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Abstract— We show how to verify pipelined machine models
with bit-level interfaces by using a combination of deductive
reasoning and decision procedures. While decision procedures
such as those implemented in UCLID can be used to verify
pipelined machines, the models are at the term level: they abstract
away the datapath, require the use of numerous abstractions,
implement a small subset of the instruction set, and are far
from executable. In contrast, we focus on verifying executable
machines with bit-level interfaces. Such proofs have previously
required substantial expert guidance and the use of deductive
reasoning engines. We show that by integrating UCLID with the
ACL2 theorem proving system, we can use ACL2 to reduce the
proof that an executable, bit-level machine refines its instruction
set architecture to a proof that a term level abstraction of the
bit-level machine refines the instruction set architecture, which
is then handled automatically by UCLID. In this way, we exploit
the strengths of ACL2 and UCLID to prove theorems that are
not possible to even state using UCLID and that would require
prohibitively more effort using just ACL2.

I. INTRODUCTION

Successful approaches to pipelined machines verification
can be roughly classified as being based on the use of theorem
provers or decision procedures. Theorem proving systems
such as ACL2 [14] have been used to reason about pipelined
machine models at various levels of abstraction, ranging from
the term-level to bit- and cycle-accurate models, but they
typically require extensive expert user support. Approaches
based on decision procedures such as UCLID [4], [17] are fast
and highly automated but are restricted to term-level models,
which employ numerous abstractions and are far from being
executable, let alone bit- and cycle-accurate.

We describe an approach to bit-level pipelined machine ver-
ification that uses the tool UCLID to reason about term-level
models and the theorem prover ACL2 to relate the term-level
models to bit-level models and to establish the correctness
of the various abstractions used in the term-level models. To
this end, we have integrated the UCLID decision procedure
with ACL2, and have used the combined system to show
that an executable complex pipelined machine model, mostly
defined at the bit-level, refines its instruction set architecture.
The proof requires minimal expert user support compared to
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previous approaches and the verification times are in the order
of minutes.

Our proofs are based on WEB-refinement, a theory of
refinement that is compositional and preserves safety and
liveness properties [20]. Essential use is made of both these
features of WEB-refinement. Compositionality allows us to
reduce the proof that the bit-level machine refines its instruc-
tion set architecture into several refinement steps, some of
which are handled using ACL2 and some of which are handled
using UCLID. That WEB-refinement preserves both safety and
liveness is used to prove that code running on the pipelined
machine is correct, by first proving that the pipelined machine
refines the instruction set architecture and then proving that the
software running on the instruction set—not on the pipelined
machine—is correct.

We chose to use ACL2 because it is an industrial-strength
mechanical theorem prover that has been successfully used
for hardware verification. Some of ACL2’s commercial appli-
cations include floating-point unit verification of the AMD-
K5 processor [25], AMD AthlonTM processor [26], and
IBM Power4TM processor [29]. The verification of separation
properties in Rockwell avionics microprocessors [7], and ver-
ification of an IBM secure co-processor [32] also used ACL2.

We combined ACL2 with UCLID [4], [17] because UCLID
implements a decision procedure for formulas expressed in a
decidable fragment of first order logic called CLU, which has
been shown to be capable of describing and verifying pipelined
machines at the term level. The CLU logic contains the
boolean connectives, uninterpreted functions, equality, counter
arithmetic, ordering, and restricted lambda expressions.

For problems expressible in CLU, UCLID tends to dras-
tically outperform ACL2, e.g., to complete the proof of cor-
rectness of a simple five-stage DLX pipeline defined at the
term-level, UCLID took about 3 seconds, while ACL2 required
15 1

2 days [22]. Unfortunately, as we now outline, UCLID also
has some severe limitations, which is why we need the power
of a theorem proving system such as ACL2. Since UCLID
models are defined at the term-level, they are not executable.
In contrast, ACL2 can be made to simulate processors at
close to C speeds [8]. In addition, term-level models generally
contain only one instruction per instruction class and do not
capture the semantics of the instruction set architecture, e.g.,
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Fig. 1. High-level organization of bit-level interface processor model

