Section 8.We conclude in Section 9.

2 The Pleasantness Problem

One of the major challenges in verification is what Dijkstra called the “pleasantness”
problem [5]: how do we determine the “right” theorems to prove? For example, what
theorems establish that a device driver works correctly? Well, it depends, but it is worth
noting that the pleasantness problem can be mitigated by good design. It is also worth
noting that many problems are inherently complex. For example, what does it mean
for floating-point arithmetic to be correct? It took many years to settle on the IEEE
floating-point arithmetic standards 754 and 854, and William Kahan was awarded the
Turing award for his contributions to this effort.

Let us consider the pleasantness problem in the context of pipelined machine veri-
fication: what set of properties establishes that a pipelined machine behaves correctly?
Such a set might include a property that describes the behavior of the branch mispredic-
tion logic. This property might specify what should happen during a branch mispredict:
what instructions are invalidated, what latches are affected, how the program counter is
updated, etc. The problem with this approach is that it is notclear when one has “com-
plete coverage,” which leaves open the possibility that erroneous corner cases remain.
Another problem involves the maintenance of such properties, as any design changes
will necessitate an update of the properties. Designs will undergo numerous changes,
making the tracking of such correctness properties problematic.

For the above reasons, we use a correctness criterion based on refinement that tack-
les the pleasantness problem by taking advantage of the instruction set architecture
interface. This leads to a notion of correctness that is not affected by changes to the
pipelined machine. The idea is to show that, to an external observer, the implemen-
tation behaves in a fashion that is consistent with the specification, the much simpler
instruction set architecture. The instruction set architecture is arguably the most im-
portant interface in computer science. On the one hand, it has allowed programmers to
think in terms of a machine that executes one instruction at atime. On the other, it has
allowed hardware designers to build inherently parallel machines, with features such
as superscalar execution and deep pipelines, which simultaneously process numerous
instructions at various stages of completion.

There is still the question of what kind of refinement theoremto prove and, more
generally, the question of what correctness statements constitute a good answer to the
pleasantness problem. An important property of such correctness statements is that,
once established, they enable us to ignore the internals of the system under consider-
ation in subsequent verification efforts. For example, a suitable notion of correctness
for pipelined machines would allow us to reduce the proof that software running on a



pipelined machine satisfies its specification, to a proof that the software runs correctly
on the instruction set architecture. To actually achieve this decomposition requires a no-
tion of correctness that preserves not only safety properties, but also liveness properties.
To see why, suppose that we have a proof of correctness of the pipelined machine which
does not preserve liveness properties. Now, consider proving that a simple program, say
to sort an array of numbers, is correct. This requires a totalcorrectness proof at the in-
struction set architecture level. But, it also requires taking the details of the pipelined
machine into account in order to establish that no deadlock or livelock occurs for any
execution of this particular program. Variants of the well-known Burch and Dill notion
of correctness for pipelined machines [4] suffer from this problem [13]. The refinement
theorems we prove do not, as they preserve both safety and liveness properties.

It is especially important to prove theorems that encapsulate the behavior of systems
when many layers of abstraction are involved, as otherwise,the verification problem be-
comes unmanageable. An early pioneering body of work on the use of theorem proving
to verify systems from the netlist level up to a high-level language is the CLI stack [24].

Finally, we briefly discuss performance and dependability properties, considered by
many to be beyond the reach of formal verification. For example, how do weprove
that a microprocessor performs well? The problem with this question is that it is vague,
not that it is beyond the reach of formal methods. This is really just an instance of the
pleasantness problem. The best known methods of making the performance question
precise depend on the use of benchmarks, sets of programs meant to be “representative”
of the kinds of applications the microprocessor will be usedto run. Microprocessor
performance is then measured with respect to the benchmarks. Performance is now
very easy to reason about formally: just execute the model ofthe microprocessor on
the benchmarks and keep track of the time. Similarly, if we know what is meant by
“dependability,” then we can analyze dependability properties formally.

3 Refinement-Based Verification of Pipelined Machines

In this section we informally review the theory of refinementwe use to manage the
pleasantness problem in the context of our work on pipelinedmachine verification; for
a full account see [14, 15]. A theory of refinement defines whena concrete implementa-
tion refines (implements) an abstract specification. In applying refinement to pipelined
machine verification, the idea is to show thatMA, a machine modeled at the microarchi-
tecture level, a low level description that includes the pipeline, refinesISA, a machine
modeled at the instruction set architecture level. A refinement proof is relative to are-
finement map, r, a function fromMA states toISA states. The refinement map,r, shows
us how to view anMA state as anISA state,e.g., the refinement map has to hide theMA
components (such as the pipeline) that do not appear in theISA. ThatMA refinesISA
means that for every pair of statesw, ssuch thatw is anMA state ands= r(w), we have
that for every infinite pathσ starting ats, there is a “matching” infinite pathδ starting
at w, and conversely. Thatσ andδ “match” implies that applyingr to the states inδ
results in a sequence that is equivalent toσ up to finite stuttering (repetition of states).
This notion of refinement is based on stuttering bisimulation and implies that related
states satisfy the same next-time-free temporal logic formulas (e.g., CTL∗ \X) [2].



