
1

ILP Modulo Data
Panagiotis Manolios, Vasilis Papavasileiou, and Mirek Riedewald

Northeastern University
{pete,vpap,mirek}@ccs.neu.edu

Abstract—The vast quantity of data generated and captured
every day has led to a pressing need for tools and processes to
organize, analyze and interrelate this data. Automated reasoning
and optimization tools with inherent support for data could
enable advancements in a variety of contexts, from data-backed
decision making to data-intensive scientific research. To this
end, we introduce a decidable logic aimed at database analysis.
Our logic extends quantifier-free Linear Integer Arithmetic with
operators from Relational Algebra, like selection and cross
product. We provide a scalable decision procedure that is based
on the BC(T) architecture for ILP Modulo Theories. Our decision
procedure makes use of database techniques. We also experimen-
tally evaluate our approach, and discuss potential applications.

I. INTRODUCTION

In 2010, enterprises and users stored more than 13 exabytes
of new data [1]. Database Management Systems (DBMS’s)
based on the Relational Model [3] are a key component in the
computing infrastructure of virtually any organization. With
big data playing a determining role in business and science,
we are motivated to rethink data management and analysis.

Database systems capable of symbolic computation could
enable powerful new methodologies for strategic planning,
decision making, and scientific research. We propose database
systems that (a) store symbolic (in addition to concrete) data,
and at the same time (b) allow queries of a symbolic nature,
e.g., with free variables. Such database systems can be dually
thought of as constraint solvers that reason in the presence
of data. Symbolic data allows us to encode partially specified
or entirely speculative information, e.g., database entries that
exist for the purpose of what-if analysis. Symbolic queries
enable deductive reasoning about data.

Existing relational query languages (e.g., SQL) only allow
concrete data and queries. Symbolic enhancements require a
formalism that combines constraints and relational queries.
We address this need by introducing the ∆ logic. ∆ ex-
tends quantifier-free Linear Integer Arithmetic (QFLIA) with
database tables and operators from Relational Algebra, like
selection (σ), union (∪), and cross product (×). While ∆ is
decidable, the logic in its general form gives rise to hard
satisfiability problems, primarily because it allows universal
quantification over cross products of big tables. We study
unrestricted ∆ (for it is a natural umbrella formalism), but also
provide restrictions that enable an efficient decision procedure.
In other words, we identify a class of database problems that
are a realistic initial target for formal analysis.

This research was supported in part by DARPA under AFRL Cooperative
Agreement No. FA8750-10-2-0233 and by NSF grants CCF-1117184 and
CCF-1319580.

We provide a scalable procedure based on the BC(T) archi-
tecture for ILP Modulo Theories (IMT) [10]. Our approach
is dubbed ILP Modulo Data, because an ILP solver co-exists
with a procedure that establishes a correspondence between
integer variables and database tables. The latter contain a mix
of concrete and symbolic data. ILP Modulo Data allows us to
use a powerful ILP solver based on branch-and-cut (B&C) on
the arithmetic side, while also utilizing database techniques
that allow us to scale to realistic datasets.

The compositional nature of ILP Modulo Data is well-suited
for potential applications. Organizations have access to vast
amounts of data, but at the same time rely heavily on Math-
ematical Programming technology. We enhance Mathematical
Programming tools with the ability to directly access data, thus
assisting data-backed decision making. Such tools would also
benefit scientists in fields ranging from ornithology [17] to
astronomy [5], by providing immediate feedback on the con-
sistency between models the scientists devise and datasets of
observations they collect. Our paper outlines potential applica-
tions, while our experimental evaluation relies on benchmarks
that characterize them. We experimentally demonstrate that
our ILP Modulo Data framework provides better performance
than the approach of eagerly reducing ∆ to QFLIA.

Paper Structure: Section II introduces our reasoning
paradigm through a motivating example. Section III presents
the ∆ logic, while Section IV identifies a ∆ fragment that
yields scalable procedures. Section V describes our deci-
sion procedure. We experimentally evaluate our approach
in Section VI. We provide an overview of related work in
Section VII, and conclude with Section VIII.

II. MOTIVATING EXAMPLE

Our motivating example (formalized in Figure 1) concerns
the problem of optimally investing a given amount of capital.
This is an appropriate application for our techniques, because
(a) investments are almost always data-driven as they take his-
torical stock prices into account, and (b) financial institutions
already rely on Mathematical Programming.

The problem involves investing in a portfolio of n pub-
licly traded stocks, with the goal of maximizing profit while
following guidelines that minimize risk. A database provides
information on these stocks, including stock prices from the
New York Stock Exchange (NYSE). We would like to pick
the n stocks that would have yielded the highest profit over
a period of time in the recent past, e.g., over the preceding
year. This optimization problem is subject to risk-mitigation
constraints that require us to pick companies from a variety of
sectors. While investing in the exact solver-generated portfolio

2

Id Cap Sector
1 (EMC) large tech
2 (FII) medium financials
3 (AKR) small retail
.

(a) stocks

Id Diff
1 128
2 117
3 89
.

(b) quotes

maximize
Σ1≤i≤nai · di

subject to
(xi, ci, si) ∈ stocks, 1 ≤ i ≤ n
(xi, di) ∈ quotes, 1 ≤ i ≤ n
xi 6= xj , 1 ≤ i < j ≤ n
Σ{i | 1≤i≤n,si=s}ai ≤ Σ1≤i≤nai/3, for every sector s
Σ{i | 1≤i≤n,ci=small}ai ≤ Σ1≤i≤nai/4

(c) Constraints

Fig. 1. Portfolio Management with ILP Modulo Data

(which relies only on past performance) is not necessarily a
good strategy, such a portfolio provides useful information for
the analysts who make the final investment decisions.