ALU instructions are treated as uninterpreted functions. This
makes it impossible to reason about software, e.g., to prove
any interesting theorems about machine code, we need to
know that an add instruction adds. ACL2 has none of these
restrictions, so we can reason about machine code running on
the pipelined machine, as we show later in this paper. Another
major difference between the two systems is that ACL2 is far
more expressive than the UCLID specification language. In
fact, UCLID cannot even state the refinement theorem. We
can state the “core” of the refinement theorem, but even then
we have to drastically modify the UCLID models, e.g., by
adding external inputs and extra state and combinational logic
(giving rise to what we term “polluted models”). It is not at all
clear that the correctness proofs involving the polluted models
imply the correctness of the unpolluted models. As we show
in the sequel, by using the expressive power of ACL2, this
problem can be avoided.

The paper is organized as follows. In Section II, we describe
the executable pipelined machine model. In Section III, we
describe the notion of correctness based on refinement that we
use for checking the pipelined machine model. In Section IV,
we give an overview of our integration of UCLID with ACL2;
a more detailed description will appear elsewhere. Section V-
A describes in detail the refinement-based proof of correctness
of the bit-level machine using the combined system obtained
from integrating UCLID with ACL2. Section VI gives the
verification statistics of the proof in terms of the running time
and expert user effort required. In Section VII, we demonstrate
the ability of ACL2 to use the refinement theorem to efficiently
reason about programs compiled for the pipelined machine
model. We describe related work in Section VIII and conclude
in Section IX.

II. PROCESSOR MODEL

The pipelined machine model we use is inspired by the
Intel XScale architecture [6] and is shown in Figure 1. The
model is described using the ACL2 programming language
and can execute assembly-level programs. In Section VII, we
show an example program (a dynamic programming solution
to the Knapsack problem) that executes on the model. The

model is defined at the bit-level, except for the register file,
the instruction and data memories, and some combinational
blocks such as the ALU, which have bit-level interfaces, i.e.,
they are defined as functions whose inputs and outputs are bit
vectors, but are otherwise unconstrained. This is why we use
the term “bit-level interface” to describe the model.

The model has the following 7 pipeline stages: a 2-cycle
fetch, a decode, an execute, a 2-cycle memory access, and
a write back. It has features such as branch prediction, ALU
exceptions, and predicated instruction execution. It implements
16 ALU instructions, 15 branch instructions, various jump,
load, and store instructions, and a return from exception in-
struction. Each ALU instruction can be conditionally executed
based on 16 different conditions. Note that these are actual
instructions that can be executed by the model. The model
implements both register-register and register-immediate ad-
dressing modes. Instructions are bit-vectors of size 32 and
there are 16 registers. The word size is a parameter that can
be set to any positive integer; the size selected does not affect
the verification times. In the bit-level interface model, the
processor control logic and the data path logic are defined to
operate on bit-vectors, except for some combinational blocks
such the ALU. The ALU takes bit-vector inputs, converts them
to integers, performs the appropriate ALU operation on the
integers, and converts the result back to a bit-vector.

III. REFINEMENT

Pipelined machine verification is an instance of the re-
finement problem: given an abstract specification, S, and a
concrete specification, I , show that I refines (implements) S.
In the context of pipelined machine verification, the idea is
to show that MA, a machine modeled at the microarchitecture
level, a low level description that includes the pipeline, refines
ISA, a machine modeled at the instruction set architecture
level. A refinement proof is relative to a refinement map, r, a
function from MA states to ISA states. The refinement map
shows one how to view an MA state as an ISA state, e.g., the
refinement map has to hide the MA components (such as the
pipeline) that do not appear in the ISA.

What does it mean for the MA to refine its ISA? It means



that the two systems are stuttering bisimilar: for every pair
of states w, s such that w is an MA state and s = r(w),
one has that for every infinite path σ starting at s, there is a
“matching” infinite path δ starting at w, and conversely. That σ
and δ “match” implies that applying r to the states in δ results
in a sequence that is equivalent to σ up to finite stuttering
(repetition of states). Stuttering is a common phenomenon
when comparing systems at different levels of abstraction,
e.g., if the pipeline is empty, MA will require several steps to
complete an instruction, whereas ISA completes an instruction
during every step. Of course, reasoning about infinite paths is
difficult to automate, and in [20], WEB-refinement, an equiv-
alent formulation is given that requires only local reasoning,
involving only MA states, the ISA states they map to under
the refinement map, and their successor states.

