
Using Positive Tainting and Syntax-Aware Evaluation
to Counter SQL Injection Attacks

William G.J. Halfond, Alessandro Orso, and Panagiotis Manolios
College of Computing – Georgia Institute of Technology

{whalfond, orso, manolios}@cc.gatech.edu

ABSTRACT
SQL injection attacks pose a serious threat to the security of Web
applications because they can give attackers unrestricted access to
databases that contain sensitive information. In this paper, we pro-
pose a new, highly automated approach for protecting existing Web
applications against SQL injection. Our approach has both concep-
tual and practical advantages over most existing techniques. From
the conceptual standpoint, the approach is based on the novel idea
of positive tainting and the concept of syntax-aware evaluation.
From the practical standpoint, our technique is at the same time pre-
cise and efficient and has minimal deployment requirements. The
paper also describes WASP, a tool that implements our technique,
and a set of studies performed to evaluate our approach. In the stud-
ies, we used our tool to protect several Web applications and then
subjected them to a large and varied set of attacks and legitimate
accesses. The evaluation was a complete success: WASP success-
fully and efficiently stopped all of the attacks without generating
any false positives.

Categories and Subject Descriptors: D.2.0 [Software Engineer-
ing]: General—Protection mechanisms;

General Terms: Security

Keywords: SQL injection, dynamic tainting, runtime monitoring

1. INTRODUCTION
SQL injection attacks (SQLIAs) are one of the major security

threats for Web applications [5]. Successful SQLIAs can give at-
tackers access to and even control of the databases that underly
Web applications, which may contain sensitive or confidential in-
formation. Despite the potential severity of SQLIAs, many Web
applications remain vulnerable to such attacks.

In general, SQL injection vulnerabilities are caused by inade-
quate input validation within an application. Attackers take ad-
vantage of these vulnerabilities by submitting input strings that
contain specially-encoded database commands to the application.
When the application builds a query using these strings and sub-
mits the query to its underlying database, the attacker’s embedded

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’06/FSE-14, November 5–11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011 ...$5.00.

commands are executed by the database, and the attack succeeds.
Although this general mechanism is well understood, straightfor-
ward solutions based on defensive coding practices have been less
than successful for several reasons. First, it is difficult to imple-
ment and enforce a rigorous defensive coding discipline. Second,
many solutions based on defensive coding address only a subset
of the possible attacks. Finally, defensive coding is problematic
in the case of legacy software because of the cost and complex-
ity of retrofitting existing code. Researchers have proposed a wide
range of alternative techniques to address SQLIAs, but many of
these solutions have limitations that affect their effectiveness and
practicality.

In this paper we propose a new, highly automated approach for
dynamic detection and prevention of SQLIAs. Intuitively, our ap-
proach works by identifying “trusted” strings in an application and
allowing only these trusted strings to be used to create certain parts
of an SQL query, such as keywords or operators. The general mech-
anism that we use to implement this approach is based on dynamic
tainting, which marks and tracks certain data in a program at run-
time.

The kind of dynamic tainting we use gives our approach several
important advantages over techniques based on different mecha-
nisms. Many techniques rely on complex static analyses in order to
find potential vulnerabilities in code (e.g., [9, 15, 26]). These kinds
of conservative static analyses can generate high rates of false posi-
tives or may have scalability issues when applied to large, complex
applications. Our approach does not rely on complex static anal-
yses and is very efficient and precise. Other techniques involve
extensive human effort (e.g., [4, 18, 24]). They require developers
to manually rewrite parts of their applications, build queries using
special libraries, or mark all points in the code at which malicious
input could be introduced. In contrast, our approach is highly auto-
mated and in most cases requires minimal or no developer interven-
tion. Lastly, several proposed techniques require the deployment of
extensive infrastructure or involve complex configurations (e.g., [2,
23, 25]). Our approach does not require additional infrastructure
and can be deployed automatically.

Compared to other existing techniques based on dynamic taint-
ing (e.g., [8, 20, 21]), our approach makes several conceptual and
practical improvements that take advantage of the specific char-
acteristics of SQLIAs. The first conceptual advantage of our ap-
proach is the use of positive tainting. Positive tainting identifies
and tracks trusted data, whereas traditional (“negative”) tainting fo-
cuses on untrusted data. In the context of SQLIAs, there are sev-
eral reasons why positive tainting is more effective than negative
tainting. First, in Web applications, trusted data sources can be
more easily and accurately identified than untrusted data sources;
therefore, the use of positive tainting leads to increased automation.

Second, the two approaches differ significantly in how they are af-
fected by incompleteness. With negative tainting, failure to identify
the complete set of untrusted data sources would result in false neg-
atives, that is, successful undetected attacks. With positive tainting,
conversely, missing trusted data sources would result in false pos-
itives, which are undesirable, but whose presence can be detected
immediately and easily corrected. In fact, we expect that most false
positives would be detected during pre-release testing. The second
conceptual advantage of our approach is the use of flexible syntax-
aware evaluation, which gives developers a mechanism to regulate
the usage of string data based not only on its source, but also on its
syntactical role in a query string. In this way, developers can use
a wide range of external input sources to build queries, while pro-
tecting the application from possible attacks introduced via these
sources.

The practical advantages of our approach are that it imposes a
low overhead on the application and has minimal deployment re-
quirements. Efficiency is achieved by using a specialized library,
called MetaStrings, that accurately and efficiently assigns and tracks
trust markings at runtime. The only deployment requirements for
our approach are that the Web application must be instrumented
and deployed with our MetaStrings library, which is done auto-
matically. The approach does not require any customized runtime
system or additional infrastructure.

In this paper, we also present the results of an extensive empiri-
cal evaluation of the effectiveness and efficiency of our technique.
To perform this evaluation, we implemented our approach in a tool
called WASP (Web Application SQL-injection Preventer) and eval-
uated WASP on a set of seven Web applications of various types and
sizes. For each application, we protected it with WASP, targeted it
with a large set of attacks and legitimate accesses, and assessed the
ability of our technique to detect and prevent attacks without stop-
ping legitimate accesses. The results of the evaluation are promis-
ing; our technique was able to stop all of the attacks without gener-
ating false positives for any of the legitimate accesses. Moreover,
our technique proved to be efficient, imposing only a low overhead
on the Web applications.
The main contributions of this work are:

• A new, automated technique for preventing SQLIAs based on
the novel concept of positive tainting and on flexible syntax-
aware evaluation.

• A mechanism to perform efficient dynamic tainting of Java
strings that precisely propagates trust markings while strings
are manipulated at runtime.

• A tool that implements our SQLIA prevention technique for
Java-based Web applications and has minimal deployment
requirements.

• An empirical evaluation of the technique that shows its ef-
fectiveness and efficiency.

The rest of this paper is organized as follows. In Section 2, we
introduce SQLIAs with an example that is used throughout the pa-
per. Sections 3 and 4 discuss the approach and its implementation.
Section 5 presents the results of our evaluation. We discuss related
work in Section 6 and conclude in Section 7.