Stuttering is a common phenomenon when comparing systems atdifferent levels
of abstraction,e.g., if the pipeline is empty,MA will require several steps to complete
an instruction, whereasISA completes an instruction during every step. We note that
stuttering bisimulation differs from weak bisimulation [23] in that weak bisimulation
allows infinite stuttering. Distinguishing between infinite and finite stuttering is im-
portant, because (among other things) we want to distinguish deadlock (which usually
indicates an error) from stutter.

The above formulation of refinement requires reasoning about infinite paths, some-
thing that is difficult to automate [25]. WEB-refinement is an equivalent formulation
that can be more readily verified mechanically, as it only requires local reasoning in-
volving MA states, theISA states they map to under the refinement map, and their
successor states [14]. WEB-refinement is a generally applicable notion. However, since
it is based on bisimulation, it is often too strong a notion and in this case refinement
based on stutteringsimulationshould be used (see [14, 15]).

An important feature of our theory of refinement is that it is compositional. This
allows us to verify machines in stages: ifM refinesM′, which refinesM′′, thenM refines
M′′ (with respect to the composition of the refinement maps).

We have been pleasantly surprised by how many opportunitiesthere have been to
exploit the generality of our theory of refinement. For example, that the refinement
map used is just a parameter of our theory has enabled us to explore alternative re-
finement maps, some of which led to orders of magnitude improvements in verification
times [21]. That our theory is compositional has allowed us to verify complex ma-
chines one feature at a time, making it possible to obtain tremendous savings in terms
of verification times and in terms of the complexity of counterexamples when errors are
discovered [18].

4 Specification Languages

Having addressed what to prove, we next consider what specification language to use.
The available specification languages are quite varied, with foundations ranging from
higher-order logics, to first-order logics, to constructive type theory, to decidable frag-
ments of various logics, to temporal logics, etc. The main issues are not so much issues
of fundamental power, rather they are about expressivenessand convenience. A good
analogy is the situation in programming languages, where languages are judged on their
ability to effectively describe computational processes,not on their fundamental power,
as many simple languages encompass all that can be effectively computed. Similarly,
most of mathematics can be embedded in first order logic, say ZFC, and since our focus
is onmechanicalverification, any proof theory where the notion of proof is decidable
can be easily handled in a simple first-order setting.

The connection between programming languages and specification languages is
deeper than the analogies above indicate. The systems to be verified are written in a
particular programming language. To verify such systems, we must be able to embed
the programming language in our specification language. In fact, some specification
languages are just extensions of a programming language,e.g., ACL2 [9, 11] can be
thought of in this way, as it allows any ACL2 program to be usedas part of a specifica-



tion. This makes it simpler for a single person to both write code and be involved in the
verification process, something that we expect will eventually become routine practice.
We also expect that new languages will eventually be developed with verification as
a first-class concern: they will have formal semantics, a proof theory, various libraries
and APIs providing basic verification functionality, proofcheckers, theorem provers,
verified modules and libraries, etc. In fact, now seems like agood time to create such
a language, something that will require researchers with expertise in programming lan-
guages and verification.

In our work, we found it important to have a general-purpose specification language
that allows us to clearly state the theorems of interest, that allows us to efficiently exe-
cute and test models, that has structuring mechanisms to manage large scale verification
efforts, and that has existing libraries of theories. It is also important that the theorem
proving engines used are highly efficient. This topic is discussed in more detail in the
next section. We did not find a single tool that suited all our needs and decided to inte-
grate UCLID with ACL2, as we discuss in Section 8.

5 Automation

A major verification challenge concerns automation. While itis not possible to build a
general system which given a theorem produces a proof, it is possible to build, tune, or
extend systems so that they can be used in a highly automated fashion on a sufficiently
restricted class of problems.

As an example, we consider our experiences with pipelined machine verification.
Applying our refinement theorem requires, among other considerations, the construc-
tion of a suitable refinement map and well-founded rank functions. While there is no
general recipe for doing this, we have been exploring how to automate these construc-
tions in the context of pipelined machine verification. The main idea is to discover
widely applicable schemes that can be easily (even mechanically) specialized for the
particular machine in question. The commitment refinement map [13, 14] is an exam-
ple of a refinement map that can be easily specialized for particular machines. This map
produces an instruction set architecture state from a pipelined machine state by sim-
ply invalidating all the partially executed instructions and projecting out the instruction
set architecture components. An inductive invariant is required, but here, too, a general
scheme can be given: a state satisfies the invariant if, afterinvalidating all of its par-
tially executed instructions, we can reach an equivalent state within a fixed number of
steps determined by the pipeline length. Finally, a rank function is needed and, again, a
general scheme is used that gives the number of steps the pipelined machine must take
before it changes state visible at the instruction set architecture level.