The above notion of refinement is compositional and a
complete compositional reasoning framework based our notion
of refinement is given in [23]. For example, one can prove the
following theorem, where r; q denotes functional composition,
i.e., (r; q)(s) = q(r(s)).

Theorem 1: (Composition)
If M ≈r M′ and M′ ≈q M′′ then M ≈r;q M′′.

In [21], it is shown how to automate the proof of WEB-
refinement in the context of pipelined machine verification.
The idea is to strengthen, thereby simplifying, the WEB-
refinement proof obligation; the result is a CLU-expressible
formula that guarantees that the two machines satisfy the same
formulas expressible in the temporal logic CTL∗ \ X, over
the state components visible at the instruction set architecture
level. CTL∗ \X is a very expressive temporal logic, allowing
one to express both safety and liveness properties. The CLU-
expressible formula that implies WEB-refinement follows,
where rank is a function that maps states of MA into the
natural numbers.

〈∀w ∈ MA :: s = r(w) ∧ u = ISA-step(s) ∧
v = MA-step(w) ∧ u �= r(v)

=⇒ s = r(v) ∧ rank(v) < rank(w)〉
In the formula above s and u are ISA states, and w and v
are MA states; ISA-step is a function corresponding to
stepping the ISA machine once and MA-step is a function
corresponding to stepping the MA machine once. The proof
obligation relating s and v is the safety component, and the
proof obligation that rank(v) < rank(w) is the liveness
component.

IV. INTEGRATING UCLID WITH ACL2

Our integration of the UCLID decision procedure with
ACL2 is coarse-grained, meaning that the user has to invoke
the decision procedure explicitly. This allows us to avoid
the well-known difficulties associated with the fine-grained
integration of decision procedures into heuristic theorem
provers [2].

We initially considered building a system that given an
ACL2 conjecture generates a corresponding UCLID specifica-
tion, which is then handed to the UCLID decision procedure,
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Fig. 2. An overview of our integration of UCLID with ACL2. To prove f , an
ACL2 theorem, we generate, using any translator (not necessarily trusted), g, a
UCLID statement. If UCLID proves g, then we generate an equivalent ACL2
theorem, h, using a trusted translator, and prove in ACL2 that h implies f .

but this approach has several problems. Since the ACL2
language is more expressive than CLU, there is no general
way to define the translation. This means that any such attempt
will have to use abstractions, but the right abstractions will
most likely be problem-dependent. We can imagine adding
an analysis phase that tries to find good abstractions, but
besides not being complete, this will complicate the translation
process, thereby increasing the possibility of soundness errors.
For these reasons, we decided to build a system that allows
users to define their own translators, but which cannot be
rendered unsound by the use of erroneous translators.

The approach we use is depicted in Figure 2. If f is the
ACL2 conjecture to be checked, we first translate it to a
UCLID specification, g. We have defined such a translator that
is suitable for our needs, but any user-provided translator will
do. Recall that the soundness of our system does not depend on
this translation step. If UCLID claims that g is valid, then we
assert an equivalent ACL2 statement, say h. We have a method
of embedding the UCLID logic in ACL2, and can therefore
translate any UCLID theorem to an equivalent ACL2 theorem.
This translation step does affects soundness. It is what formally
connects ACL2 and UCLID, but this translation is fixed and
completely general. What remains is to show, with ACL2, that
h implies f .

Our approach is general in that it can handle all of the
UCLID constructs described in this paper. In addition, we
have limited the sources of unsoundness. That is, only our
embedding of UCLID into ACL2 has to be trusted; faulty user
provided translators cannot render our system unsound. To see
this, note that the proof of f depends only on the validity of g
and the soundness of our UCLID embedding in ACL2—if we
assume that ACL2 and UCLID are sound. Let’s consider three
illustrative scenarios. First, suppose that f is not valid and
it correctly gets translated to g. Then UCLID will produce a
counterexample which can be used to debug the ACL2 model.
Second, suppose that f is not valid, but the user provided
translator incorrectly generates a valid formula, g. In this case,
our translator will generate an equivalent ACL2 formula h,
but ACL2 will not be able to prove h ⇒ f , as it is not true.
Finally, suppose that f is valid, but the (untrusted) translation
incorrectly generates g. If g is not valid, then UCLID will
generate a counterexample, but the user will determine that



the counterexample is spurious, indicating that their translator
is faulty. If g is valid, then UCLID will prove it so and our
translator will provide an equivalent ACL2 theorem h, but h
will be of limited use in proving f . Of course, since f is
valid, h ⇒ f is also valid, and ACL2 may be able to prove
this regardless, but for the examples we consider, the ACL2
proof will take a very long time.