The data is given in tables stocks and quotes (Figures 1a
and 1b). Each company in stocks is described by a unique
ID (with the associated NYSE symbol parenthesized), its
capitalization (small, medium, or large), and its sector (e.g.,
tech, retail, financials, automotive, energy, emerging-markets).
While Figure 1 uses human-readable names, we can encode
these fields with bounded integer quantities. Each entry in
quotes describes the observed movement of a certain stock in
a given timeframe, assuming that dividends were reinvested.
For example, the first row describes an increase of 28% in the
price of EMC. quotes is an application-specific abstraction,
i.e., the actual database contains past stock prices and quotes

is a view produced by comparing data for two time periods.
The ith stock in the portfolio is characterized by a unique

ID xi that corresponds to entries in the dataset, i.e., there
exist entries (xi, ci, si) ∈ stocks and (xi, di) ∈ quotes. To
minimize risk, we force the n IDs xi to be distinct, and allow
no single sector to account for more than a third of the total
capital. Additionally, no more than a fourth of the capital goes
to smallcap companies. The objective function maximizes the
capital at the end of the period, and thus the profit.

Note that if the amounts ai are variables, the objective
function is non-linear. The problem can be circumvented by
providing integer constants for ai, i.e., by specifying how the
capital will be partitioned. With constants for ai, the non-
table constraints are essentially in QFLIA. (The summations
for i that satisfy conditions like si = s and ci = small are
easy to encode as sums of if-then-else terms.) Conversely, the
problem is essentially satisfiability of an arithmetic instance,
where certain variables correspond to database contents. This
is the kind of problem that we propose new techniques for. We
cannot use a standalone DBMS, since DBMS’s do not handle
constraints and optimization. Neither are existing solvers up
to the task, since they do not provide ways of managing data.

The constraints we have described are meant to be represen-
tative. Clearly investors also have to consider other options,

including investing in index funds, bonds, debt securities and
derivative contracts. These financial instruments may have
other characteristics that need to be modeled. Our constraints
are also based on simplifying assumptions, e.g., that we can
invest an arbitrary amount in any given stock at any time. It is
not within the scope of our paper to model investment prob-
lems comprehensively. What matters is that these additional
concerns also mix arithmetic with data, thus reinforcing the
need for data-aware solving.

III. THE LOGIC ∆

F ::= T1 ≤ T2 | ∃∃D | ¬F | F1 ∨ F2

D ::= {T+} | 〈σ x : F : D〉 | D1×D2 | D1∪D2

T ::= (T1, T2) | left(T) | right(T) |
x | K | K · T | T1 + T2

K ::= . . . | −2 | −1 | 0 | 1 | 2 | . . .
Fig. 2. Grammar of ∆

This Section introduces the logic ∆. ∆ combines arithmetic
with queries over tabular data. ∆ thus encompasses database
problems like our motivating example of Section II.

The grammar of ∆ is given in Figure 2. K, T , D, and
F are the non-terminal symbols for integer constants, terms,
tables, and formulas, respectively. The first line of productions
for T corresponds to pairs and their accessors; the second line
is for variable symbols (x) and integer expressions. A table
(non-terminal symbol D) is either an input table, a selection,
a cross-product, or a union. The selection 〈σ x : F : D〉 is a
table that consists of only those entries in D that satisfy F ,
i.e., the variable x ranges over the table entries; σ binds x in
F , but not in D. For formulas (non-terminal symbol F), ∃∃D
should be read as “D is not empty”. All other constructs bear
the obvious meaning. We assume that all variables not bound
by σ are integer. We will freely use derived operators, e.g.,
conjunction and integer equality.

∆ is typed. Each term is either of type int or of type s∗ t,
where s and t are types. left and right are only permissible
when applied to a term of type s ∗ t for some type s and
some type t; if x is of type s ∗ t, then left(x) is of type s and
right(x) is of type t. The integer constants are of type int.
The arithmetic operators (+, ·, and ≤) only apply to terms of
type int; + and · produce integers. Each table has a schema,
which is the type of its entries. (Schemas are the table-level
counterpart of types.) An input table is comprised of entries
of the same type. If table D1 has schema s1 and table D2 has
schema s2, then D1×D2 has schema s1∗s2. For 〈σ x : F : D〉
to be properly typed, F should be a properly-typed formula
under the assumption that the type of x is the schema of D;
the schema of 〈σ x : F : D〉 is the same as the schema of D.
Union expects tables of the same schema and preserves it.

Clearly, ∆ is at least as powerful as QFLIA. At the same
time, ∆ encompasses most features one would expect from a
relational query language. We have left out certain operators
usually present in query languages. First, note that projection

3

(π) would not provide additional power, since it is possible
to refer to any subset of the columns, without producing an
intermediate table that leaves out the irrelevant ones. Also, the
set difference A \ B can be encoded as 〈σ a : ¬∃∃〈σ b : a =
b : B〉 : A〉, assuming that the schema of A and B has exactly
one column; otherwise, in place of a = b we would have
a conjunction of equalities over all columns. Additionally, ∆
can express many forms of aggregation, including count (when
compared to a constant), min, and max.