The next step is to simplify the statement of the refinement theorem. Here too, we
can specialize and simplify matters by strengthening the main refinement proof obli-
gation. The result is a formula expressible in the CLU logic [3], which can be decided
by the UCLID tool [12]. The major restriction is that the models we use are at the
term level: they abstract away the datapath, require the use of numerous abstractions,
implement a small subset of the instruction set, and are far from executable.



Using the WEB-refinement framework as described up to this point has allowed us
to significantly extend what can be done in a highly automatedfashion. For example,
a big advantage over previous work is that we can handle liveness; in fact, we show
that with our approach the time spent proving liveness accounts for only 5% of the total
verification time [16].

We discovered that the refinement maps used for pipelined machine verification
can have a drastic impact on verification times. This led to the introduction of a new
method of defining the commitment refinement map which gives a30-fold improvement
in verification times over the standard flushing and commitment refinement maps [19].
We also discovered a new class of refinement maps, that partlycommit and partly flush,
that can provide several orders of magnitude improvements in verification times over
pure flushing or pure commitment refinement maps [21].

All of the above work can be automated. In fact, we have a Web-based tool for gen-
erating complex pipelined machine models, including the correctness statements [20].

We end this section with a final example showing how to leverage the composi-
tional nature of our theory of refinement. We developed a set of convenient, easily-
applicable, and complete compositional proof rules and showed how this allows us to
greatly extend the applicability of decision procedures byverifying a complex, deeply
pipelined machine that state-of-the-art tools cannot currently handle. Our approach al-
lows us to reduce the previous monolithic approaches to pipelined machine verification
into a sequence of much simpler refinement steps. Not only arethere benefits in terms
of verification times, but even counterexamples are generally much simpler [18].

6 Evaluation

Any verification effort will invariably require many decisions, including which speci-
fication language to use, what theorems to prove, what theoryto develop, etc. In this
section, we make some observations about the evaluation of such efforts and advocate
the use of end-to-end evaluations.

We start with a list of basic evaluation questions. First, what was mechanically
verified and at what level? For example, there is a big gap between the trivial proof
that an abstract floating-point adder is correct and a proof that a netlist description
of the floating-point adder in a current microprocessor is correct. The devilis in the
details. In addition, it often seems that work which dependson special paper and pencil
“meta” theorems is valued more than work which develops suchtheorems inside a
formal framework. But, if the point is to mechanically verify as much as possible, the
latter approach should be preferred, even if it was not “automatic.”

Another basic question is: how much human effort was required? Measuring this
can be subtle, but the practice of classifying methods as either being “fully” automatic
or not is counterproductive. For example, we have found thataspects of our work that
are considered “automatic” by the research community (e.g., defining refinement maps)
have taken far longer than aspects that are not considered automatic (e.g., defining in-
variants). One should account for all user time, including the time to define and for-
malize the problem and to determine and mechanically verifythe theorems constituting
correctness.



Claims by authors should be backed up with enough data to replicate the work
reported. This is a basic rule of science that is too often ignored. If there is a good
reason why the data cannot be released, then every effort to release a sanitized version
of the reported work should be made. When we co-edited a book onthe applications of
ACL2 [8], we required every submission to include ACL2 proofscripts justifying every
formal claim made. This material is available on the Web [10]. For example, Russinoff
and Flatau used ACL2 to verify several of the floating-point arithmetic operations in the
AMD Athlon processor. Obviously, AMD did not want to releasethese proof scripts, as
they contain Athlon floating-point designs. However, the authors were able to release a
precise description of their RTL language and the library oftheorems used. They also
defined, verified, and released a sanitized version of the floating-point multiplier [26].
Others researchers who could neither release their proof scripts nor produce sanitized
versions of their work were not able to contribute.

As a general principle, the evaluation of verification efforts should focus on end-
to-end arguments. By this we mean that the stated contribution should be related to the
larger context in which the verification is taking place. Forexample, consider a paper
that shows how abstractionα leads to faster verification times than abstractionβ. How-
ever, if abstractionα is harder to mechanically justify than abstractionβ, then from an
end-to-end perspective, the use of abstractionα is a net loss. As another example, a neg-
ative end-to-end evaluation of a method that provides increased automation is possible
under various scenarios,e.g., the method may require a complex preprocessing step,
or may generate counterexamples that are hard to understand, or may require extensive
tool support, etc.