We now give a high-level description of our embedding of
the CLU logic and the UCLID specification language in ACL2.
The full details of the embedding are rather technical and
will be presented elsewhere. The CLU syntax and semantics
and the UCLID specification language are described in [4],
and [30], respectively. The UCLID specification language is
based on CLU, but extends it with features such as macros
and convenient commands for expressing symbolic simulation.
UCLID specifications are therefore more high-level than the
corresponding CLU specifications, which means that UCLID
specifications are semantically closer to ACL2 expressions,
which is why we chose to interface ACL2 with UCLID instead
of just CLU.

We first give an overview of how we embed CLU into
ACL2. The CLU logic contains the boolean connectives, unin-
terpreted functions and predicates, equality, counter arithmetic,
ordering, and restricted lambda expressions. Booleans, inte-
gers, equality, ordering, successor, and predecessor functions
in CLU are mapped to the corresponding entities in ACL2.1

CLU’s uninterpreted functions (UFs) and uninterpreted predi-
cates (UPs) are modeled in ACL2 using constrained functions.
ACL2 has an encapsulation mechanism which allows one to
safely introduce functions about which only a set of constraints
is known. To model UFs, we use constrained functions which
have the property that if their inputs are integers, then their
outputs are integers also. Similarly, UPs are modeled as func-
tions that given integer inputs return booleans. The embedding
of UFs and UPs highlights one of the issues with embedding
CLU into ACL2, which is that the CLU logic obeys a statically
monomorphic type disciple, while ACL2 is untyped. Another
issue is the embedding of lambda expressions, which is not
straight-forward because ACL2 is first-order. We use fresh,
lambda-lifted top level ACL2 functions to translate CLU
lambda expressions.

We now consider the full UCLID specification language.
UCLID models contain a set of states elements, each of which
has an initial and a next “state function,” which specify the
possible behaviors of the system. The initial and next-state
functions are defined using CLU expressions which can now
also refer to state variables. Notice that the value of a UCLID
state variable can be given by a CLU lambda expression.
To map UCLID specifications into ACL2, we use the CLU
to ACL2 embedding. The resulting ACL2 models have state
elements corresponding to the UCLID state elements and for
each state element, we define a pair of initial-state and next-

1In fact, models of the CLU logic are only required to satisfy a small
set of axioms over equality, <, and the successor and predecessor functions.
Therefore, CLU could be used to reason about other domains, say strings. Our
system allows users to do this by explicitly providing the intended domain.

IUMU

IEIEP

MA IA

Pollute

MB ME MEP

Bit−level

Term level

UCLID to ACL2

A B       : A refines B (proof by ACL2)    

A B     : A refines B (proof by UCLID)    

: Functional Instantiation

PurifyPipeline

Fig. 3. Proof outline that uses ACL2 and UCLID to show that MB refines IE.

state functions. The major problem with the translation is
how to handle state elements that are themselves functions
or predicates, as ACL2 is a first-order language. The way
we handle this is first to closure-convert [18] and lambda-
lift [12] the relevant lambda expressions: we extract the free
state variables of each lambda term, and alter the term to take
an additional argument that packages up their current values.
Secondly, we perform a defunctionalisation step [24] on the
resulting closures. That is, we statically know the call sites
for each (functional) state variable. Such a call must be to
the lambda expression produced by either the state variable’s
initial-state function, or its next-state function: there are only
two choices. Thus, we express the “code” part of the state-
element’s closure with a closure-converted ACL2 function that
can query its extra “environment” argument (which captures
the values of the preceding state) to determine if the state is
the initial state or a non-initial state. If the former, the code
executes the body of the initial-state closure; if the latter, the
body of the next-state closure.

