Monolithic Verification of Deep Pipelines with Collapsed Flushing

Roma Kane and Panagiotis Manolios Sudarshan K. Srinivasan
College of Computing School of Electrical & Computer Engineering
Georgia Tech, Atlanta, GA 30318 Georgia Tech, Atlanta, GA 30318
{kroma, manolios@cc.gatech.edu darshan@ece.gatech.edu
Abstract on verification times, which makes finding efficiently veri-

fiable refinement maps of crucial importance.

We introduce collapsed flushing, a new flushing-based |, this paper, we introduce collapsed flushing, a vari-
refinement map for automatically verifying safety and live- ant of flushing that, as our extensive empirical evaluation
ness properties of term-level pipelined machine models. Weshows, leads to drastically faster verification times trean i
also present a new method for handling liveness that is possiple with standard flushing. We also show how to com-
both simpler to define and easier to verify than previous pine collapsed flushing with commitment, another well-
approaches. To empirically validate collapsed flushing, we known refinement map that can be thought of as the dual
ran extensive experiments which show more than an order-of flyshing, as partially executed instructions are invali-
of-magnitude improvement in verification times over stan- 4ated instead of being completed. We show that the result-
dard flushing. Furthermore, by combining collapsed flush- ing refinement map can be used to efficiently reason about
ing with commitment refinement maps, we can monolithi- complex machine models with deep pipelines. This is an
cally verify complex pipelined machine models with deep jmportant problem, as recent state-of-the-art micropsece
pipelines—a salient feature of state-of-the-art micrag®s- sor designs have very deep pipelines, Intel's® hyper-
sor designs—that previous approaches cannot handle. pipelined technology appearing in the Pentium 4 processor

has a pipeline with 31 stages [7].

The refinement proofs are verified automatically using
1. Introduction the UCLID system [1], which implements a decision pro-
cedure for the logic of Counter arithmetic with Lambda ex-
We verify pipelined machine models by showing that pressions and Uninterpreted functions (CLU). In order to
they refine their instruction set architecture (ISA). The no use UCLID, the pipelined machine models we use are de-
tion of refinement we use is based on stuttering bisimula- fined at theterm-level the data path is abstracted away
tion. It guarantees that the pipelined machine and its ISA using integers, and combinational circuit blocks, such as
satisfy the same safety and liveness properties and that thethe ALU, are abstracted away using uninterpreted func-
have the same infinite visible executions, up to stuttering. tions. The advantage of term-level models is that they can
The refinement theorems we prove are parameterized by rebe compiled to CLU expressions. Another issue is that
finement maps: functions that map pipelined machine stateghe refinement-based correctness statements cannot be ex-
to ISA states. One of the most commonly used refinementpressed in CLU. Fortunately, we can express the main
maps is thdlushing refinement magiven a pipelined ma- “core” of the correctness statements in CLU. The core cor-
chine state, it returns an ISA state by completing the par-rectness statements are given to the UCLID system, which
tially executed instructions in the pipeline, without feiteg ~ compiles them to propositional formulas in CNF format.
any new instructions, and then projecting out the ISA vis- These formulas are then checked using a SAT solver. We
ible components. In general, refinement maps are complexuse the Siege SAT solver [16], but any SAT solver will do.

functions, but necessarily so, as they relate machines with The rest of the paper is organized as follows. We start in
multiple instructions in various stages of completion toma Section 2 by providing a brief overview of the refinement-
chines in which instructions complete atomically. A con- pased notion of correctness we use. We then turn our atten-
sequence is that refinement maps have a profound impaction to refinement maps and describe the commitment re-
finement map (in Section 3) and the standard and collapsed
« This research was funded in part by NSF grants CCF-0429¢24, | flushing refinement maps (in Section 4). We show how to
0417413, and CCF-0438871. combine the commitment and flushing refinement maps in

Section 5. In Section 6, empirical evaluations show that we The rank function is defined as the number of steps required
obtain over an order-of-magnitude improvement in verifica- to commit an instruction, which is the length from the end
tion times when using collapsed flushing instead of standardof the pipeline to the first valid pipeline latch.