2. SQL INJECTION ATTACKS
Intuitively, an SQL Injection Attack (SQLIA) occurs when an

attacker changes the developer’s intended structure of an SQL com-
mand by inserting new SQL keywords or operators. (Su and Wasser-
mann provide a formal definition of SQLIAs in [24].) SQLIAs
leverage a wide range of mechanisms and input channels to inject

1. String login = getParameter("login");
2. String pin = getParameter("pin");
3. Statement stmt = connection.createStatement();
4. String query = "SELECT acct FROM users WHERE login=’";
5. query += login + "’ AND pin=" + pin;
6. ResultSet result = stmt.executeQuery(query);
7. if (result != null)
8. displayAccount(result); // Show account
9. else
10. sendAuthFailed(); // Authentication failed

Figure 1: Excerpt of a Java servlet implementation.

malicious commands into a vulnerable application [10]. In this sec-
tion we introduce an example application that contains an SQL in-
jection vulnerability and show how an attacker can leverage the vul-
nerability to perform an SQLIA. Note that the example represents
an extremely simple kind of attack, and we present it for illustra-
tive purposes only. Interested readers may refer to References [1]
and [10] for further examples of the different types of SQLIAs.

The code excerpt in Figure 1 represents the implementation of lo-
gin functionality that we can find in a typical Web application. This
type of login function would commonly be part of a Java servlet, a
type of Java application that runs on a Web application server, and
whose execution is triggered by the submission of a URL from a
user of the Web application. The servlet in the example uses the
input parameters login and pin to dynamically build an SQL
query or command.1 The login and pin are checked against the
credentials stored in the database. If they match, the correspond-
ing user’s account information is returned. Otherwise, a null set is
returned by the database and the authentication fails. The servlet
then uses the response from the database to generate HTML pages
that are sent back to the user’s browser by the the Web server.

Given the servlet code, if a user submits login and pin as
“doe” and “123,” the application dynamically builds the query:

SELECT acct FROM users WHERE login=’doe’ AND pin=123

If login and pin match the corresponding entry in the database,
doe’s account information is returned and then displayed by func-
tion displayAccount(). If there is no match in the database,
function sendAuthFailed() displays an appropriate error mes-
sage. An application that uses this servlet is vulnerable to SQLIAs.
For example, if an attacker enters “admin’ --” as the user name
and any value as the pin (e.g., “0”), the resulting query is:

SELECT acct FROM users WHERE login=’admin’ -- ’ AND pin=0

In SQL, “--” is the comment operator, and everything after it is
ignored. Therefore, when performing this query, the database sim-
ply searches for an entry where login is equal to admin and
returns that database record. After the “successful” login, the func-
tion displayAccount() would therefore reveal the admin’s
account information to the attacker.

3. OUR APPROACH
Our approach is based on dynamic tainting, which has been widely

used to address security problems related to input validation. Tra-
ditional dynamic tainting approaches mark certain untrusted data
(typically, user input) as tainted, track the flow of tainted data at
runtime, and prevent this data from being used in potentially harm-
ful ways. Our approach makes several conceptual and practical im-
provements over traditional dynamic-tainting approaches by tak-
ing advantage of the characteristics of SQLIAs. First, unlike any
existing dynamic tainting techniques that we are aware of, our ap-

1For simplicity, in the rest of this paper we use the terms query and
command interchangeably.

proach is based on the novel concept of positive tainting—the iden-
tification and marking of trusted instead of untrusted data. Sec-
ond, our approach performs accurate taint propagation by pre-
cisely tracking trust markings at the character level. Third, it per-
forms syntax-aware evaluation of query strings before they are sent
to the database and blocks all queries whose non-literal parts (i.e.,
SQL keywords and operators) contain one or more characters with-
out trust markings. Finally, our approach has minimal deployment
requirements, which makes it both practical and portable. The fol-
lowing sections discuss the key features of our approach in detail.

3.1 Positive Tainting
Positive tainting differs from traditional tainting (hereafter, neg-

ative tainting) because it is based on the identification, marking,
and tracking of trusted, rather than untrusted, data. This concep-
tual difference has significant implications for the effectiveness of
our approach, in that it helps address problems caused by incom-
pleteness in the identification of relevant data to be marked. Incom-
pleteness, which is one of the major challenges when implementing
a security technique based on dynamic tainting, has very different
consequences in negative and positive tainting. In the case of neg-
ative tainting, incompleteness leads to trusting data that should not
be trusted and, ultimately, to false negatives. Incompleteness may
thus leave the application vulnerable to attacks and can be very
difficult to detect even after attacks occur. With positive tainting,
incompleteness may lead to false positives, but never results in an
SQLIA escaping detection. Moreover, as explained below, the false
positives generated by our approach are likely to be detected and
easily eliminated early, during pre-release testing. Positive taint-
ing follows the general principle of fail-safe defaults as outlined by
Saltzer and Schroeder in [22]: in case of incompleteness, positive
tainting fails in a way that maintains the security of the system.

In the context of preventing SQLIAs, these conceptual advan-
tages of positive tainting are especially significant. The way in
which Web applications create SQL commands makes the iden-
tification of all untrusted data especially problematic and, most im-
portantly, the identification of all trusted data relatively straightfor-
ward. Web applications are deployed in many different configura-
tions and interface with a wide range of external systems. There-
fore, there are often many potential external untrusted sources of
input to be considered for these applications, and enumerating all
of them is inherently difficult and error-prone. For example, de-
velopers initially assumed that only direct user input needed to be
marked as tainted. Subsequent exploits demonstrated that addi-
tional input sources, such as browser cookies and uploaded files,
also needed to be considered. However, accounting for these ad-
ditional input sources did not completely solve the problem either.
Attackers soon realized the possibility of leveraging local server
variables and the database itself as injection sources [1]. In general,
it is difficult to guarantee that all potentially harmful data sources
have been considered, and even a single unidentified source could
leave the application vulnerable to attacks.

The situation is different for positive tainting because identifying
trusted data in a Web application is often straightforward, and al-
ways less error prone. In fact, in most cases, strings hard-coded in
the application by developers represent the complete set of trusted
data for a Web application.2 The reason for this is that it is com-
mon practice for developers to build SQL commands by combining
hard-coded strings that contain SQL keywords or operators with
user-provided numeric or string literals. For Web applications de-

2We assume that developers are trustworthy. An attack encoded by
a developer would not be an SQLIA but a form of back-door attack,
which is not the problem addressed in this paper.

veloped in this way, which includes the applications used in our
empirical evaluation, our approach accurately and automatically
identifies all SQLIAs and generates no false positives; our basic ap-
proach, as explained in the following sections, automatically marks
as trusted all hard-coded strings in the code and then ensures that
all SQL keywords and operators are built using trusted data.

In some cases, this basic approach is not enough because de-
velopers can also use external query fragments—partial SQL com-
mands coming from external input sources—to build queries. Be-
cause these string fragments are not hard-coded in the application,
they would not be part of the initial set of trusted data identified
by our approach, and the approach would generate false-positives
when the string fragments are used in a query. To account for
these cases, our technique provides developers with a mechanism
to specify additional sources of external data that should be trusted.
The data sources can be of various types, such as files, network con-
nections, and server variables. Our approach uses this information
to mark data coming from these additional sources as trusted.

In a typical scenario, we expect developers to specify most of the
trusted sources beforehand. However, some of these sources might
be overlooked until after a false positive is reported, in which case
developers would add the omitted data source to the list of trusted
sources. In this process, the set of trusted data sources grows mono-
tonically and eventually converges to a complete set that produces
no false positives. It is important to note that false positives that
occur after deployment would be due to the use of external data
sources that have never been used during in-house testing. In other
words, false positives are likely to occur only for totally untested
parts of the application. Therefore, even when developers fail to
completely identify and mark additional sources of trusted input
beforehand, we expect these sources to be identified during nor-
mal testing of the application, and the set of trusted data to quickly
converge to the complete set.