V. REFINEMENT PROOF

We now describe the proof that bit-level interface pipelined
machine (MB) refines the executable instruction set architec-
ture (IE). Both machines are defined in ACL2 and the proof
is carried out using our system, which integrates UCLID with
ACL2. We start with an overview of the proof first.

A. Proof Overview

An outline of the proof that MB refines IE, both of which
are defined in ACL2, is shown in Figure 3. We make essential
use of the compositionality of WEB-refinement to reduce the
proof to a sequence of simpler refinement proofs. The first
refinement proof is used to move from bit-vectors to integers.
We do this by proving with ACL2 that MB refines ME, an
executable pipelined machine that is similar to MB, but which



operates on integers, not bit vectors. Now, our goal is to move
towards refinement steps that can be handled by UCLID, and,
as mentioned previously, this requires that we “pollute” the
models by adding extra inputs and logic in order to state the
“core” refinement theorems. The refinement step from ME to
MEP, a polluted version of ME, does exactly this. The pipeline
is dealt with next, when MEP is shown to refine IEP, a polluted
version of IE. As we will see shortly, both ACL2 and UCLID
are used for this refinement proof. What remains is to show
that IEP refines IE, which can be thought of as a purification
step that removes the pollution introduced earlier.

The proof that MEP refines IEP cannot be directly handled
with UCLID, e.g., the models are executable. Therefore,
several abstractions are employed, resulting in machines MA
and IA which abstract MEP and IEP, respectively. MA and
IA are term-level models and we prove that MA refines IA,
using our system as outlined in Figure 2. The proof that
MA refines IA corresponds to f , the ACL2 theorem to be
proved. We use our ACL2 to UCLID (untrusted) translator to
generate a UCLID theorem, g, which states that MU refines
IU. MU and IU are the UCLID analogs of MA and IA,
respectively. Once UCLID proves this theorem, we generate
with our (trusted) translation from UCLID to ACL2, the
corresponding ACL2 theorem, h, and prove that h implies f .
The ACL2 proofs that one refinement step implies another use
functional instantiation, a proof technique supported by ACL2
that allows us one lift theorems involving constrained functions
to theorems involving functions satisfying the constraints. This
is how we use UCLID proofs, which contain UFs and UPs,
to prove theorems about defined functions and predicates.

We now describe in detail aspects of the refinement proof.

B. Reasoning about Bit-Level Interface Designs

In this section we describe the first part of the refinement
proof, where we show that the pipelined, bit-level machine
MB refines ME, a pipelined machine operating on integers.
This proof is carried out exclusively using ACL2 and is
parameterized with respect to the word size, i.e., our proof
remains the same regardless of the word size of the machines
involved. MB and ME are very similar in structure and do not
stutter with respect to each other. Therefore, we can in fact
prove that the two systems are bisimilar.

The refinement map from MB to ME converts unsigned
and signed bit-vectors in MB to naturals and integers. For
the proof, we developed a bit-vector library in ACL2 based.
For example, we defined and developed a theory of rules for
functions to convert bit-vectors to numbers and vice-versa. The
functions include n-ubv (which converts naturals to unsigned
bit-vectors), ubv -n (which converts unsigned bit-vectors to
naturals), i -sbv (which converts integers to signed bit-vectors),
and sbv -i (which converts signed bit-vectors to integers). The
library required about four days for an expert ACL2 user to
develop. For the refinement proof, we required theorems such

as the following.

1. natp(a) ∧ natp(n) ∧ len(n-ubv(a)) ≤ n

⇒ ubv -n(extend -n(n-ubv(a), n)) = a

2. integerp(a) ∧ natp(n) ∧ len(i -sbv(a)) ≤ n

⇒ sbv -i(sign-extend -n(i -sbv(a), n)) = a

3. bvp(x) ∧ natp(a) ∧ (a < len(x)) ⇒ bitp(nth(a, x))

In the above theorems, len(x) is the length of the bit-vector
x, natp(a) denotes that a is a natural number, integerp(a) de-
notes that a is an integer, bvp(a) denotes that a is a bit-vector,
bitp(a) denotes that a is a bit, nth(n, x) corresponds to the
nth element of list x, extend -n(b, n) extends the unsigned bit-
vector b to a length of n, and sign-extend -n(b, n) sign extends
the signed bit-vector b to a length of n. Theorems 1 and 2
are used to reason about the refinement map and Theorem 3
is useful for reasoning about the instruction decoder, which
generates control signals from the bit-vector corresponding to
instructions.