flushing. Related work is briefly discussed in Section 7,and The commitment approach requires an invariant that

we conclude in Section 8. characterizes the set of reachable states. Two methods of
doing this have been investigated: the “Good MA" invari-
2. Refinement ant, and, more recently, the Greatest Fixpoint (GFP) iavari

ant. The GFP invariant is easier to use and gives rise to

We prove that pipelined machines (MA) are correct by drastic reductions in verification times over the “Good MA’
showing that they refine their instruction set architecture approach [13]. The GFP invariant characterizes the set of
(ISA). A refinement proof is relative torefinement mayr, states that are steps away from an arbitrary state, whare
a function from MA states to ISA states. Our notion of re- is the number of steps required to replace all partially exe-
finement is based ostuttering bisimulationfor every pair cuted instructions in the pipeline with new instructioranfr
of statesw, s such thatw is an MA state ands = r(w), the instruction memory. For the pipelined machines we con-
we have that for every infinite path starting ats, there sider,nis the number of steps required to flush the pipeline.
is a “matching” infinite pattd starting atw, and conversely. The GFP invariant is an invariant by definition and does not
Thato andd “match” implies that applying to the states require an invariant proof. In contrast, the “Good MA’ ap-
in results in a sequence that is equivalenttap to fi- proach requires establishing an invariant, which accounts
nite stuttering (repetition of states). Stuttering is a ooon for about 98% of the total verification time.
phenomenon when comparing systems at different levels of
abstractiong.qg, if the plpellng is empty, MA will require 4. Collapsed Flushing
several steps to complete an instruction, whereas ISA com-
pletes an instruction during every step. Of course, reason-

! Lo A . In this section, we describe collapsed flushing, an im-
ing about infinite paths is difficult to automate, and in [10], P g

WEB-refinement, an equivalent formulation is given that re- pIementaFi.on c_)f th? flushing refiqement map that leads to
quires only Iocal,reasoning involving only MA states, the faster venflcatlor? times over previous methods. The use of
ISA states they map to undér the refinement map an(':i theirﬂl.JShIng as a refmement map was pro'posed by Burch and

' Dill [3]. As mentioned previously, flushing can be thought
successor states.

o of as the dual of commitment, as partially executed instruc-
_In [11], 't. is shown how to a_uto_mate proof_s of WE.B' tions in the pipeline are completed (without fetching any
refinement in the context of pipelined machine verifica-

tion. The idea is to strengthen, thereby simplifying, the ne\;\;IE?L??&SQZ?:T;?;&?ESr'g;ilsg(:naetifiheorem based
WEB-refinement proof obligation. The result is the follow- 9 P

ina CLU-expressible formula on standard flushing as a graph we callf@ement graph
9 P ' The nodes of the graph are variables whose names match the

(WWeMA 1 s=r(w) A u=ISA-step(s) A ones given in Section 2; the edges correspond to symbolic
v=NMA-step(w) A U#r(v) simulation steps, flushing steps, or projections. Pipdline
— s=r(v) A rank(v) < rank(w)) machine statev is flushed fom steps, resulting in flushed

statew;, wheren is the number of steps required to inval-
In the formula abové SA- st ep is the function that steps idate all ofw's pipeline latches. The ISA state returned by
thel SAmachine oncelyiA- st ep is the function that steps the flushing refinement map $sthe state obtained by pro-
the MA machine once, andank is a function that maps jecting out the ISA components of . Stateu is obtained by
pipelined machine states to the natural numbers. The proofstepping stats, and state is obtained by stepping. Flush-
obligation relatings andv can be thought of as the safety ing statev gives us state;, and projecting out the ISA com-

component, and the proof obligation thabk(v) < rank(w) ponents gives us statév). The safety component of the re-
can be thought of as the liveness component. finement theorem compare§r) with sandu. The liveness

component depends on the ranksaoéndv. Thus, the re-
3. Commitment finement theorem depends only on states, s, u, andr (v),

nodes depicted with a solid circle in Figure 1.