Example 1. The portfolio encoded by Figure 1 can be
represented as the input table

portfolio = {(1, (x1, a1)), . . . , (n, (xn, an))}.

portfolio contains symbolic data, something which is not
allowed by DBMS’s. The first column ensures that the n entries
are distinct, irrespective of the assignment. portfolio is of
schema int ∗ (int ∗ int). Consider the following constraint:

¬∃∃
〈σ x : left(left(x)) 6= left(right(x)) ∧

left(right(left(x))) = left(right(right(x)))

: portfolio × portfolio 〉

The constraint states that there are no entries (i, (xi, ai)) and
(j, (xj , aj)) in portfolio such that i 6= j and xi = xj , i.e.,
portfolio references n distinct stocks (as was our intention
in Figure 1). The constraint essentially involves universal
quantification over portfolio× portfolio.

A. Decidability

∆ satisfiability can be reduced to QFLIA satisfiability. We
explain the reduction briefly. We represent a table expression
D of schema s as a set JDK consisting of pairs r � b, where
r is a term of type s and b is a QFLIA formula, with the
intended meaning that r is present in the table iff b is true. We
use the operator � to distinguish the auxiliary pairs used for
the reduction from the ones allowed by the syntax of ∆. For a
formula F , JF K denotes the corresponding formula in QFLIA;
similarly for integer terms. F [x/r] stands for substituting x
with r in F , with appropriate care for occurrences of the
symbol x bound by σ inside F . We define J·K for tables and
formulas below as two mutually recursive functions.

J{r1, . . . , rn}K = {r1 � true, . . . , rn � true}
J〈σ x : F : D〉K = {r � (b ∧ JF [x/r]K) | r � b ∈ JDK}

JD1 ×D2K = {(r1, r2)� (b1 ∧ b2) |
r1 � b1 ∈ JD1K, r2 � b2 ∈ JD2K}

JD1 ∪D2K = JD1K ∪ JD2K

(1)

JT1 ≤ T2K =JT1K ≤ JT2K

J∃∃DK =
∨

r�b∈JDK

b

J¬F K =¬JF K
JF1 ∨ F2K =JF1K ∨ JF2K

(2)

For encoding ∆ integer terms as QFLIA terms (e.g., JTiK in
Equation 2), all that needs to be done is elimination of pair

constructors and accessors via the rules left((x, y)) = x and
right((x, y)) = y. The reduction suffices to establish decid-
ability of ∆. The reduction also provides formal semantics
for ∆ by specifying its meaning in terms of QFLIA.

B. Complexity

Theorem 1. The satisfiability problem for ∆ is in NEXPTIME.

Proof Sketch. The reduction to QFLIA (Equations 1 and 2)
produces a formula exponentially larger than the input. Since
QFLIA is in NP, the reduction provides a non-deterministic
exponential time procedure for ∆-satisfiability.

Theorem 2. The satisfiability problem for ∆ is PSPACE-hard.

Proof Sketch. We reduce the (PSPACE-complete) QBF prob-
lem to ∆ satisfiability in polynomial time. We deal with
Boolean quantification by quantifying over the input table
B = {0, 1}. For example, the formula ∀x∃y(x∨¬y) becomes

¬∃∃ 〈σ x : ¬∃∃ 〈σ y : x = 1 ∨ y = 0 : B〉 : B〉 .

Complexity analysis of ∆ beyond Theorems 1 and 2 is
not within the scope of this paper, and has mostly theoretical
significance. In practice, query size is orders of magnitude
smaller than data size. Conversely, it is meaningful to study
data complexity [19], i.e., complexity where only the amount
of data varies. Instead of assuming a query of constant size,
we provide a stronger result by limiting the number of tables
that can participate in a cross product. (We also limit nested
quantifiers, because the latter can simulate cross products.) We
define below the rank function that characterizes this number.

rank({r1, . . . , rn}) = 1

rank(〈σ x : F : D〉) = rank(F) + rank(D)

rank(D1 ×D2) = rank(D1) + rank(D2)

rank(D1 ∪D2) = max(rank(D1), rank(D2))

(3)

rank(T1 ≤ T2) = 0

rank(∃∃D) = rank(D)

rank(¬F) = rank(F)

rank(F1 ∨ F2) = max(rank(F1), rank(F2))

(4)

Definition 1 (k-∆). For any natural number k, k-∆ is the set
of formulas {F | F ∈ ∆ and rank(F) ≤ k}.

Theorem 3. For any natural number k, k-∆ is NP-complete.

Proof Sketch. k-∆ is NP-hard , because any QFLIA formula
can be reduced to a 0−∆ formula in polynomial time (0−∆ ⊆
k-∆). We obtain membership in NP from the reduction defined
by Equation 2, which produces polynomially-sized QFLIA
formulas.

Given the class of formulas k-∆ for some k, the reduction
produces QFLIA formulas of size O(nk+1), where n is the
input size. While the reduction is polynomial (since k is fixed),
it may not be practical even for k = 2, given that datasets
of millions of entries are common. Conversely, we propose
restrictions that yield a lazy solving architecture.

4

IV. THE EXISTENTIAL FRAGMENT OF ∆

We proceed to study the existential fragment of ∆, which
we denote by ∃∆.

Definition 2 (∃∆). A ∆ formula belongs to ∃∆ if the ∃∃
operator always appears below an even number of negations,
i.e., ∃∃ only appears with positive polarity.

The motivation for studying ∃∆ is as follows. Universal
quantification pushes for an approach similar to quantifier
instantiation, e.g., Example 1 (which is not in ∃∆) inher-
ently requires instantiating a constraint for every element
in portfolio× portfolio. This can be done incrementally
by applying patterns that are standard in verification tools. In
contrast, we are not aware of techniques that would be a good
match for the kind of existential quantification that arises in ∆.
Therefore, the rest of this paper focuses on ∃∆.