C. Pollution and Purification of Models

Due to the limited expressiveness of the UCLID specifica-
tion language, to define refinement maps, we have to modify
(pollute) the machine models by adding external inputs and
logic. That proofs about polluted models imply something
about the original models requires proof.

Refinement maps are used to map implementation states to
specification states. We use the commitment refinement map
for this purpose [19], [21], where a pipelined machine state is
related to an instruction set architecture state by invalidating
all the partially executed instructions in the pipeline and
rolling back the programmer-visible components so that they
correspond with the last committed instruction. To define the
refinement map, two main functions are required. One is
the commitment function that commits the pipelined machine
state and the other is the projection function that projects the
programmer visible components of the pipelined machine state
to the ISA state. To define the commitment and the projection
functions in UCLID, we use two inputs, commit impl, which
is an input to the pipelined machine model and project impl,
which is an input to the ISA model. The inputs are used to
modify the logic of the models to define the refinement maps.

It is not clear that proving the modified processor model is
correct implies that the original processor model is correct. For
example, it is possible that external input modifies the normal
operation of the pipelined machine and hides a bug that exists
in the original machine. Therefore, we check in ACL2 that
if the external inputs in a polluted pipelined machine model
are set to values for normal operation, then the unpolluted
executable model (ME) refines the polluted executable model
(MEP). Similarly, for the purification step, we check that the
polluted executable ISA model (IEP) refines the purified ISA
model (IE). ME and MEP do not stutter with respect to each
other and neither do IE and IEP. Therefore, we can prove a
bisimulation result.



D. Relating Executable Models and Term-Level Models

In this section, we give an overview of the proof that MEP
refines IEP. This refinement step deals with the pipeline and
uses UCLID. However, in order to use UCLID, we have to
show a relationship between executable machines and term-
level machines. The difficulty is in mechanically verifying the
various abstractions employed, which are used to deal with
memories, branch prediction, instruction classes, etc.

Memories in UCLID can be modeled using lambda ex-
pressions and such memories can be matched with ACL2
memories rather straightforwardly. However, in cases where
reads and writes are in order—e.g., this is the case for the
data memory of our machine—memory can be modeled as
an integer variable using two UFs, one to read and one to
write. This modeling style leads to faster verification times
than the approach using lambdas [16]. However, it is much
more difficult to use if the abstraction has to be mechanically
verified. To mechanically verify this abstraction, we have to
show how to instantiate the UFs corresponding to read and
write operations, in order to obtain our executable model. This
requires the use of a Gödel encoding scheme, as shown below.

((a1 . d1) (a2 . d2) ... (an . dn)) →
p

p
a1+1
3 p

a2+1
4 ...pan+1

n+2
1 p

p
d1+1
3 p

d2+1
4 ...pdn+1

n+2
2

In the above equation, the data memory is an alist whose
address elements are a1, a2, . . . , an and whose data elements
are d1, d2, . . . , dn. The ith prime is denoted pi. Any finite
memory can now be represented as a single integer, but
there are several problems with the above approach. For
example, the theorem proving effort required to show that
this scheme works is non-trivial, e.g., it requires that we
prove the prime decomposition theorem. In addition, the above
encoding scheme cannot be used for infinite memories, as
there is no bijection between the set of infinite memories and
the natural numbers. Therefore, we find that the time savings
attained by abstracting the data memory with an integer are
not worth the added theorem proving effort required to justify
this abstraction.

Branch predictors in UCLID can also be modeled using
an integer variable that represents the state of the branch
predictor and three UFs that take the branch predictor state
as input and return the next state of the branch predictor, a
prediction for the branch direction, and a prediction for the
branch target [16]. To show that the above correctly abstracts
an executable implementation, for example a Branch Target
Buffer (BTB), we are required to model the environment of
the BTB using an integer. However, since the next state of
the BTB depends on the entire processor state, we have to
encode the state of the processor with one integer. We can
do this using Gödel encoding schemes, as above, provided
the memories are finite, but the effort required would be
considerable. Therefore, we use an alternate abstraction, where
we simply model the branch predictor choices using non-
determinism. Justifying this abstraction is straight-forward,

thus the ACL2 verification effort is drastically simplified. In
addition, the UCLID verification times are comparable to the
verification times required by the standard approach.