In this section, we give an overview of the commitment The verification times for the flushing method depend on
refinement map. The idea is to invalidate the partially ex- two factors. The first factor is number of symbolic simula-
ecuted instructions in the pipeline and to undo any effectstion steps required to reaahfrom w. We call this factor
these instructions had on the programmer visible compo-the flushing lengthIf n is the number of symbolic simu-
nents. This is accomplished with the use of history vari- lation steps required to flush the pipelined machine, then
ables, variables that record past values of state companent the flushing length is+ 1, as can be seen from the refine-

We now describe collapsed flushing, depicted in Fig-
ure 1(b). The insight is that we can reduce the state dis-
7/ tance from 2+ 2 to 2. Consider the staig, obtained by
. steppingw once, to obtairv, and then flushing for n—1
@ steps. If no new instruction is fetched during the initigst

(as is the case during a stall or a branch mispredict) then ~
flush

is exactlyw;. Otherwise, we can obtaiw from vi; by us-
n steps

\ ing history variables to factor out any effect that the instr
fush * ti_or_1 fetched from the trans_ition tohas on the programmer
flush n-1 steps ° V|S|b_le _components. That igg can .be obta_lned by slightly
n steps ° modifying the process of computing. This allows us to
\
W

7

~

S0 0 0y

collapse the two flushing computations arising in the imple-

< mentation of the standard flushing refinement map into one,
which is why we name this method collapsed flushing. Fig-

_ R R N ure 1(b) shows that the state distance is 2, improving upon
proj %) proj’ %) the 2n+ 2 value for standard flushing. We validate these in-
tuitions in Section 6, where we show empirically that col-

\Z lapsed flushing leads to much faster verification times and

- @ scales better than standard flushing.

History variables are used with collapsed flushing as fol-

/ / lows. If a new instruction is fetched during the transition

: from w to v, a tag is attached to it that follows it through

@ @ the pipeline. In addition, every programmer visible compo-
nent in the pipelined machine has a history variable asso-

a-----@ O O = ---

(a) Standard Flushing (b) Collapsed flushing ciated with it. While non-history variables are updated nor-
mally, history variables are updated only by instructidret t
— = MA-Step Q States required to define are not tagged. Thus, the history variablesjrcdntain the
777777 » Flush refinement theorem

values we would have obtained had the step frorto v

"""""" T ISA-Step Y '”termedditatz Sf.tates not been a flush step, which allows us to determipgwhich
> ';Jr?jc‘?icotri]o” A ?Eﬂﬁgﬁen? th%l)nrzm in turn is used to obtain stage
(A=—(B) Compares states A In the standard flushing method, the rank of a pipelined
and B for equality machine state is defined as the number of steps required to

fetch an instruction that eventually completes. For the col
lapsed flushing method, we use an alternate rank function
that can be easily implemented and that leads to faster veri-
fication times. The new rank function is defined as the num-
ber of steps required to flush a pipelined machine state. To
compute this fow, we simply determine how many flush-

ment graph in Figure 1(a). The number of steps required toin.g steps are needed befor.e aI.I pipelingd latches are éhvali
flush the pipelined machine depends on the pipelined ma-Since we stepv before flushing it (see Figure 1(b)), the rank
chine under consideration, and it is an inherent parameterof W is the number of steps required before all pipelined
of the flushing refinement map. Therefore, there is no way latches are either invalid or contain a tagged instruction
to reduce the flushing length without abandoning the use of(Cnly the step fronw to v can lead to a tagged instruction).
the flushing refinement map.

The second factor is thetate distancethe number of 5. Intermediate Refinement Maps
symbolic simulation steps separatingrom r(v). This is
approximately the length of the shortest path betwaen In this section, we give a brief description of intermedi-
andr(v) in the refinement graph, when viewed as an undi- ate refinement maps (IRs) and explain how we use collapsed
rected graph. As can be seen from Figure 1(a), the state disflushing to define IRs. Intermediate refinement maps (IRs)
tance for standard flushing im2 2. The intuition astowhy are a relatively new class of refinement maps, obtained by
this metric is related to verification times is that the state combining flushing and commitment [15]. An IR is defined
mentsu =r(v) ands=r(v) are quite complex, each requir- by choosing a reference point (a stage in the pipelined ma-
ing about 21 symbolic simulation steps to state. chine), and committing all the pipeline latches before the

Figure 1. Implementation of standard and col-
lapsed flushing refinement maps.

108 T T T T 900K T T T
Both approaches complete X Collapsed flushing —=— J
Standard flushing fails < 800K Standard flushing --><-- -
10° | - o
29 $ 600K X N
8o 10* . 3
82 X E
£S5 X > 400K e g
=% 10° - L
83 %x >§X 3 o
T3 i
€8 1%] 200K E/B/E/E/Ej
o8
>0
101 _% | OK[1 1 1
6 7 8 9 10
. Pipelined machine models
10° 10 10° 10®° 10° 10° 10°
Verification times using collapsed flushing (secs) Figure 3. A comparison of standard and col-
lapsed flushing based on the number of CNF
Figure 2. A comparison of standard and col- variables generated.

lapsed flushing based on verification times.