Formulas in ∃∆ can be transformed into formulas in a con-
venient intermediate logic without cross products, selections,
or unions. We rephrase ∃∃ in terms of a new membership
operator. Each formula of the form ∃∃D is viewed as x ∈ D,
where ∈ has the obvious semantics and x is a properly shaped
row comprised of fresh integer variables. We will refer to rows
like x that serve as witnesses for ∃∃ as witness rows. The next
step is to translate membership in arbitrary table expressions
to membership in input tables. (x, y) ∈ D × E becomes
x ∈ D ∧ y ∈ E, while x ∈ D ∪ E becomes x ∈ D ∨ x ∈ E.
Finally, x ∈ 〈σ y : F : D〉 becomes F [y/x] ∧ x ∈ D. We
eliminate all cross products, selections, and unions by repeated
application of the above transformations.

Example 2. The tables of Figures 1a and 1b can be easily
encoded as ∆ input tables of schemas int ∗ (int ∗ int)
and int ∗ int. Let small capitalization be represented by the
constant 0. Consider the following constraint:

∃∃

〈σ x : left(left(x)) = left(right(x)) ∧
left(right(left(x))) = 0 ∧
right(right(x)) ≥ 150

: stocks × quotes 〉

The constraint asserts the existence of some tuple
((x1, (x2, x3)), (x4, x5)) ∈ stocks × quotes that satisfies
Φ = [x1 = x4 ∧ x2 = 0∧ x5 ≥ 150]. (We have eliminated the
accessors left and right.) This is equivalent to asserting that
(x1, (x2, x3)) ∈ stocks ∧ (x4, x5) ∈ quotes ∧ Φ.

The procedure we outlined produces a decomposed formula
consisting of a QFLIA part and membership constraints. We
proceed to define these notions formally.

Definition 3 ((Conditional) Membership Constraint). A mem-
bership constraint is a constraint of the form

(x1, . . . , xk) ∈ {(y1,1, . . . , y1,k), . . . , (yl,1, . . . , yl,k)} (5)

for positive integers k and l and variable symbols xi, yj,i.
A constraint of the form b = 1 ⇒ m, where b is a
variable symbol and m is a membership constraint, is called
a conditional membership constraint.

A membership constraint may hold conditionally, either
because it arises from an ∃∃-atom that appears under proposi-
tional structure (and therefore holds conditionally), or because
of a disjunction introduced by the union operator. We use
conditions of the form b = 1 because ILP necessitates
[0, 1]-bounded integer variables in place of Boolean variables.
Implication in the opposite direction is never needed, since ∃∃
always appears with positive polarity (as per Definition 2).

Membership constraints do not contain arbitrary arithmetic
expressions, but only variable symbols. “Variable abstrac-
tion” [9] eliminates richer expressions. While variable abstrac-
tion allows for compositional reasoning and helps with theoret-
ical analysis, a limited fragment of arithmetic in membership
constraints yields more efficient implementation. Part of our
discussion will involve tables that contain integer constants
and terms of the form v + c, where v is a variable symbol
and c is an integer constant. (Everything we present is easy
to generalize for such terms.) For convenience, we flatten out
rows constructed using the pair constructor of Figure 2, and
instead deal with k-tuples of integers. This is only a matter of
presentation and has no impact on the algorithms.

Definition 4. A decomposed formula is a conjunction F ∧M ,
where (a) F is a QFLIA formula and (b) M is a conjunction
of possibly conditional membership constraints.

Theorem 4. ∃∆ satisfiability is NP-complete.

Proof. ∃∆ satisfiability is NP-hard, because ∃∆ is at least as
powerful as QFLIA. ∃∆ satisfiability is in NP, because we
can reduce ∃∆ to QFLIA in polynomial time. The reduction
first produces a formula in decomposed form (Definition 4).
Equation 5 is equivalent to

∨
j=1,...,l

∧
i=1,...,k xi = yj,i;

therefore, the membership operator can be eliminated. The
result is a formula in QFLIA.

The polynomial size of the reduction relies on the fact
that ∆ does not allow tables to be named and referenced from
multiple places, i.e., table expressions are not DAG-shaped.
Despite the polynomial reduction, a lazy scheme remains
relevant. The reason is that QFLIA solvers are not meant for
long disjunctions that essentially encode database tables.

V. BC(T) FOR ∆

The decomposed form of Definition 4 is particularly suited
for a scheme that combines separate procedures for QFLIA
and table membership. Given that the QFLIA part can be
encoded as a conjunction of integer linear constraints [10],
it becomes possible to solve instances in decomposed form
(and by extension ∃∆ instances) by instantiating the BC(T)
framework for IMT [10]. An ILP solver deals with the QFLIA
constraints, and exchanges information with a procedure that
checks membership in finite sets. Since database queries
typically have simple propositional structure, we do not expect
encoding the latter with linear constraints to be a bottleneck.

The membership procedure is confronted with a conjunction
of membership constraints (Definition 3). Dealing with condi-
tional constraints is essentially a matter of Boolean search. The
membership procedure needs to understand equality atoms,

5

equality being a primitive. (Our setting is standard first-order
logic with equality.) In particular, the procedure keeps track
of truth assignments to the equalities in:

{xi = yj,i | j ∈ [1, l], i ∈ [1, k]} (6)

The symbols xi and yj,i have the same meaning as in Defini-
tion 3. In the presence of multiple membership constraints, the
union of sets, like in Equation 6, is relevant. Given that mem-
bership constraints can be checked in isolation, our discussion
proceeds with a single constraint. The variables xi and yj,i also
appear in linear constraints. It simplifies our design to assume
that all of them appear in ILP, even if they are unconstrained
there. The BC(T) framework provides a mechanism (“differ-
ence constraints” [10]) for notifying background procedures
about atoms like the ones in Equation 6. Given truth values
for these atoms, we check that a membership constraint is
satisfied by simply traversing the table and looking for a tuple
that is column-wise equal to the witness row. The constraint
is violated if for every j ∈ [1, l], there exists some i ∈ [1, k]
such that xi 6= yj,i, i.e., there is no candidate tuple.