A final abstraction that we briefly mention concerns the
instruction set. The UCLID models only have one instruction
per instruction class, whereas the executable models have the
full instruction set. This turned out to be surprisingly easy to
deal with because the UCLID models use the opcode as an
argument; when we instantiate the UCLID model, we use a
function that checks the opcode and performs the appropriate
action. For example, the UCLID model only has one ALU
operation, but the executable model first checks the opcode
and then performs the appropriate operation.

We end by pointing out that executable models have other
advantages. We can use them to more easily understand
UCLID counterexamples, which can be thousands of lines and
are quite difficult to understand. Also, while the refinement
proof established that the pipelined machine behaves like the
instruction set, how do we know that the instruction set is
correct? Executable models allows us to run test programs. In
our case, while executing a simple program, we found a bug
in the instruction decoder. The decoder was reading the 32-bit
instructions in the reverse order.

E. Abstract Models

MA and IA are term-level models, and we are finally at
the point where we can invoke UCLID, which is optimized to
automatically and efficiently reason about such models. MA,
IA, and the refinement theorem that relates these models are
translated to the UCLID specification language. UCLID proves
the refinement theorem and our (trusted) translator returns an
equivalent ACL2 theorem, now about the models generated
by our translator, IU and MU. Using functional instantiation,
as outline previously, ACL2 is able to complete the proof
automatically.

VI. VERIFICATION STATISTICS

The proof times and the expert user effort required in terms
of man-weeks for each intermediate step in the refinement
proof is shown in Table I. In the “Proof Step” column in
the table, A → B means that system A refines system B.
For all the proof steps, except MU → IU, we used the ACL2
theorem proving system (version 2.9). For MU → IU, we used
the UCLID decision procedure (version 1.0) coupled with the
siege SAT solver [27] (variant 4). All the experiments were
run on a 3.06 GHz Intel Xeon, with a cache size of 512 KB.
The user effort required for the proof steps is an estimate of
the effort that would be required for an expert user of both
the UCLID tool and the ACL2 theorem proving system. The
times reported above do not include the time required to learn
UCLID and ACL2 and do not include the time required for
the integration, which took several months.

VII. PROGRAM VERIFICATION

Unlike abstract models, executable models describe the
semantics of instructions, which can be used to reason about



Proof Step Proof Time User Effort
(secs) (man-weeks)

MU → IU 157 3
MA → IA 91 2
MEP → IEP 36 2
IEP → IE 4 1
ME → MEP 21 2
MB → ME 182 3

TABLE I

VERIFICATION TIMES AND EXPERT USER EFFORT REQUIRED FOR THE

REFINEMENT PROOFS.

K(0) := 0
for c = 1 to T
max := 0
for j = 1 to n
if C(j) ≤ c

x := K(c-C(j)) + V(j)
if x > max
max := x

K(c) := max
return K(T)

Fig. 4. Pseudo code for solving the Knapsack problem.

Assembly Code Machine Code
storei r1 0 3886026752
movi r6 0 3818938368
addi r6 r6 1 3800457217
movi r10 0 3818954752
movi r7 0 3818942464
mov r14 r3 3787710467
mov r15 r4 3787780100
addi r10 r10 1 3800735745
load r12 r14 3854483470
load r13 r15 3854553103
movi r0 21 3818913813
sub r11 r6 r12 3779506188
bn r0 1249902592
add r11 r11 r1 3767250945
load r11 r11 3854282763
add r11 r11 r13 3767250957
movi r0 21 3818913813
sub r9 r11 r7 3779825671
bn r0 1249902592
mov r7 r11 3788206091
movi r0 7 3818913799
sub r11 r5 r10 3779440650
bnz r0 0444596224
add r11 r1 r6 3766595590
store r11 r7 3852972039
movi r0 2 3818913794
sub r11 r2 r6 3779244038
bnz r0 0444596224
add r11 r1 r2 3766595586
load r9 r2 3853684738

TABLE II

ASSEMBLY-LEVEL PROGRAM AND MACHINE CODE FOR THE KNAPSACK

PROBLEM.

programs and compilers for the pipelined machines. For exam-
ple, one can prove the correctness of a program compiled for
the machine or show the correctness of compiler optimizations.
We describe a simple example in ACL2 to demonstrate the
ability to use the executability of the pipelined machine model
and the refinement theorem that relates the pipelined machine
to its instruction set architecture to efficiently reason about
programs, which cannot be done with UCLID models as they
are not executable.