)] o where,n is the number of steps required to flush the flush
reference point and flushing all the pipeline latches aftert |3iches. During the flushing sequence, the commit latches
reference point. IRs result in drastic reductions in veafic 516 modified only when there is a branch mispredict. Com-
t!on times over both flushing and commitment as they give mitting the commit latches and applying the corresponding
rise to two simpler problems, each roughly half the com- giection functions tev"andvs results in ISA states and

plexity of the original. The first verification problem cosre r(v), respectively. Just as beforejs obtained by stepping
sponds to the part of the pipeline being committed, and thehe |SA machine from state

second verification problem corresponds to the part of the
pipeline being flushed. The best choice of reference point is
one that leads to roughly the same complexity for the two 6. EXperimental Results
resulting problems. Thus, the reference point is usualdy ch
sen to be close to the middle of the pipeline. The rank func- In this section, we present our empirical evaluation of
tion of an IR (used for checking liveness) is defined as a pair collapsed flushing, which is based on an extensive set of
of natural numbers computed by functionankis for the experiments. To summarize, we found that using collapsed
flushing component andankic for the commitment com- flushing gives an order-of-magnitude improvement in verifi-
ponent. The functionsankis andr anki. are essentially ~ cation time when compared with standard flushing. We also
the ranks for flushing and commitment, respectively. The show that the CNF files generated when using collapsed
less-than ordering for the rank of the IR is defined as the flushing are much smaller than when using standard flush-
lexicographic ordering with priority given toankis . ing. Both observations validate our analysis of collapsed
We describe how to define the IR obtained by combining flushing in Section 4. In the second set of experiments, we
GFP-based commitment with collapsed flushing. In the fol- Show that by using intermediate refinement maps based on
lowing discussion, we refer to the pipeline latches that are the combination of collapsed flushing with GFP-based com-
committed and flushed as the commit latches and the flushmitment, we can monolithically verify pipelines that are to
latches, respectively. We require an invariant for the com- deep to verify with the best previously known monolithic
mit latches and it is based on the GFP invariant: starting approach, which uses intermediate refinement maps based
from an arbitrary state, we step the machine for the num-on standard flushing and GFP-based commitment.
ber of steps required to flush the commit latches. The flush For the experiments, we used and extended the pipelined
latches are also stepped, as the commit latches depend omachine models described in [14]. These models con-
the flush latches, but once this process is finished, we astain branch prediction mechanisms, instruction cachea, da
sign arbitrary values to the flush latches. This defines the IRcaches, write buffers, and instruction queues. They were
invariant. formally verified using the UCLID decision procedure
Now, letw be an arbitrary state satisfying the IR invari- (Version 1.0) along with the Siege SAT Solver [16] (vari-
ant. We proceed by essentially applying the collapsed flush-ant 4), using a 3.06 GHz Intel Xeon with an L2 cache size
ing refinement map. The states andv; are computed by — of 512 KB.
applyingn— 1 andn flushing steps to the flush latches, Figure 2 compares collapsed flushing with standard

10* T T

T 10 T T T T T
X
— 6
) WK < 10° PR
3] .
28 10°r X 8 X]
g0 X X =
Es) x X S "
=3 10% % X 1 T 10
S2 k]
=< X =
52 A 5
2E X > 10 CIR5 ——
$E 10t f - SIRG -
S Extrapolated SIR5 ---><--
o 102 1 1 1 1
X 10 11 12 13 14 15 16
Both approachesl completel o Pipelined machine models
10° 10 102 10° 10

Verification times using collapsed flushing (secs) Figure 5 A comparison of verification times

for CIR5 and SIR5, defined using collapsed

Figure 4. A comparison of verification times and standard flushing, respectively.

for collapsed flushing and GFP-based com-
mitment.

els used in Figure 2. As can be seen from the scatter plot,

flushing using a benchmark suite consisting of 42 pipelined the two approaches are comparable.