The arithmetic and membership parts share variables. It is
vital that we systematically explore the space of (dis)equalities
between these variables. This exchange of information resem-
bles the non-deterministic Nelson-Oppen scheme (NO) for
combining decision procedures [15]. We demonstrate that NO
can accommodate membership constraints.

Definition 5 (Arrangement). Let E be an equivalence relation
over a set of variables V . The set

α(V,E) = {x = y | xEy} ∪ {x 6= y | x, y ∈ V and not xEy}

is the arrangement of V induced by E.

Definition 6 (Stably-Infinite Theory). A Σ-theory T is called
stably-infinite if for every T -satisfiable quantifier-free Σ-
formula F there exists an interpretation satisfying F∧T whose
domain is infinite.

Fact 1 (Nelson-Oppen for Stably-Infinite Theories [15, 9]).
Let Ti be a stably-infinite Σi-theory, for i = 1, 2, and let
Σ1 ∩ Σ2 = ∅. Also, let Γi be a conjunction of Σi-literals.
Γ1 ∪Γ2 is (T1 ∪ T2)-satisfiable iff there exists an equivalence
relation E of the variables V shared by Γ1 and Γ2 such that
Γi ∪ α(V,E) is Ti-satisfiable, for i = 1, 2.

Lemma 1 (Nelson-Oppen for Membership Constraints). Let
T be a stably-infinite Σ-theory. Also, let Γ be a conjunction
of Σ-literals, and M be a conjunction of possibly negated
membership constraints. Γ∪M is T -satisfiable iff there exists
an equivalence relation E of the variables V shared by Γ and
M such that Γ∪α(V,E) is T -satisfiable and M ∪α(V,E) is
satisfiable.

A longer version of this paper [11] provides a proof of
Lemma 1. Note that Lemma 1 allows negated membership
constraints. While the latter do not pose algorithmic diffi-
culties, our discussion is limited to the positive occurrences
needed for ∃∆. The statement of Lemma 1 is structurally
similar to that of Fact 1, with membership constraints replacing
the constraints of some participating stably-infinite theory. It

follows that a membership procedure can participate in NO
as a black box, much like a theory solver, even though we
have not formalized membership constraints by means of a
theory. We can thus combine a form of set reasoning with any
stably-infinite theory.

BC(T) guarantees completeness for the combination of ILP
with a stably-infinite theory [10] by ensuring that the branch-
ing strategy explores all possible arrangements. We established
that membership can be used much like a stably-infinite
theory. All that is needed for completeness is a membership
procedure capable of checking consistency of its constraints
conjoined with a given arrangement (that contains all literals
of Equation 6). As we have seen, this operation is simple and
involves no arithmetic. In pursuit of efficiency, we proceed to
describe branching and propagation techniques based on table
contents. Meaningful branching and propagation involve the
integer bounds of variables, i.e., necessitate limited arithmetic
reasoning on the membership side.

A. Propagation

B&C-based ILP solvers keep track of variable lower and
upper bounds, and heavily rely on bounds propagation al-
gorithms. We describe how to enhance such propagation to
exploit the structure of membership constraints.

We denote by lb(v) an ub(v) the current lower and upper
bounds on variable v. lb(v) (respectively ub(v)) is either an
integer constant, or −∞ (resp. +∞) if no bound is known.
We use the notation lb′(v) and ub′(v) for bounds on v that the
membership procedure infers. We proceed with a membership
constraint as per Definition 3. Let x = (x1, . . . , xk); similarly,
we denote by yj the tuple (yj,1, . . . , yj,k). Let match(x, yj)
be true if and only if for all i ∈ [1, k], the sets [lb(xi),ub(xi)]
and [lb(yj,i),ub(yj,i)] intersect.

lb′(xi) = max(lb(xi),min{lb(yj,i) | j ∈ [1, l],match(x, yj)}) (7)

ub′(xi) = min(ub(xi),max{ub(yj,i) | j ∈ [1, l],match(x, yj)}) (8)

We over-approximate the values of the variables xi by con-
sidering all candidate entries (inner min and max). The outer
max and min guarantee that we do not weaken bounds. If
there exists exactly one value j such that match(x, yj), it is
sound to deduce the equalities xi = yj,i, for all i ∈ [1, k]. If
there is no candidate entry, inconsistency is reported.

Example 3 (Interleaved Propagation). Consider the decom-
posed formula x = y ∧ (x, y) ∈ {(1, 2), (2, 4), (3, 6), (4, 8)}.
The formula corresponds to a query over concrete tuples that
any DBMS can evaluate in linear time. It is thus vital that our
techniques yield acceptable performance. Equations 7 and 8
bound x to [min{1, 2, 3, 4},max{1, 2, 3, 4}] = [1, 4] and y to
[min{2, 4, 6, 8},max{2, 4, 6, 8}] = [2, 8]. Given the equality
x = y, ILP propagation deduces that x, y ∈ [2, 4], since [2, 4]
is the intersection of permissible ranges for x and y. The
membership procedure detects that match now only holds for
(2, 4), and fixes x to 2 and y to 4. The ILP solver in turn
deduces unsatisfiability, since x = y is violated. No branching
was needed. Encoding the formula in QFLIA would hide its
structure, leading to search. The example generalizes to other
lengths and bounded symbolic data.