3.2 Accurate Taint Propagation
Taint propagation consists of tracking taint markings associated

with the data while the data is used and manipulated at runtime.
When tainting is used for security-related applications, it is es-
pecially important for the propagation to be accurate. Inaccurate
propagation can undermine the effectiveness of a technique by as-
sociating incorrect markings to data, which would cause the data
to be mishandled. In our approach, we provide a mechanism to ac-
curately mark and propagate taint information by (1) tracking taint
markings at a low level of granularity and (2) precisely accounting
for the effect of functions that operate on the tainted data.

Character-level tainting. We track taint information at the
character level rather than at the string level. We do this because,
for building SQL queries, strings are constantly broken into sub-
strings, manipulated, and combined. By associating taint informa-
tion to single characters, our approach can precisely model the ef-
fect of these string operations.

Accounting for string manipulations. To accurately main-
tain character-level taint information, we must identify all relevant
string operations and account for their effect on the taint markings
(i.e., we must enforce complete mediation of all string operations).
Our approach achieves this goal by taking advantage of the encap-
sulation offered by object-oriented languages, and in particular by
Java, in which all string manipulations are performed using a small
set of classes and methods. Our approach extends all such classes
and methods by adding functionality to update taint markings based
on the methods’ semantics.

We discuss the language specific details of our implementation
of the taint markings and their propagation in Section 4.

3.3 Syntax-Aware Evaluation
Besides ensuring that taint markings are correctly created and

maintained during execution, our approach must be able to use the
taint markings to distinguish legitimate from malicious queries. An
approach that simply forbids the use of untrusted data in SQL com-
mands is not a viable solution because it would flag any query that
contains user input as an SQLIA, leading to many false positives.
To address this shortcoming, researchers have introduced the con-
cept of declassification, which permits the use of tainted input as
long as it has been processed by a sanitizing function. (A sanitiz-
ing function is typically a filter that performs operations such as
regular expression matching or sub-string replacement.) The idea
of declassification is based on the assumption that sanitizing func-
tions are able to eliminate or neutralize harmful parts of the input
and make the data safe. However, in practice, there is no guaran-
tee that the checks performed by a sanitizing function are adequate.
Tainting approaches based on declassification could therefore gen-
erate false negatives if they mark as trusted supposedly-sanitized
data that is in fact still harmful. Moreover, these approaches may
also generate false positives in cases where unsanitized, but per-
fectly legal input is used within a query.

Syntax-aware evaluation does not depend on any (potentially un-
safe) assumptions about the effectiveness of sanitizing functions
used by developers. It also allows for the use of untrusted input
data in an SQL query as long as the use of such data does not cause
an SQLIA. The key feature of syntax-aware evaluation is that it
considers the context in which trusted and untrusted data is used
to make sure that all parts of a query other than string or numeric
literals (e.g., SQL keywords and operators) consist only of trusted
characters. As long as untrusted data is confined to literals, we are
guaranteed that no SQLIA can be performed. Conversely, if this
property is not satisfied (e.g., if an SQL operator contains charac-
ters not marked as trusted), we can assume that the operator has
been injected by an attacker and block the query.

Our technique performs syntax-aware evaluation of a query string
immediately before the string is sent to the database to be executed.
To evaluate the query string, the technique first uses an SQL parser
to break the string into a sequence of tokens that correspond to
SQL keywords, operators, and literals. The technique then iter-
ates through the tokens and checks whether tokens (i.e., substrings)
other than literals contain only trusted data. If all of the tokens
pass this check, the query is considered safe and allowed to exe-
cute. As discussed in Section 3.1, this approach can also handle
cases where developers use external query fragments to build SQL
commands. In these cases, developers would specify which exter-
nal data sources must be trusted, and our technique would mark and
treat data coming from these sources accordingly.

This default approach, which (1) considers only two kinds of
data (trusted and untrusted) and (2) allows only trusted data to form
SQL keywords and operators, is adequate for most Web applica-
tions. For example, it can handle applications where parts of a
query are stored in external files or database records that were cre-
ated by the developers. Nevertheless, to provide greater flexibility
and support a wide range of development practices, our technique
also allows developers to associate custom trust markings to differ-
ent data sources and provide custom trust policies that specify the
legal ways in which data with certain trust markings can be used.
Trust policies are functions that take as input a sequence of SQL to-
kens and perform some type of check based on the trust markings
associated with the tokens.

BUGZILLA (http://www.bugzilla.org) is an example
of a Web application for which developers might wish to spec-
ify a custom trust marking and policy. In BUGZILLA, parts of
queries used within the application are retrieved from a database
when needed. Of particular concern to developers, in this scenario,
is the potential for second-order injection attacks [1] (i.e., attacks
that inject into a database malicious strings that result in an SQLIA
only when they are later retrieved and used to build SQL queries).
In the case of BUGZILLA, the only sub-queries that should origi-
nate from the database are specific predicates that form a query’s
WHERE clause. Using our technique, developers could first create
a custom trust marking and associate it with the database’s data
source. Then, they could define a custom trust policy that speci-
fies that data with such custom trust marking are legal only if they
match a specific pattern, such as the following:

(id|severity)=’\w+’ ((AND|OR) (id|severity)=’\w+’)*

When applied to sub-queries originating from the database, this
policy would allow them to be used only to build conditional clauses
that involve the id or severity fields and whose parts are con-
nected using the AND or OR keywords.

3.4 Minimal Deployment Requirements
Most existing approaches based on dynamic tainting require the

use of customized runtime systems and/or impose a considerable
overhead on the protected applications (see Section 6). On the con-
trary, our approach has minimal deployment requirements and is
efficient, which makes it practical for usage in real settings. The
use of our technique does not necessitate a customized runtime sys-
tem. It requires only minor, localized instrumentation of the appli-
cation to (1) enable the usage of our modified string library and (2)
insert the calls that perform syntax-aware evaluation of a query be-
fore the query is sent to the database. The protected application is
then deployed as any normal Web application, except that the de-
ployment must include our string library. Both instrumentation and
deployment are fully automated. We discuss deployment require-
ments and overhead of the approach in greater detail in Sections 4.5
and 5.3.

4. IMPLEMENTATION
To evaluate our approach, we developed a prototype tool called

WASP (Web Application SQL Injection Preventer) that is written
in Java and implements our technique for Java-based Web appli-
cations. We chose to target Java because it is a commonly-used
language for developing Web applications. Moreover, we already
have a significant amount of analysis and experimental infrastruc-
ture for Java applications. We expect our approach to be applicable
to other languages as well.

Figure 2 shows the high-level architecture of WASP. As the fig-
ure shows, WASP consists of a library (MetaStrings) and two core
modules (STRING INITIALIZER AND INSTRUMENTER and STRING
CHECKER). The MetaStrings library provides functionality for as-
signing trust markings to strings and precisely propagating the mark-
ings at runtime. Module STRING INITIALIZER AND INSTRUMENTER
instruments Web applications to enable the use of the MetaStrings
library and add calls to the STRING CHECKER module. Module
STRING CHECKER performs syntax-aware evaluation of query strings
right before the strings are sent to the database.

In the next sections, we discuss WASP’s modules in more detail.
We use the sample code introduced in Section 2 to provide illustra-
tive examples of various implementation aspects.

Additional
Trusted Sources

and Markings
MetaStrings

library

Web
Application

String Initializer
and

Instrumenter

String
Checker

Protected
Web

Application
Database

URL HTML

SQLIA

Legitimate Query

Data

Additional Trust
Policies

Developer

Users

WASP

Figure 2: High-level overview of the approach and tool.

4.1 The MetaStrings Library
MetaStrings is our library of classes that mimic and extend the

behavior of Java’s standard string classes (i.e., Character, Stri-
ng, StringBuilder, and StringBuffer).3 For each string
class C, MetaStrings provides a “meta” version of the class, MetaC,
that has the same functionality as C, but allows for associating
metadata with each character in a string and tracking the metadata
as the string is manipulated at runtime.