. A major benefit of collapsed flushing can be seen when it
machine models, where the number of stages ranges fromS combined with commitment (GEP) to define intermediate
6 to 10. Notice that both the andy axes use a logarith- ! : Wi ' () inel '

mic scale. When using standard flushing, Siege fails on 9 Ofreflnement maps (lR.S) as show.n in Figure 5, where we com-
the benchmarks by reporting that the problem is too com- pare IRs defined using commitment (GFP) and collapsed
. X L . flushing (CIRs) with IRs defined using commitment (GFP)
plex to handle and immediately quiting; this is denoted in . . .
the figure as “Standard flushing fails.” However, when col- and standard flushing (SIRs). IRs are effective fqr handling
lapsed flushing is used, Siege can handle all of the bench-IorObIemS that are beyond the scope of pure flushing or com-
mark problems ' mitment refinement maps, such as deep pipelines. For the
Our analysis in Section 4 shows that the complexity of experiments, we use IRS, which is the IR obtained by com-

pipelined machine verification problems is greatly reduced mitting the first 5 pipeline latches and flushing all other

when standard flushing is replaced by collapsed flushing,plpellne latches. The-axis shows pipelined machine mod-

b f the diff in state dist A i fels obtained by increasing the number of stages from 10 to
ecause o tne differences in stale distance. AS a Metrc ol ¢ ¢, 5 machine containing features such as a branch pre-
the complexity of these problems, we use the number of

' . diction mechanism, instruction and data caches, and write
CNF variables generated. In Figure 3, we plot the number

of CNF variables generated when verifying pipelined ma- buffe'rs. Notjce that thg-axis is a Iogarithmic scale. From
chines of varying length for both standard and collapsed the flgure_, it can be seen tha.lt SIRS is not able to han-

: . . dle machine models with pipelines that have more than 13
flushing. Recall, th‘?t for the mach_lne model; we_conS|der, stages. For these models, we have extrapolated the verifi-
the number of flushing steps required to define either stan-

dard I d flushing is th dis directl cation times using the average slope of the SIR5 models
\ard or coflapsed fushing1s In€ Same and IS diFeCtly propor=y,; ¢4 pe verified. CIRS scales better as we increase the
tional to the length of the pipeline. From the figure, it can

N umber of pipeline stages and is able to handle pipelines
be seen that as the length of the plpelln_e increases, the CN'{_:/]vith 16 stages (and beyond). We note that some modern
variables generated for standard flushing rapidly increase

. A microprocessors have very deep pipelireeg, Intel's Pen-

whereas the Increase for coIIap_sed flushmg IS more mOd'tium 4 processor, with hyper-pipelined technology, has 31
est. The reason for this, as explained in Section 4, is tleat th stages [7]
state distance for standard flushing depends linearly on the |
number of steps required to flush the machine, but remains a
constant for collapsed flushing. Therefore, collapsed flush 7. Related Work
ing scales much better than standard flushing as the length
of the pipeline increases, and it can even handle problems We briefly review previous work on pipelined machine
that standard flushing cannot. verification that is directly related to our work. Burch and

In Figure 4, we compare collapsed flushing with GFP- Dill introduced flushing and gave a decision procedure for
based commitment on the same 42 pipelined machine mod+the logic consisting of boolean connectives, equality, and

uninterpreted functions [3]. Several variants of flushing [4] L. de Moura. Yices homepage. See URIttp://-
have been previously considered. One example is controlled ~ fmcsl . sri.conyices.
flushing, an implementation of the flushing refinement map [5] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras,
that uses a fixed stalling and flushing pattern, leading te sim and C. Tinelli. DPLL(T): Fast decision procedures. In
pler formulas and faster verification times [2]. A second ex- R. Alur and D. Peled, editor§;omputer Aided Verification
ample is incremental flushing, which uses an inductive ar- (CAV'04) volume 3114 oLNCS pages 175-188. Springer,
gument, making it difficult to applye.g, the authors con- 2004.))
clude that the effort required to deductively justify theqi [6] R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Proof of
o . ; correctness of a processor with reorder buffer using the com-

decompositions offsets the benefits obtained [8]. Also note .)