6

(x1, x2) ∈

{(1, 2),
(2, 3),

(3, 2),

(y1, y2)}

(0)

(x1, x2) ∈
{(1, 2),
(y1, y2)}

(1) (x1, x2) ∈
{(2, 3),
(3, 2),

(y1, y2)}
(2)

x1 < 2 x1 ≥ 2

(x1, x2) ∈
{(2, 3)
(3, 2)}

(3) (x1, x2) ∈
{(2, 3)
(3, 2),

(y1, y2)}
(4)

x1 6= y1
x1 = y1

Fig. 3. Data-Driven Branching

B. Branching and Arrangement Search

It follows from Lemma 1 that a branching strategy which
exhaustively explores all possible arrangements of the shared
variables guarantees completeness. To achieve better per-
formance, we have to branch with the tabular structure of
databases in mind, without overlooking symbolic data.

Figure 3 provides an example. The root node (Node 0)
describes a single membership constraint, which we assume
to be part of a larger decomposed formula. We maintain
integer constants in the table, instead of performing variable
abstraction which would introduce auxiliary variables for
them. According to Equation 6, the membership procedure
needs truth assignments for the equalities in {x1 = 1, x1 =
2, x1 = 3, x1 = y1, x2 = 2, x2 = 3, x2 = y2}. It would not be
wise for the search strategy to overlook that this set originates
from a table containing numbers, and treat the set members
as if they were atomic propositions unrelated to each other.

In our example, branching on the condition x1 < 2 produces
two subproblems. Node 1 shows only the tuples that still
apply under the condition x1 < 2, i.e., the ones that still
satisfy the predicate match; similarly for Node 2. x1 < 2
is a choice informed by the tabular structure. Since 2 as the
value of the first column is close to the “middle” of the table,
branching on x1 < 2 rules out approximately half of the
candidates. (y1, y2) is present in both subproblems (Nodes
1 and 2). Branching based on constant bounds is therefore
not enough, for we will possibly have to deal with symbolic
tuples. Figure 3 demonstrates further branching on x1 = y1
to determine whether (y1, y2) is a suitable witness for the
membership constraint.

The example demonstrates the dual nature of the search
strategy needed. The problem naturally pushes towards branch-
and-bound (which is a restriction of B&C), e.g., branching on
x1 < 2 is meaningful. It remains necessary to also branch on
equalities between shared variables (e.g., x1 = y1), just like
in any practical implementation of NO. (To be precise, in ILP
we would have two separate nodes for x1 < y1 and x1 > y1
in place of x1 6= y1.) Implementing NO with B&C enables
both kinds of branching.

Branching is organically tied to propagation. Initially (Node

0), assuming no previously known bounds for x1, the ta-
ble contents only allow us to bound x1 to the range
[min(lb(y1), 1),max(ub(y1), 3)]; if y1 is unbounded, x1 re-
mains unbounded. The decisions x1 ≥ 2 and x1 6= y1 (i.e.,
Node 3) tighten x1 to [2, 3]. We also obtain the range [2, 3]
for x2, i.e., branching on some column potentially leads to
propagation across other columns.

C. Discussion

The analysis of this Section indicates that ∆ formulas can
be decomposed in such a way that a procedure for table lookup
assumes part of the workload. BC(T) is particularly suited for
implementing such a combination. BC(T) can easily accom-
modate data-aware propagation (Section V-A) and branching
(Section V-B). Our techniques would be harder to implement
within a DPLL(T)-style solver [16], given that the toplevel
search of DPLL(T) is over the Booleans (and not the integers).
A DPLL(T)-based implementation of our techniques would
essentially require integrating branch-and-bound in DPLL(T),
which is beyond the scope of our work.

The table lookup procedure can be thought of as a small
database engine within the solver. The employed database
engine can be an actual DBMS, storing the concrete part of
tables and possibly bounds on symbolic fields. A DBMS would
provide multiple opportunities for improvements. Equations 7
and 8 essentially describe database aggregation, and thus
provide a starting point for the kinds of queries that apply.
DBMS queries can be over multiple tables at a time, and can
involve conditions other than bounds. As a matter of fact, the
match predicate of Equations 7 and 8 can be strengthened
with any condition on the data that follows from the formula
(e.g., x = y in Example 3), thus computing tighter bounds.
Different kinds of database optimizations apply, e.g., mate-
rializing queries for better incremental behavior and smarter
indexing based on user input.
∃∆ (and its decomposed form) formally characterizes a rel-

evant class of problems that can be solved by a compositional
scheme which employs a database engine. Our scheme may
actually apply to a superset of ∃∆.

VI. APPLICATIONS AND EXPERIMENTS

We have implemented support for databases on top of the
Inez constraint solver.1 Inez is our implementation of the
BC(T) architecture for IMT on top of the SCIP (M)ILP
solver [2]. We refer to the version of Inez that provides
database extensions as InezDB. InezDB supports existential
database constraints by means of the BC(T)-based combina-
tion described in Section V, but also universal quantification
by eager instantiation. InezDB (like Inez) additionally sup-
ports objective functions.

We have produced a collection of InezDB input files that
have the structure we expect in applications. Our benchmark
suite is publicly available and can be used as a starting point
towards a richer benchmark suite of problems that involve
data and constraints.2 We provide a brief overview of the
application areas that inspire our benchmarks.