The MetaStrings library takes advantage of the object-oriented
features of the Java language to provide complete mediation of
string operations that could affect string values and their associ-
ated trust markings. Encapsulation and information hiding guaran-
tee that the internal representation of a string class is accessed only
through the class’s interface. Polymorphism and dynamic binding
let us add functionality to a string class by (1) creating a subclass
that overrides all methods of the original class and (2) replacing in-
stantiations of the original class with instantiations of the subclass.

As an example, Figure 3 shows an intuitive view of the MetaS-
trings class that corresponds to Java’s String class. As the figure
shows, MetaString extends class String, has the same inter-
nal representation, and provides the same methods. MetaString
also contains additional data structures for storing metadata and as-
sociating the metadata with characters in the string. Each method of
class MetaString overrides the corresponding method in Stri-
ng, providing the same functionality as the original method, but
also updating the metadata based on the method’s semantics. For
example, a call to method substring(2,4) on an object str of
class MetaString would return a new MetaString that con-
tains the second and third characters of str and the correspond-
ing metadata. In addition to the overridden methods, MetaStrings

3For simplicity, hereafter we use the term string to refer to all
string-related classes and objects in Java.

classes also provide methods for setting and querying the metadata
associated with a string’s characters.

The use of MetaStrings has the following benefits: (1) it allows
for associating trust markings at the granularity level of single char-
acters; (2) it accurately maintains and propagates trust markings;
(3) it is defined completely at the application level and therefore
does not require a customized runtime system; (4) its usage requires
only minimal and automatically performed changes to the applica-
tion’s bytecode; and (5) it imposes a low execution overhead on the
Web application (See Section 5.3).

The main limitations of the current implementation of the MetaS-
trings library are related to the handling of primitive types, native
methods, and reflection. MetaStrings cannot currently assign trust
markings to primitive types, so it cannot mark char values. Be-
cause we do not instrument native methods, if a string class is
passed as an argument to a native method, the trust marking associ-
ated with the string might not be correct after the call. In the case of
hard-coded strings created through reflection (by invoking a string
constructor by name), our instrumenter for MetaStrings would not
recognize the constructors and would not change these instantia-
tions to instantiations of the corresponding meta classes. However,
the MetaStrings library can handle most other uses of reflection,
such as invocation of string methods by name.

In practice, these limitations are of limited relevance because
they represent programming practices that are not normally used
to build SQL commands (e.g., representing strings using primitive
char values). Moreover, during instrumentation of a Web applica-
tion, we identify and report these potentially problematic situations
to the developers.

4.2 Initialization of Trusted Strings
To implement positive tainting, WASP must be able to identify

and mark trusted strings. There are three categories of strings that

[f][o][o]...[r]

String

method1
...

method n

[f][o][o]...[r] (inherited)

MetaString

method 1

setMetadata

markAll

...
method n

Metadata

...

Update Policies

getMetadata

...

Figure 3: Intuitive view of a MetaStrings library class.

WASP must consider: hard-coded strings, strings implicitly created
by Java, and strings originating from external sources. In the fol-
lowing sections, we explain how strings from each category are
identified and marked.

Hard-Coded Strings. The identification of hard-coded strings
in an application’s bytecode is a fairly straightforward process. In
Java, hard-coded strings are represented using String objects that
are created automatically by the Java Virtual Machine (JVM) when
string literals are loaded onto the stack. (The JVM is a stack-based
interpreter.) Therefore, to identify hard-coded strings, WASP sim-
ply scans the bytecode and identifies all load instructions whose
operand is a string constant. WASP then instruments the code by
adding, after each of these load instructions, code that creates an
instance of a MetaString class using the hard-coded string as
an initialization parameter. Finally, because hard-coded strings are
completely trusted, WASP adds to the code a call to the method of
the newly created MetaString object that marks all characters
as trusted. At runtime, polymorphism and dynamic binding allow
this instance of the MetaString object to be used in any place where
the original String object would have been used.

Figure 4 shows an example of this bytecode transformation. The
Java code at the top of the figure corresponds to line 4 of our servlet
example (see Figure 1), which creates one of the hard-coded strings
in the servlet. Underneath, we show the original bytecode (left),
and the modified bytecode (right). The modified bytecode contains
additional instructions that (1) load a new MetaString object on
the stack, (2) call the MetaString constructor using the previous
string as a parameter, and (3) call the method markAll, which
assigns the given trust marking to all characters in the string.

Implicitly-Created Strings. In Java programs, the creation of
some string objects is implicitly added to the bytecode by the com-
piler. For example, Java compilers typically translate the string
concatenation operator (“+”) into a sequence of calls to the append

method of a newly-created StringBuilder object. WASP must
replace these string objects with their corresponding MetaStrings
objects so that they can maintain and propagate the trust markings
of the strings on which they operate. To do this, WASP scans the
bytecode for instructions that create new instances of the string
classes used to perform string manipulation and modifies each such
instruction so that it creates an instance of the corresponding MetaS-
trings class instead. In this case, WASP does not associate any trust
markings with the newly-created MetaStrings objects. These ob-
jects are not trusted per se, and they become marked only if the
actual values assigned to them during execution are marked.

Figure 5 shows the instrumentation added by WASP for implicitly-
created strings. The Java source code corresponds to line 5 in our
example servlet. The StringBuilder object at offset 28 in the
original bytecode is added by the Java compiler when translating
the string concatenation operator (“+”). WASP replaces the instanti-
ation at offset 28 with the instantiation of a MetaStringBuilder
class and then changes the subsequent invocation of the constructor
at offset 37 so that it matches the newly instantiated class. Because
MetaStringBuilder extends StringBuilder, the subse-
quent calls to the append method invoke the correct method in the
MetaStringBuilder class.

Strings from External Sources. To use query fragments com-
ing from external (trusted) sources, developers must list these sources
in a configuration file that WASP processes before instrumenting the
application. The specified sources can be of different types, such
as files (specified by name), network connections (specified by host
and port), and databases (specified by database name, table, field,
or combination thereof). For each source, developers can either
specify a custom trust marking or use the default trust marking (the
same used for hard-coded strings). WASP uses the information in
the configuration file to instrument the external trusted sources ac-
cording to their type.

To illustrate this process, we describe the instrumentation that
WASP performs for trusted strings coming from a file. In the con-
figuration file, the developer specifies the name of the file (e.g.,
foo.txt) as a trusted source of strings. Based on this informa-
tion, WASP scans the bytecode for all instantiations of new file ob-
jects (i.e., File, FileInputStream, FileReader) and adds
instrumentation that checks the name of the file being accessed. At
runtime, if the name of the file matches the name(s) specified by
the developer (foo.txt in this case), the file object is added to an
internal list of currently trusted file objects. WASP also instruments
all calls to methods of file-stream objects that return strings, such as
BufferedReader’s readLine method. At runtime, the added
code checks to see whether the object on which the method is called
is in the list of currently trusted file objects. If so, it marks the gen-
erated strings with the trust marking specified by the developer for
the corresponding source.

We use a similar strategy to mark network connections. In this
case, instead of matching file names at runtime, we match host-
names and ports. The interaction with databases is more compli-
cated and requires WASP not only to match the initiating connec-
tion, but also to trace tables and fields through instantiations of the
Statement and ResultSet objects created when querying the
database.