The program that we consider is one that solves the Knap-
sack problem, a commonly arising optimization problem. We
have a knapsack with capacity T and a set of n items, each of
which has a cost, C(·), and a value, V(·), associated with it.
The value of the knapsack is the sum of the values of the items
in it, where we allow multiple instances of the same item.
Similarly, the cost of the knapsack is the sum of the costs of
the items in it. What is the maximum value our knapsack can
attain with exceeding its capacity? A dynamic programming
solution to the knapsack problem, in pseudo-code, is shown
in Figure 4.

The assembly-level program and the machine code program
of the Knapsack problem for the bit-level interface pipelined
machine model MB is shown in Table II. To show that the
program works correctly, we require to prove the property
that K(T) is the maximum value achievable with a knapsack
of capacity T. We can prove using ACL2 that the machine
code for MB satisfies the correctness property of the Knapsack
solution. As we have seen, MB is a complex bit-level pipelined
machine with branch prediction, forwarding logic, stalls etc.,
and it is difficult to reason about even simple programs
executing on MB. It is much simpler to show the correctness of
programs running on IE, the high-level non-pipelined model.
Our theory of refinement allows us to do exactly this, but
notice that the preservation of liveness plays a crucial role, e.g.,
were we to use a notion of refinement that did not preserve
liveness, then a proof that the program runs correctly on IE
does not rule out the possibility of livelock on MB.

VIII. RELATED WORK

We now selectively review previous work on pipelined
machine verification that is directly related to our work. Burch
and Dill showed how to automatically compute the abstraction
function using flushing [5] and gave a decision procedure for
the logic of uninterpreted functions with equality and boolean
connectives. Another, more efficient decision procedure was
given in [3]. The work was further extended in [4], where a
decision procedure for the CLU logic that exploits optimized
encoding schemes [31] is given. The decision procedure is
implemented in UCLID, which has been used to verify out-
of-order microprocessors [16] and which we use to verify the
models presented in this paper. An early, pioneering body
of work on the use of theorem proving for the verification
of microprocessors is the CLI stack work [10], [11], [1].
More recent theorem proving approaches include [28], [9]. The
notion of correctness for pipelined machines that we use was
first proposed in [19], and is based on WEB-refinement [20].



The first proofs of correctness for pipelined machines based
on WEB-refinement were carried out using the ACL2 theorem
proving system [14], [15]. The advantage of using a theory of
refinement over using the Burch and Dill notion of correctness,
even if augmented by a “liveness” criterion, is that deadlock
may avoid detection with the Burch and Dill approach [19],
whereas it follows directly from the WEB-refinement approach
that deadlock (or any other liveness problem) is ruled out.
In [21], it is shown how to automatically verify safety and live-
ness properties of pipelined machines using WEB-refinement.

IX. CONCLUSIONS AND FUTURE WORK

We have shown how to verify executable pipelined machine
models with bit-level interfaces using our integration of the
UCLID decision procedure with the ACL2 theorem proving
system. The proof was completed in a few minutes of CPU
time and required minimal expert user support. The proofs
are based on WEB-refinement, a theory of refinement that is
compositional and preserves both safety and liveness proper-
ties. We also demonstrated that we can decompose the proof
that code running on the pipelined machine is correct by first
showing that the pipelined machine refines the instruction set
architecture and then showing that the software running on the
instruction set architecture is correct. In this way, we exploit
the strengths of ACL2 and UCLID and establish proofs that
are not possible to prove using UCLID and that would require
considerably more effort using just ACL2. For future work,
we plan to apply this approach to a wider class of pipelined
machines.
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