1https://github.com/vasilisp/inez
2http://www.ccs.neu.edu/home/vpap/fmcad-2014.html

7

A. How-To Analysis

Research in the general direction of reverse data manage-
ment [12] proposes ways of obtaining the desired results out
of a database query. We outline this class of problems through
an example, which gives rise to some of our benchmarks.

Example 4 (emp join.ml). The management of a company
is surprised to find out that (according to the corporate
database) there is no employee younger than 30 whose yearly
income exceeds $60000. Why not is not obvious, since income
is a complicated function of multiple quantities including a
base salary, benefits based on age, employee level (junior,
middle, or senior), and bonuses.

The management consults the database administrator on
how to [13] ameliorate the seeming injustice. Together, they
explore bonuses that would allow young employees to exceed
the $60000 limit. This amounts to synthesizing tuples for the
table of bonuses. An alternative is to adjust various parameters
in the income computation, i.e., to modify the query instead of
the data [18]. This can be done by replacing constants with
variables, and letting the solver come up with suitable values.

B. Test-Case Generation

Test case generation is relevant for databases [20]. A family
of benchmarks in our collection demonstrate test data genera-
tion by concretizing tables initially containing symbolic data.

Example 5 (emp keys.ml). The problem involves two
tables, named incomes and employees. incomes has an
ID column constrained to reference existing entries in
employees, i.e., there is a foreign key constraint. incomes
contains thousands of tuples with symbolic IDs. A satisfying
assignment corresponds to a generated database that meets the
foreign key constraint, thus serving as meaningful test input.

C. Scientific Applications

Studying big datasets is a key aspect of scientific research
in fields ranging from ornithology [17] to astronomy [5]. To
demonstrate the applicability of our techniques, we provide
benchmarks inspired by queries that ornithologists perform.

Example 6 (birds box.ml). An ornithologist wants to
see a rare species in person, but has not decided on a
good location. She has access to a database of observations.
Each observation describes a bird and the geographic co-
ordinates where it was seen. An area can be described as
a symbolic rectangle B = [longitudemin, longitudemax] ×
[latitudemin, latitudemax]. Our techniques allow the or-
nithologist to simply ask for n observations of the species
of interest that lie in B. The query effectively concretizes B.

D. Portfolio Management

We experimented with the portfolio optimization example
of Section II. Our exact instance (portfolio.ml) encodes
a more complex variant of the formalization in Section II. An
additional table contains stock dividends; dividends are taken
into account in the objective function. We tried a range of
parameters with a timeout of one hour, and obtained a range

 1

 10

 100

 1000

 1 10 100 1000

In
ez

 T
im

e
(s

)

InezDB Time (s)

(a) InezDB versus Inez

 1

 10

 100

 1000

 1 10 100 1000

Z
3

T
im

e
(s

)
InezDB Time (s)

(b) InezDB versus Z3

Fig. 4. Experiments: InezDB versus the eager approach

of solutions. Notably, picking an optimal portfolio of 5 out of
50 stocks took 161 seconds; 5 out of 4000 stocks took 1510
seconds; and 6 out of 2000 stocks took 1172 seconds. Such
table sizes are realistic, given that NYSE lists approximately
2800 companies.

E. Overview of Results

We compare InezDB against an Inez frontend that solves
∆ formulas by eagerly translating them to QFLIA via the
encoding of Theorem 4. Inez in turn solves QFLIA formulas
by reducing them to constraints that SCIP understands. (These
constraints are not strictly ILP, since we utilize specialized
constraint handlers [2].) We refer to this configuration simply
as Inez, since the only addition to Inez is a new frontend. We
also produce SMT-LIB versions of our QFLIA formulas, and
run them against the latest available version of Z3 (4.3.1).

We provide 8 benchmark generators that allow different
modes of operation (e.g., some of them are able to produce
both satisfiable and unsatisfiable benchmarks), and are able
to output benchmarks with different table sizes. Our input
table sizes range from 60 tuples to 640000 tuples. In total,
our parameters give rise to 166 benchmarks. We run all
three solvers with a timeout of 1800 seconds and a memory
limit of 12GB on a machine that provides 2 Intel Xeon
X5677 CPUs of 4 cores each and 96GB of RAM. Figure 4
visualizes our experiments. Inez solves 25 satisfiable and 47
unsatisfiable benchmarks. InezDB solves 74 satisfiable and
81 unsatisfiable benchmarks. Finally, Z3 solves 57 satisfiable

8

and 58 unsatisfiable benchmarks. Among the failures for Inez
(resp. Z3), 37 (resp. 27) are due to the memory limit. InezDB
runs out of memory only once. If we turn off the memory
limits, the total numbers of failures don’t change much.

Figure 4a indicates that InezDB outperforms Inez by a sig-
nificant margin. This margin can be attributed to two factors.
First, InezDB exploits the structure of database problems (e.g.,
for branching and propagation), while Inez has no knowledge
of this structure. Second, our reduction to QFLIA (in the case
of Inez) produces patterns that SCIP is not optimized for, since
the latter is designed for MILP and not for QFLIA.

Figure 4b compares Inez against a leading solver for QFLIA
(Z3), and thus characterizes the tool’s performance in absolute
terms. There is a cluster of 40 benchmarks for which InezDB
is 2-8 times faster than Z3. (Note that the scale is logarithmic.)
InezDB is at least 8 times faster for 31 of the benchmarks that
both tools solve, and solves many benchmarks for which Z3
times out. All failures for InezDB are failures for Z3. Z3
outperforms InezDB for only 7 out of the 166 benchmarks,
none of which take InezDB more than 4 seconds to solve.