Instrumentation Optimization. Our current instrumentation
approach is conservative and may generate unneeded instrumenta-
tion. We could limit the amount of instrumentation inserted in the
code by leveraging static information about the program. For exam-
ple, data-flow analysis could identify strings that are not involved

Source Code: 4. String query = "SELECT acct FROM users WHERE login=’";
Original Bytecode Modified Bytecode

24. ldc "SELECT acct FROM users WHERE login=’"

24a. new MetaString
24b. dup
24c. ldc "SELECT acct FROM users WHERE login=’"
24e. invokespecial MetaString.<init>:(LString)V
24d. iconst_1
24e. invokevirtual MetaString.markAll:(I)V

Figure 4: Instrumentation for hard-coded strings.

Source Code: 5. query += login + "’ AND pin=" + pin;
Original Bytecode Modified Bytecode

28. new StringBuilder
31. dup
32. aload 4
34. invokestatic String.valueOf:(Object)LString;
37. invokespecial StringBuilder.<init>:(LString;)V
40. aload_1
41. invokevirtual StringBuilder.

append:(LString;)LStringBuilder;
44. ldc "’ AND pin="
46. invokevirtual StringBuilder.

append:(LString;)LStringBuilder;
49. aload_2
50. invokevirtual StringBuilder.

append:(LString;)LStringBuilder;
53. invokevirtual StringBuilder.toString:()LString;

28. new MetaStringBuilder
31. dup
32. aload 4
34. invokestatic String.valueOf:(LObject)LString;
37. invokespecial MetaStringBuilder.<init>:(LString;)V
40. aload_1
41. invokevirtual StringBuilder.append:(LString;)LStringBuilder;
44a. new MetaString
44b. dup
44c. ldc "’ AND pin="
44e. invokespecial MetaString.<init>:(LString)V
44d. iconst_1
44e. invokevirtual MetaString.markAll:(I)V
46. invokevirtual StringBuilder.append:(LString;)LStringBuilder;
49. aload_2
50. invokevirtual StringBuilder.append:(LString;)LStringBuilder;
53. invokevirtual StringBuilder.toString:()LString;

Figure 5: Instrumentation for implicitly-created strings.

with the construction of query strings and thus do not need to be
instrumented. Another example involves cases where static analy-
sis could determine that the filename associated with a file object
is never one of the developer-specified trusted filenames, that ob-
ject would not need to be instrumented. Analogous optimizations
could be implemented for other external sources. We did not in-
corporate any of these optimizations in the current tool because we
were mostly interested in having an initial prototype to assess our
technique. However, we are planning to implement them in future
work to further reduce runtime overhead.

4.3 Handling False Positives
As discussed in Section 3, sources of trusted data that are not

specified by the developers beforehand would cause WASP to gen-
erate false positives. To assist the developers in identifying data
sources that they initially overlooked, WASP provides a special mode
of operation, called “learning mode”, that would typically be used
during in-house testing. When in learning mode, WASP adds an
additional unique taint marking to each string in the application.
Each marking consists of an ID that maps to the fully qualified class
name, method signature, and bytecode offset of the instruction that
instantiated the corresponding string.

If WASP detects an SQLIA while in learning mode, it uses the
markings associated with the untrusted SQL keywords and opera-
tors in the query to report the instantiation point of the correspond-
ing string(s). If the SQLIA is actually a false positive, knowing the
position in the code of the offending string(s) would help develop-
ers correct omissions in the set of trusted inputs.

4.4 Syntax-Aware Evaluation
The STRING CHECKER module performs syntax-aware evalua-

tion of query strings and is invoked right before the strings are sent
to the database. To add calls to the STRING CHECKER module,
WASP first identifies all of the database interaction points: points
in the application where query strings are issued to an underlying
database. In Java, all calls to the database are performed via spe-

cific methods and classes in the JDBC library (http://java.
sun.com/products/jdbc/). Therefore, these points can be
identified through a simple matching of method signatures. Af-
ter identifying the database interaction points, WASP inserts a call
to the syntax-aware evaluation function, MetaChecker, imme-
diately before each interaction point. MetaChecker takes the
MetaStrings object that contains the query about to be executed as
a parameter.

When invoked, MetaChecker processes the SQL string about
to be sent to the database as discussed in Section 3.3. First, it tok-
enizes the string using an SQL parser. Ideally, WASP would use a
database parser that recognizes the exact same dialect of SQL that
is used by the database. This would guarantee that WASP interprets
the query in the same way as the database and would prevent attacks
based on alternate encodings [1]—attacks that obfuscate keywords
and operators to elude signature-based checks. Our current imple-
mentation includes parsers for SQL-92 (ANSI) and PostgreSQL.
After tokenizing the query string, MetaChecker enforces the de-
fault trust policy by iterating through the tokens that correspond to
keywords and operators and examining their trust markings. If any
of these tokens contains characters that are not marked as trusted,
the query is blocked and reported.

If developers specified additional trust policies, MetaChecker
invokes the corresponding checking function(s) to ensure that the
query complies with them. In our current implementation, trust
policies are developer-defined functions that take the list of SQL
tokens as input, perform some type of check on them based on
their trust markings, and return a true or false value depending
on the outcome of the check. Trust policies can implement func-
tionality that ranges from simple pattern matching to sophisticated
checks that use externally-supplied contextual information. If all
custom trust policies return a positive outcome, WASP allows the
query to be executed on the database. Otherwise, it classifies the
query as an SQLIA, blocks it, and reports it.

SELECT acct FROM users WHERE login = ’ doe ’ AND pin = 123

Figure 6: Example query 1 after parsing by runtime monitor.

SELECT acct FROM users WHERE login = ’ admin ’ -- ’ AND pin=0

Figure 7: Example query 2 after parsing by runtime monitor.

We illustrate how the default policy for syntax-aware evaluation
works using our example servlet and the legitimate and malicious
query examples from Section 2. For the servlet there are no external
sources of strings or additional trust policies, so WASP only marks
the hard-coded strings as trusted, and only the default trust policy
is applied. Figure 6 shows the sequence of tokens in the legitimate
query as they would be parsed by MetaChecker. In the figure,
SQL keywords and operators are surrounded by boxes. The figure
also shows the trust markings associated with the strings, where
an underlined character is a character with full trust markings. Be-
cause the default trust policy is that all keyword and operator tokens
must have originated from trusted strings, MetaChecker simply
checks whether all these tokens are comprised of trusted charac-
ters. The query in Figure 6 conforms to the trust policy and is thus
allowed to execute on the database.

Consider the malicious query, where the attacker submits “admin’
−−” as the login and “0” as the pin. Figure 7 shows the sequence
of tokens for the resulting query together with the trust markings.
Recall that −− is the SQL comment operator, so everything af-
ter this is identified by the parser as a literal. In this case, the
MetaChecker would find that the last two tokens, ’ and −−
contain untrusted characters. It would therefore classify the query
as an SQLIA and prevent it from executing.

4.5 Deployment Requirements
Using WASP to protect a Web application requires the devel-

oper to run an instrumented version of the application. There are
two general implementation strategies that we can follow for the
instrumentation: off-line or on-line. Off-line instrumentation in-
struments the application statically and deploys the instrumented
version of the application. On-line instrumentation deploys an un-
modified application and instruments the code at load time (i.e.,
when classes are loaded by the JVM). This latter option allows
for a great deal of flexibility and can be implemented by leverag-
ing the new instrumentation package introduced in Java 5 (http:
//java.sun.com/j2se/1.5.0/).