- I pletion functions approach. In N. Halbwachs and D. Peled,
that neither of these .a}pproaches deals with liveness. Re- editors Computer-Aided Verification—CAV '9olume 1633
cent work on compositional methods [12] can handle deep of LNCS Springer-Verlag, 1999.
pipelines, but several verification steps are requiredr@he (7] |ntel Pentium 4 Processor - Product Overview, 2005.
are also theorem proving methods [17, 6] that can be used See URL http://wwmn intel.com design/-

to verify deep pipelines, but they often require extensive e penti umd/ prodbref/.
pert user guidance. [8] R. B. Jones, J. U. Skakkebaek, and D. L. Dill. Formal veri-
A complimentary approach to extending the complex- fication of out-of-order execution with incremental flushing.

ity of pipelined machines that can be handled automatically Formal Methods in System Design, Special Issue on Micro-
has focused on decision procedures. This includes the work Processor Verification20(2):139-158, Mar. 2002. 3
on UCLID [9], but we expect recent advances in decision [9] S. Lahiri, S. Seshia, and R. Bryant. Modeling and verifica-

procedures to provide even more significant improvements ~ tion of out-of-order microprocessors using UCLID. Far-
(e.g, see [5, 4]) mal Methods in Computer-Aided Design (FMCAD'02)I-

ume 2517 oLNCS pages 142-159. Springer-Verlag, 2002.
[10] P. Manolios. Mechanical Verification of Reactive Systems
8. Conclusion PhD thesis, University of Texas at Austin, August 2001. See
URL http://ww. cc. gat ech. edu/ ~manol i os/ -
We have introduced collapsed flushing, a new refinement ~_ Publications. htmi .- o
map based on flushing that results in about an order—of-[ll] P. Manollos_ and S. Srlnlvasan._ Automatic verification (_)f
magnitude improvement in verification times over standard \S/\?l];eé)-/r:ggelrﬁ:tesss Ig eéiscr?lzd'tzfnz:%‘:nezsnﬂ _?ec;?eills E'Slng
flushing. We also presented a new, simpler, and easier-to- rope, DATE'04 paées 168—9175 2004
verify rank function, which is used for handling liveness. ; ’ '

We sh dh btain i di f [12] P. Manolios and S. Srinivasan. A complete composi-
e showed how to obtain intermediate refinement maps tional reasoning framework for the efficient verification of

by combining collapsed flushing with GFP-based commit- pipelined machines. IICCAD-2005, International Confer-
ment. These maps allowed us to extend the reach of mono- ence on Computer-Aided Desigrages 863-870, 2005.

lithic pipelined machine verification, enabling the verifi- [13] p. Manolios and S. Srinivasan. A computationally efficient

cation of deep pipelines. The utility of collapsed flushing method based on commitment refinement maps for verify-
was empirically validated with an extensive set of experi- ing pipelined machines models. ACM-IEEE International
ments on a benchmark suite containing a large number of Conference on Formal Methods and Models for Codgsign
pipelined machines. pages 189-198, 2005.

[14] P. Manolios and S. Srinivasan. A parameterized benchmark
suite of hard pipelined-machine-verification problems. In

References D. Borrione and W. Paul, editor€orrect Hardware Design
and Verification Methods (CHARME'03)NCS, pages 363—

[1] R. E. Bryant, S. K. Lahiri, and S. Seshia. Model- 366. Springer-Verlag, 2005.
ing and verifying systems using a logic of counter arith- [15] P. Manolios and S. Srinivasan. Refinement maps for efficient
metic with lambda expressions and uninterpreted functions. verification of processor models. Design Automation and
In E. Brinksma and K. Larsen, editor§omputer-Aided Test in Europe, DATE'Q%ages 1304-1309, 2005.
Verification—CAV 2002vo0lume 2404 o£NCS pages 78-92. [16] L. Ryan. Siege homepage_ See URLLt p: /] W\, CS. -
Springer-Verlag, 2002. sfu.cal/ ~I oryan/ personal .

[2] J. R. Burch. Techniques for verifying superscalar micropro- [17] J. Sawada. Verification of a simple pipelined machine model.
cessors. Ibesign Automation Conference (DAC '96ages In M. Kaufmann, P. Manolios, and J. S. Moore, editors,
552-557, Las Vegas, Nevada, June 1996. ACM Press. Computer-Aided Reasoning: ACL2 Case Studiages 137—

[3] J. R. Burch and D. L. Dill. Automatic verification of 150. Kluwer Academic Publishers, June 2000.

pipelined microprocessor control. @omputer-Aided Ver-
ification (CAV ’'94) volume 818 ofLNCS pages 68-80.
Springer-Verlag, 1994.