We conclude the evaluation by pointing out that there is
significant room for improvement in InezDB. As is the case
with almost every first implementation of a new decision
procedure, there is room for improvement, e.g., InezDB
can benefit from better preprocessing and more sophisticated
branching. InezDB can also be improved by adopting database
techniques (as we outlined in Section V), or by integrating a
DBMS. Our promising experimental results even without such
optimizations constitute sufficient evidence that ILP Modulo
Data is a viable design for data-enabled reasoning tools.

VII. RELATED WORK

The Constraint Database framework [6] provides a database
perspective on constraint solving. The framework encompasses
relations described by means of constraints, but not relations
comprised of concrete tuples.

“Table constraints” [8, 4], as studied in Constraint Program-
ming, resemble our membership constraints. Such tables are
not meant as database tables. Our work differs in significant
ways, e.g., our setup allows symbolic table contents. Also,
the algorithms presented for table constraints rely on table
contents from small domains (i.e., not the reals or the in-
tegers). This aligns with the overall emphasis of Constraint
Programming, but conflicts with our intended applications.

Veanes et al. describe the Qex technique and tool that uses
Z3 to generate tests for SQL queries [20]. Qex essentially
encodes the relational operators via axioms, which are later
instantiated via E-matching [14]. E-matching is a generic
scheme that is not optimized in any way for database problems.
Qex is geared towards relatively small tables that suffice as test
cases, while our target applications involve bigger tables.

Other approaches tackle constraints arising in database
applications with off-the-shelf generic solvers (via eager re-
ductions). Notably, Khalek et al. use Alloy [7], while Meliou
and Suciou use MILP [13]. In neither of these approaches

does the core of the solver exploit the structure of database
instances, e.g., for branching or propagation.

VIII. CONCLUSIONS AND FUTURE WORK

We introduced the ILP Modulo Data framework for marry-
ing data with symbolic reasoning. To that end, we introduced
the decidable logic ∆. We identified a fragment of ∆ that can
be solved efficiently by instantiating the BC(T) architecture.
We developed a solver for ∆, and evaluated this solver on a
set of benchmarks that we made publicly available.

There are many interesting research directions to be ex-
plored in future work, including: (a) the design and implemen-
tation of solvers that include an actual DBMS, (b) efficiently
handling universal quantification over big tables, say by parti-
tioning input tables and using parallelization, (c) extending our
techniques to allow mixed integer, real arithmetic, and other
first-order theories, and (d) solving interesting business and
scientific applications using the ILP Modulo Data framework.

REFERENCES

[1] Challenges and Opportunities with Big Data, 2012. Computing Com-
munity Consortium White Paper.

[2] Tobias Achterberg. Constraint Integer Programming. PhD thesis,
Technische Universitat Berlin, 2007.

[3] Edgar Codd. A Relational Model of Data for Large Shared Data Banks.
CACM, 13(6):377–387, 1970.

[4] Ian Gent, Chris Jefferson, Ian Miguel, and Peter Nightingale. Data
Structures for Generalised Arc Consistency for Extensional Constraints.
In AAAI, 2007.

[5] Jim Gray, Alex Szalay, Ani Thakar, Peter Kunszt, Christopher
Stoughton, Don Slutz, and Jan vandenBerg. Data Mining the SDSS
SkyServer Database. arXiv preprint cs/0202014, 2002.

[6] Paris Kanellakis, Gabriel Kuper, and Peter Revesz. Constraint Query
Languages (Preliminary Report). In PODS, 1990.

[7] Shadi Abdul Khalek, Bassem Elkarablieh, Yai Laleye, and Sarfraz
Khurshid. Query-Aware Test Generation Using a Relational Constraint
Solver. In ASE, 2008.

[8] Christophe Lecoutre and Radoslaw Szymanek. Generalized Arc Con-
sistency for Positive Table Constraints. In CP, 2006.

[9] Zohar Manna and Calogero Zarba. Combining Decision Procedures. In
10th Anniversary Colloquium of UNU/IIST, 2002.

[10] Panagiotis Manolios and Vasilis Papavasileiou. ILP Modulo Theories.
In CAV, 2013.

[11] Panagiotis Manolios, Vasilis Papavasileiou, and Mirek Riedewald. ILP
Modulo Data. CoRR, abs/1404.5665, 2014.

[12] Alexandra Meliou, Wolfgang Gatterbauer, and Dan Suciu. Reverse Data
Management. In VLDB, 2011.

[13] Alexandra Meliou and Dan Suciu. Tiresias: The Database Oracle for
How-To Queries. In SIGMOD, 2012.

[14] Leonardo De Moura and Nikolaj Bjorner. Efficient E-matching for SMT
solvers. In CADE-21, 2007.

[15] Greg Nelson and Derek C. Oppen. Simplification by Cooperating
Decision Procedures. TOPLAS, 1:245–257, 1979.

[16] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T). JACM, 53(6):937–977, 2006.

[17] Daria Sorokina, Rich Caruana, Mirek Riedewald, Wesley Hochachka,
and Steve Kelling. Detecting and Interpreting Variable Interactions in
Observational Ornithology Data. In DDDM, pages 64–69. IEEE, 2009.

[18] Quoc Trung Tran and Chee-Yong Chan. How to ConQueR Why-Not
Questions. In SIGMOD, 2010.

[19] Moshe Vardi. The Complexity of Relational Query Languages. In STOC,
1982.

[20] Margus Veanes, Nikolai Tillmann, and Peli de Halleux. Qex: Symbolic
SQL Query Explorer. In LPAR-16, 2010.