Unfortunately, the current implementation of the Java 5 instru-
mentation package is still incomplete and does not yet provide some
key features needed by WASP. In particular, it does not allow for
clearing the final flag in the string library classes, which pre-
vents the MetaStrings library from extending them. Because of this
limitation, for now we have chosen to rely on off-line instrumenta-
tion and to splice into the Java library a version of the string classes
in which the final flag has been cleared.

Overall, the deployment requirements for our approach are fairly
lightweight. The modification of the Java library is performed only
once, in a fully automated way, and takes just a few seconds. No
modification of the Java Virtual Machine is required. The instru-
mentation of a Web application is also performed automatically.
Given the original application, WASP creates a deployment archive
that contains the instrumented application, the MetaStrings library,
and the string checker module. At this point, the archive can be
deployed like any other Web application. WASP can therefore be
easily and transparently incorporated into an existing build process.

Table 1: Subject programs for the empirical study.
Subject LOC DBIs Servlets Params
Checkers 5,421 5 18 (61) 44 (44)
Office Talk 4,543 40 7 (64) 13 (14)
Employee Directory 5,658 23 7 (10) 25 (34)
Bookstore 16,959 71 8 (28) 36 (42)
Events 7,242 31 7 (13) 36 (46)
Classifieds 10,949 34 6 (14) 18 (26)
Portal 16,453 67 3 (28) 39 (46)

5. EVALUATION
The goal of our empirical evaluation is to assess the effective-

ness and efficiency of the approach presented in this paper when
applied to a testbed of Web applications. In the evaluation, we used
our implementation of WASP and investigated the following three
research questions:

RQ1: What percentage of attacks can WASP detect and prevent
that would otherwise go undetected and reach the database?

RQ2: What percentage of legitimate accesses does WASP iden-
tify as SQLIAs and prevent from executing on the database?

RQ3: How much runtime overhead does WASP impose?
The first two questions deal with the effectiveness of the technique:
RQ1 addresses the false negative rate of the technique, and RQ2
addresses the false positive rate. RQ3 deals with the efficiency of
the proposed technique. The following sections discuss our exper-
iment setup, protocol, and results.

5.1 Experiment Setup
Our experiments are based on an evaluation framework that we

developed and has been used by us and other researchers in previ-
ous work [9, 24]. The framework provides a testbed that consists
of several Web applications, a logging infrastructure, and a large
set of test inputs containing both legitimate accesses and SQLIAs.
In the next two sections we summarize the relevant details of the
framework.

5.1.1 Subjects
Our set of subjects consists of seven Web applications that accept

user input via Web forms and use it to build queries to an underlying
database. Five of the seven applications are commercial applica-
tions that we obtained from GotoCode (http://www.gotocode.
com/): Employee Directory, Bookstore, Events, Classifieds, and
Portal. The other two, Checkers and OfficeTalk, are applications
developed by students that have been used in previous related stud-
ies [7].

For each subject, Table 1 provides the size in terms of lines of
code (LOC) and the number of database interaction points (DBIs).
To be able to perform our studies in an automated fashion and
collect a larger number of data points, we considered only those
servlets that can be accessed directly, without complex interactions
with the application. Therefore, we did not include in the evalua-
tion servlets that require the presence of specific session data (i.e.,
cookies containing specific information) to be accessed. Column
Servlets reports, for each application, the number of servlets con-
sidered and, in parentheses, the total number of servlets. Column
Params reports the number of injectable parameters in the acces-
sible servlets, with the total number of parameters in parentheses.
Non-injectable parameters are state parameters whose purpose is to
maintain state, and which are not used to build queries.

5.1.2 Test Input Generation
For each application in the testbed, there are two sets of inputs:

LEGIT, which consists of legitimate inputs for the application, and

ATTACK, which consists of SQLIAs. The inputs were generated
independently by a Master’s level student with experience in devel-
oping commercial penetration testing tools for Web applications.
Test inputs were not generated for non-accessible servlets and for
state parameters.

To create the ATTACK set, the student first built a set of po-
tential attack strings by surveying different sources: exploits devel-
oped by professional penetration-testing teams to take advantage of
SQL-injection vulnerabilities; online vulnerability reports, such as
US-CERT (http://www.us-cert.gov/) and CERT/CC Ad-
visories (http://www.cert.org/advisories/); and infor-
mation extracted from several security-related mailing lists. The
resulting set of attack strings contained 30 unique attacks that had
been used against applications similar to the ones in the testbed.
All types of attacks reported in the literature [10] were represented
in this set except for multi-phase attacks such as overly-descriptive
error messages and second-order injections. Since multi-phase at-
tacks require human intervention and interpretation, we omitted
them to keep our testbed fully automated. The student then gen-
erated a complete set of inputs for each servlet’s injectable parame-
ters using values from the set of initial attack strings and legitimate
values. The resulting ATTACK set contained a broad range of po-
tential SQLIAs.

The LEGIT set was created in a similar fashion. However, in-
stead of using attack strings to generate sets of parameters, the
student used legitimate values. To create “interesting” legitimate
values, we asked the student to create inputs that would stress and
possibly break naı̈ve SQLIA detection techniques (e.g., techniques
based on simple identification of keywords or special characters in
the input). The result was a set of legitimate inputs that contained
SQL keywords, operators, and troublesome characters, such as sin-
gle quotes and comment operators.

5.2 Experiment Protocol
To address the first two research questions, we ran the ATTACK

and LEGIT input sets against the testbed applications and assessed
WASP’s effectiveness in stopping attacks without blocking legiti-
mate accesses. For RQ1, we ran all of the inputs in the ATTACK
set and tracked the result of each attack. The results for RQ1 are
summarized in Table 2. The second column reports the total num-
ber of attacks in the LEGIT set for each application. The next two
columns report the number of attacks that were successful on the
original web applications and on the web applications protected
by WASP. (Many of the applications performed input validation of
some sort and were able to block a subset of the attacks.) For RQ2,
we ran all of the inputs in the LEGIT set and checked how many
of these legitimate accesses WASP allowed to execute. The results
for this second study are summarized in Table 3. The table shows
the number of legitimate accesses WASP allowed to execute (# Le-
gitimate Accesses) and the number of accesses blocked by WASP
(False Positives).

To address RQ3, we computed the overhead imposed by WASP
on the subjects. To do this, we measured the times required to
run all of the inputs in the LEGIT set against instrumented and
uninstrumented versions of each application and compared these
two times. To avoid problems of imprecision in the timing mea-
surements, we measured the time required to run the entire LEGIT
set and then divided it by the number of test inputs to get a per-
access average time. Also, to account for possible external fac-
tors beyond our control, such as network traffic, we repeated these
measurements 100 times for each application and averaged the re-
sults. The study was performed on two machines, a client and a
server. The client was a Pentium 4, 2.4Ghz, with 1GB memory,

Table 2: Results for effectiveness in SQLIAs prevention (RQ1).
Successful Attacks

Subject Total # Original WASP Protected
Attacks Web Apps Web Apps

Checkers 4,431 922 0
Office Talk 5,888 499 0
Empl. Dir. 6,398 2,066 0
Bookstore 6,154 1,999 0
Events 6,207 2,141 0
Classifieds 5,968 1,973 0
Portal 6,403 3,016 0

Table 3: Results for false positives (RQ2).
Subject # Legitimate Accesses False Positives
Checkers 1,359 0
Office Talk 424 0
Empl. Dir. 658 0
Bookstore 607 0
Events 900 0
Classifieds 574 0
Portal 1,080 0

running GNU/Linux 2.4. The server was a dual-processor Pentium
D, 3.0Ghz, with 2GB of memory, running GNU/Linux 2.6.