The end-to-end evaluation should also consider how the workcan be used in the
context of long-term verification. For example, there are often one-time verification
costs such as embedding the semantics of some language into atheorem prover or
developing a library of theorems applicable to a wide class of related problems. The
floating-point work we mentioned previously is a good example, as these one-time
costs were leveraged in subsequent verification efforts, leading to drastic reductions
in manual effort required to verify subsequent floating-point operations.

7 Hardware Verification that Enables Software Verification

Recently, we have started thinking about how to prove that low-level programs exe-
cuting on a pipelined machine behave correctly. The idea is to use WEB-refinement
to prove that software running on a pipelined machine satisfies its specification by
first proving that the pipelined machine refines the instruction set architecture and then
showing that the software running on the instruction set architecture satisfies its spec-
ification. But, this requires the use of executable pipelined machine models, because
the correctness of software depends on the semantics of instructions. However, in order
to take advantage of decision procedures, previous work on hardware verification has
focused on term level models that abstract away the datapath, require the use of nu-
merous abstractions, implement a small subset of the instruction set, and are far from
executable. To bridge the gap between term level models and bit-level, executable mod-



els is a major challenge, requiring that all of the abstractions employed in term level
modeling are mechanically justified. We now briefly discuss the issues.

First, term-level models abstract away the datapath, hiding much of the real com-
plexity in an executable model. For example, decoding is modeled using a set of un-
interpreted functions. However, decoders for bit-level machines are complicated and
notoriously difficult to get right in modern designs.

Even the ALU is modeled using uninterpreted functions, but to prove theorems
about software, we need a model of the machine in which the ALUis interpreted.

Another form of abstraction concerns the instruction set itself, which is abstracted
away by only modeling one instruction per instruction class. But, again, we really need
a model with the full instruction set in order to verify software.

The refinement theorem cannot be expressed in UCLID. Instead, we check what we
call the “core theorem,” whose proof accounts for most of theverification time. The
core theorem requires “polluting” both the pipelined machine and the instruction set
architecture by adding extra inputs, control logic, and state to control when and how the
refinement map is applied, among other things. This is quite complicated and it is easy
to introduce errors, as we have often discovered. A proof is required to show that refine-
ment proofs based on polluted models imply refinement proofsfor the original models.

As a final example, we consider branch prediction. Branch prediction schemes are
sometimes abstracted using an integer to represent the state of the branch predictor and
uninterpreted functions which, given the current state of the branch predictor, return
the next state and a guess (taken or not) [27]. This seems simple enough, but using
this abstraction turns out to be quite cumbersome. Here’s why. The branch predictor
depends on the program counter, which depends on the programwe are executing and
if all we have is one integer to represent the state of the branch predictor, we have to use
some kind of G̈odel encoding scheme to encode the state of the machine with asingle
integer. The amount of work required to justify the abstraction is more than the savings
it provides. Furthermore, if we have an infinite memory, thisabstraction is not sound. A
much simpler abstraction which is easily justified just makes nondeterministic choices.

We end with two final observations. First, having an efficiently executable pipelined
machine can be quite useful in industrial settings, as it makes it possible to have a
single “golden” reference model that can be used both for simulation-based testing and
for formal verification. For example, Rockwell Collins usedACL2 to develop, test, and
validate executable, bit- and cycle-accurate microprocessor models that ran at close to C
speeds [6]. Second, as mentioned in Section 2, it is crucial that the notion of refinement
used for hardware-software co-verification preserves liveness properties.

8 Tools

Addressing the above issues requires the use of a tool that can describe executable bit-
level designs, can reason about total correctness, can manage the proof process, etc.
ACL2 or any industrial-strength theorem prover can be used for this purpose. However,
specialized decision procedures have the potential to significantly extend what can be
handled automatically. For example, in one experiment, a proof that took about 3 sec-
onds with UCLID required 1512 days with ACL2 [17]. We therefore integrated UCLID



with ACL2, and were able to use ACL2 to reduce the proof that anexecutable, bit-level
machine refines its instruction set architecture to a proof that a term level abstraction
of the bit-level machine refines the instruction set architecture, which is then handled
automatically by UCLID. We also used our system to develop, execute, test, and verify
a dynamic programming solution to the Knapsack problem. Thus, we can exploit the
strengths of the two systems to prove theorems that are not possible to even state using
UCLID and that would require heroic efforts using just ACL2 [22].

An interesting observation is that verification tools have matured to the point where
they can handle complex enough subproblems to make the kind of coarse-grained inte-
gration described above worthwhile. This allows us to avoidthe well-known problems
with fine-grained integration [1]. We see many opportunities currently for this kind of
tool integration,e.g., we are currently looking at combining static analysis techniques
with theorem proving.

9 Conclusions

Building truly reliable systems will require hardware-software co-verification. In this
paper we have outlined some of the issues, challenges, and opportunities, using as a
running example our recent work on automating refinement proofs involving pipelined
machines.
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