Table 4 shows the results of this study. For each subject, the
table reports the number of inputs in the LEGIT set (# Inputs); the
average time per database access (Avg Access Time); the average
time overhead per access (Avg Overhead); and the average time
overhead as a percentage (% Overhead). In the table, all absolute
times are expressed in milliseconds.

5.3 Discussion of Results
Overall, the results of our studies indicate that WASP is an ef-

fective technique for preventing SQLIAs. In our evaluation, WASP
was able to correctly identify all SQLIAs without generating any
false positives. In total, WASP stopped 12,616 viable SQLIAs and
correctly allowed 5,602 legitimate accesses to the applications.

In most cases, the runtime average imposed by WASP was very
low. For the seven applications, the average overhead was 5ms
(6%). For most Web applications, this cost is low enough that it
would be dominated by the cost of the network and database ac-
cesses. One application, Portal, incurred an overhead considerably
higher than the other applications (but still negligible in absolute
terms). We determined that the higher overhead was due to the fact
that Portal generates a very large number of string-based lookup
tables. Although these strings are not used to build queries, WASP
associates trust markings to them and propagates these markings at
runtime. The optimizations discussed in Section 4.2 would elimi-
nate this issue and reduce the overhead considerably.

The main threat to the external validity of our results is that the
set of applications and attacks considered in the studies may not be
representative of real world applications and attacks. However, all
but two of the considered applications are commercial applications,
and all have been used in other related studies. Also, to generate
our set of attacks, we employed the services of a Master’s level
student who had experience with SQLIAs, penetration testing, and
Web scanners, but was not familiar with our technique. Finally, the
attack strings used by the student as a basis for the generation of
the attacks were based on real-world SQLIAs.

Table 4: Results for overhead measurements (RQ3).
Subject # Inputs Avg Access Avg % Overhead

Time (ms) Overhead (ms)
Checkers 1,359 122 5 5%
Office Talk 424 56 1 2%
Empl. Dir. 658 63 3 5%
Bookstore 607 70 4 6%
Events 900 70 1 1%
Classifieds 574 70 3 5%
Portal 1,080 83 16 19%

6. RELATED WORK
The use of dynamic tainting to prevent SQLIAs has been in-

vestigated by several researchers. The two approaches most sim-
ilar to ours are those by Nguyen-Tuong and colleagues [20] and
Pietraszek and Berghe [21]. Similar to them, we track taint infor-
mation at the character level and use a syntax-aware evaluation to
examine tainted input. However, our approach differs from theirs in
several important aspects. First, our approach is based on the novel
concept of positive tainting, which is an inherently safer way of
identifying trusted data (see Section 3.1). Second, we improve on
the idea of syntax-aware evaluation by (1) using a database parser
to interpret the query string before it is executed, thereby ensuring
that our approach can handle attacks based on alternate encodings,
and (2) providing a flexible mechanism that allows different trust
policies to be associated with different input sources. Finally, a
practical advantage of our approach is that it has more lightweight
deployment requirements. Their approaches require the use of a
customized PHP runtime interpreter, which adversely affects the
portability of the approaches.

Other dynamic tainting approaches more loosely related to our
approach are those by Haldar, Chandra, and Franz [8] and Mar-
tin, Livshits, and Lam [17]. Although they also propose dynamic
tainting approaches for Java-based applications, their techniques
differ significantly from ours. First, they track taint information at
the level of granularity of strings, which introduces imprecision in
modeling string operations. Second, they use declassification rules,
instead of syntax-aware evaluation, to assess whether a query string
contains an attack. Declassification rules assume that sanitizing
functions are always effective, which is an unsafe assumption and
may leave the application vulnerable to attacks—in many cases, at-
tack strings can pass through sanitizing functions and still be harm-
ful. Another dynamic tainting approach, proposed by Newsome
and Song [19], focuses on tainting at a level that is too low to be
used for detecting SQLIAs and has a very high execution overhead.

Researchers also proposed dynamic techniques against SQLIAs
that do not rely on tainting. These techniques include Intrusion
Detection Systems (IDS) and automated penetration testing tools.
Scott and Sharp propose Security Gateway [23], which uses develo-
per-provided rules to filter Web traffic, identify attacks, and ap-
ply preventive transformations to potentially malicious inputs. The
success of this approach depends on the ability of developers to
write accurate and meaningful filtering rules. Similarly, Valeur and
colleagues [25] developed an IDS that uses machine learning to
distinguish legitimate and malicious queries. Their approach, like
most learning-based techniques, is limited by the quality of the IDS
training set. Machine learning was also used in WAVES [12], an
automated penetration testing tool that probes websites for vulner-
ability to SQLIAs. Like all testing tools, WAVES cannot provide
any guarantees of completeness. SQLrand [2] appends a random
token to SQL keywords and operators in the application code. A
proxy server then checks to make sure that all keywords and oper-

ators contain this token before sending the query to the database.
Because the SQL keywords and operators injected by an attacker
would not contain this token, they would be easily recognized as
attacks. The drawbacks of this approach are that the secret token
could be guessed, so making the approach ineffective, and that the
approach requires the deployment of a special proxy server.

Model-based approaches against SQLIAs include AMNESIA [9],
SQL-Check [24], and SQLGuard [3]. AMNESIA, previously de-
veloped by two of the authors, combines static analysis and runtime
monitoring to detect SQLIAs. The approach uses static analysis to
build models of the different types of queries an application can
generate and dynamic analysis to intercept and check the query
strings generated at runtime against the model. Non-conforming
queries are identified as SQLIAs. Problems with this approach are
that it is dependent on the precision and efficiency of its underlying
static analysis, which may not scale to large applications. Our new
technique takes a purely dynamic approach to preventing SQLIAs,
thereby eliminating scalability and precision problems. In [24], Su
and Wassermann present a formal definition of SQLIAs and pro-
pose a sound and complete (under certain assumptions) algorithm
that can identify all SQLIAs by using an augmented grammar and
by distinguishing untrusted inputs from the rest of the strings by
means of a marking mechanism. The main weakness of this ap-
proach is that it requires the manual intervention of the developer to
identify and annotate untrusted sources of input, which introduces
incompleteness problems and may lead to false negatives. Our use
of positive tainting eliminates this problem while providing similar
guarantees in terms of effectiveness. SQLGuard [3] is an approach
similar to SQLCheck. The main difference is that SQLGuard builds
its models on the fly by requiring developers to call a special func-
tion and to pass to the function the query string before user input is
added.

Other approaches against SQLIAs rely purely on static analy-
sis [13, 14, 15, 27]. These approaches scan the application and
leverage information flow analysis or heuristics to detect code that
could be vulnerable to SQLIAs. Because of the inherently impre-
cise nature of the static analysis they use, these techniques can
generate false positives. Moreover, since they rely on declassifi-
cation rules to transform untrusted input into safe input, they can
also generate false negatives. Wassermann and Su propose a tech-
nique [26] that combines static analysis and automated reasoning
to detect whether an application can generate queries that contain
tautologies. This technique is limited, by definition, in the types of
SQLIAs that it can detect.

Finally, researchers have also focused on ways to directly im-
prove the code of an application and eliminate vulnerabilities. De-
fensive coding best practices [11] have been proposed as a way
to eliminate SQL injection vulnerabilities. These coding practices
have limited effectiveness because they mostly rely on the abil-
ity and training of the developer. Moreover, there are many well-
known ways to evade certain types of defensive-coding practices,
including “pseudo-remedies” such as stored procedures and pre-
pared statements (e.g., [1, 16, 11]). Researchers have also de-
veloped special libraries that can be used to safely create SQL
queries [4, 18]. These approaches, although highly effective, re-
quire developers to learn new APIs for developing queries, are very
expensive to apply on legacy code, and sometimes limit the expres-
siveness of SQL. Finally, JDBC-Checker [6, 7] is a static analysis
tool that detects potential type mismatches in dynamically gener-
ated queries. Although it was not intended to prevent SQLIAs,
JDBC-Checker can be effective against SQLIAs that leverage vul-
nerabilities due to type-mismatches, but will not be able to prevent
other kinds of SQLIAs.

7. CONCLUSION
We presented a novel, highly automated approach for detecting

and preventing SQL injection attacks in Web applications. Our ba-
sic approach consists of (1) identifying trusted data sources and
marking data coming from these sources as trusted, (2) using dy-
namic tainting to track trusted data at runtime, and (3) allowing
only trusted data to become SQL keywords or operators in query
strings. Unlike previous approaches based on dynamic tainting,
our technique is based on positive tainting, which explicitly iden-
tifies trusted (rather than untrusted) data in the program. In this
way, we eliminate the problem of false negatives that may result
from the incomplete identification of all untrusted data sources.
False positives, while possible in some cases, can typically be eas-
ily eliminated during testing. Our approach also provides practical
advantages over the many existing techniques whose application
requires customized and complex runtime environments. The ap-
proach is defined at the application level, requires no modification
of the runtime system, and imposes a low execution overhead.

We have evaluated our approach by developing a prototype tool,
WASP, and using the tool to protect several applications when sub-
jected to a large and varied set of attacks and legitimate accesses.
WASP successfully and efficiently stopped over 12,000 attacks with-
out generating any false positives. Both our tool and experimental
infrastructure are available to other researchers.

We have three immediate goals for future work. The first goal
is to further improve the efficiency of the technique. To this end,
we will use static analysis to reduce the amount of instrumenta-
tion required by the approach. The second goal is to implement the
approach for binary applications, by leveraging a binary instrumen-
tation framework and defining a version of the MetaStrings library
that works at the binary level. Finally, we plan to evaluate our tech-
nique in a completely realistic context, by protecting one of the
Web applications running at Georgia Tech with WASP and assess-
ing the effectiveness of WASP in stopping real attacks directed at
the application while allowing legitimate accesses.

Acknowledgments
This work was supported by NSF awards CCR-0306372 and CCF-
0438871 to Georgia Tech and by the Department of Homeland Se-
curity and US Air Force under Contract No. FA8750-05-2-0214.
Any opinions expressed in this paper are those of the authors and
do not necessarily reflect the views of the US Air Force.

8. REFERENCES
[1] C. Anley. Advanced SQL Injection In SQL Server Applications.

White paper, Next Generation Security Software Ltd., 2002.
[2] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL

Injection Attacks. In Proc. of the 2nd Applied Cryptography and
Network Security Conf. (ACNS ’04), pages 292–302, Jun. 2004.

[3] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using Parse Tree
Validation to Prevent SQL Injection Attacks. In Proc. of the 5th Intl.
Workshop on Software Engineering and Middleware (SEM ’05),
pages 106–113, Sep. 2005.

[4] W. R. Cook and S. Rai. Safe Query Objects: Statically Typed
Objects as Remotely Executable Queries. In Proc. of the 27th Intl.
Conference on Software Engineering (ICSE 2005), pages 97–106,
May 2005.

[5] T. O. Foundation. Top ten most critical web application
vulnerabilities, 2005. http:
//www.owasp.org/documentation/topten.html.

[6] C. Gould, Z. Su, and P. Devanbu. JDBC Checker: A Static Analysis
Tool for SQL/JDBC Applications. In Proc. of the 26th Intl.
Conference on Software Engineering (ICSE 04) – Formal Demos,
pages 697–698, May 2004.

[7] C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically
Generated Queries in Database Applications. In Proc. of the 26th

Intl. Conference on Software Engineering (ICSE 04), pages
645–654, May 2004.

[8] V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Propagation
for Java. In Proc. of the 21st Annual Computer Security Applications
Conference, pages 303–311, Dec. 2005.

[9] W. G. Halfond and A. Orso. AMNESIA: Analysis and Monitoring
for NEutralizing SQL-Injection Attacks. In Proc. of the IEEE and
ACM Intl. Conference on Automated Software Engineering (ASE
2005), pages 174–183, Long Beach, CA, USA, Nov. 2005.

[10] W. G. Halfond, J. Viegas, and A. Orso. A Classification of
SQL-Injection Attacks and Countermeasures. In Proc. of the Intl.
Symposium on Secure Software Engineering, Mar. 2006.

[11] M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press,
Redmond, Washington, Second Edition, 2003.

[12] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application Security
Assessment by Fault Injection and Behavior Monitoring. In Proc. of
the 12th Intl. World Wide Web Conference (WWW 03), pages
148–159, May 2003.

[13] Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo.
Securing Web Application Code by Static Analysis and Runtime
Protection. In Proc. of the 13th Intl. World Wide Web Conference
(WWW 04), pages 40–52, May 2004.

[14] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities. In 2006 IEEE
Symposium on Security and Privacy, May 2006.

[15] V. B. Livshits and M. S. Lam. Finding Security Vulnerabilities in
Java Applications with Static Analysis. In Proceedings of the 14th
Usenix Security Symposium, Aug. 2005.

[16] O. Maor and A. Shulman. SQL Injection Signatures Evasion. White
paper, Imperva, Apr. 2004. http://www.imperva.com/
application defense center/white papers/
sql injection signatures evasion.html.

[17] M. Martin, B. Livshits, and M. S. Lam. Finding Application Errors
and Security Flaws Using PQL: a Program Query Language. In
OOPSLA ’05: Proc. of the 20th Annual ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and
Applications, pages 365–383, Oct. 2005.

[18] R. McClure and I. Krüger. SQL DOM: Compile Time Checking of
Dynamic SQL Statements. In Proc. of the 27th Intl. Conference on
Software Engineering (ICSE 05), pages 88–96, May 2005.

[19] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on
Commodity Software. In Proc. of the 12th Annual Network and
Distributed System Security Symposium (NDSS 05), Feb. 2005.

[20] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically Hardening Web Applications Using Precise Tainting.
In Twentieth IFIP Intl. Information Security Conference (SEC 2005),
May 2005.

[21] T. Pietraszek and C. V. Berghe. Defending Against Injection Attacks
through Context-Sensitive String Evaluation. In Proc. of Recent
Advances in Intrusion Detection (RAID2005), Sep. 2005.

[22] J. Saltzer and M. Schroeder. The Protection of Information in
Computer Systems. In Proceedings of the IEEE, Sep 1975.

[23] D. Scott and R. Sharp. Abstracting Application-level Web Security.
In Proc. of the 11th Intl. Conference on the World Wide Web (WWW
2002), pages 396–407, May 2002.

[24] Z. Su and G. Wassermann. The Essence of Command Injection
Attacks in Web Applications. In The 33rd Annual Symposium on
Principles of Programming Languages, pages 372–382, Jan. 2006.

[25] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Approach to
the Detection of SQL Attacks. In Proc. of the Conference on
Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA), Vienna, Austria, Jul. 2005.

[26] G. Wassermann and Z. Su. An Analysis Framework for Security in
Web Applications. In Proc. of the FSE Workshop on Specification
and Verification of Component-Based Systems (SAVCBS 2004),
pages 70–78, Oct. 2004.

[27] Y. Xie and A. Aiken. Static Detection of Security Vulnerabilities in
Scripting Languages. In Proceedings of the 15th USENIX Security
Symposium, July 2006.

