
A Complete Compositional Reasoning Framework

for the Efficient Verification of Pipelined Machines

Panagiotis Manolios

College of Computing

Georgia Institute of Technology

Atlanta, Georgia 30318

Email: manolios@cc.gatech.edu

Sudarshan K. Srinivasan

School of Electrical & Computer Engineering

Georgia Institute of Technology

Atlanta, Georgia 30318

Email: darshan@ece.gatech.edu

Abstract—
We present a compositional reasoning framework based on

refinement for verifying that pipelined machines satisfy the
same safety and liveness properties as their instruction set
architectures. Our framework consists of a set of convenient,
easily-applicable, and complete compositional proof rules. We
show that our framework greatly extends the applicability of
decision procedures by verifying a complex, deeply pipelined
machine that state-of-the-art tools cannot currently handle. We
discuss how our framework can be added to the design cycle
and highlight what arguably is the most important benefit of
our approach over current methods, that the counterexamples
generated are much simpler, as bugs are isolated to a particular
step in the composition proof.

I. INTRODUCTION

We present a complete compositional framework based

on Well-founded Equivalence Bisimulation (WEB) refinement

that can be used to reason about pipelined machines that

are too complex to handle with current tools and methods.

State-of-the-art tools based exclusively on decision procedures

(such as UCLID) fail as processor models exceed the tool’s

complexity threshold. As a result, the goal of much of the

current work in mechanical verification is to design tools and

techniques that extend the range of automatic methods. While

there has been much success, we are still far away from

being able to use such methods to verify industrial designs.

The compositional framework we introduce takes us a step

closer, as it allows us to substantially extend this complexity

threshold.

Using our framework we can verify in under 20 seconds

a complex pipelined machine that UCLID cannot directly

handle. This machine is quite complicated and to make its

definition a manageable process, we defined a series of ma-

chines starting with the base processor model M6, a 6 stage

pipelined machine, which we extended first with a pipelined

fetch stage, then with an instruction queue holding up to 3

instructions, then with a direct mapped instruction cache, then

a direct mapped data cache, and, finally, a write buffer, to

obtain M10IDW. Unfortunately, proving that M10IDW refines

ISA, the instruction set architecture, is beyond the capabilities

of UCLID. Our compositional framework allows us to verify

This research was funded in part by NSF grants CCF-0429924, IIS-
0417413, and CCF-0438871.

the machine the same way we defined it, one feature at a time,

which leads to a manageable process. Each stage of the proof

essentially entails establishing a WEB-refinement proof, which

means that, relative to a refinement map and up to stuttering,

the two machines have exactly the same infinite behaviors.

We introduce compositional proof rules that guarantee that

this sequence of refinement proofs implies that the final

pipelined machine has the same behaviors as the instruction

set architecture. In terms of temporal logic, we have that the

machines satisfy exactly the same CTL∗ \ X properties ex-

pressible at the instruction set architecture level. We automate

the process by reducing the proof obligations to statements

expressible in the logic of Counter arithmetic with Lambda

expressions and Uninterpreted functions (CLU), which is a

decidable logic [6]. We use the tool UCLID [14] to transform

the CLU formula into a CNF (Conjunctive Normal Form)

formula, which we then check with the SAT solver Siege [25].

A major advantage, perhaps even more important than the

increased performance, of our compositional framework over

monolithic approaches is that counterexamples are shorter

and clearer, which greatly simplifies debugging. Suppose that

modifications are made to the design and in the process a bug

is introduced. Compositional verification allows us to focus

in on where the bug first appears and the counterexample

generated is with respect to a specific refinement stage, i.e.,

the counterexample is at exactly the right level of abstraction

required to easily understand and correct the problem. For

example, if the bug does not involve the cache, then neither

does the counterexample, whereas in a monolithic approach,

there is no way to know if the cache was involved; thus, as

the verification engineer is trying to understand the counterex-

ample, she is forced to manually rule out the possibility that

the cache contributed to the error. By using our compositional

approach, the engineer can bridge the abstraction gap on her

own terms and at a rate that makes sense given available tools

and the development process.

The paper is organized as follows. We end this section

by briefly reviewing related work. In Section II, we review

the theory of refinement upon which our correctness proofs

depend. In Section III, we describe the modeling and mono-

lithic verification of the processor models, and in Section IV,

we describe the compositional techniques we developed for



pipelined machine verification. Everything required to repro-

duce our results, e.g., machine models, correctness statements,

CNF formulas, etc., is available upon request. Conclusions and

an outline of future work appear in Section V.

Related Work

Pipelined machine verification is an active area of research.

One popular approach involves the use of theorem provers,

which have the advantage that the underlying logics are very

powerful and expressive, but are also undecidable. Examples

of this line of research include the work by Sawada and Hunt,

who use an intermediate abstraction called MAETT to verify

some safety and liveness properties of complex pipelined

machines [26], [27]. Another example of a theorem proving

approach is the work by Hosabettu et al., who use the notion

of completion functions [11], and the work of Arons [2].

Our main concern, however, is with highly automatic meth-

ods. An early and influential paper in this area is due to

Burch and Dill, who showed how to automatically compute

refinement maps using flushing [7] and gave a decision proce-

dure for the logic of uninterpreted functions with equality and

Boolean connectives. The idea with flushing is that a pipelined

machine state is related to an instruction set architecture

state by completing partially completed instructions without

fetching any new instructions. Another refinement map that

can be automatically computed is based on the commitment

approach [15], [18], where a pipelined machine state is related

to an instruction set architecture state by invalidating all the

partially executed instructions in the pipeline and rolling back

the programmer-visible components so that they correspond

with the last committed instruction. There has been recent

work on commitment [19], [24], [1], and on the use of re-

finement maps that partly flush and partly commit [21]. There

has also been related work on assume-guarantee reasoning by

Henzinger et al. [10].

More directly related to this paper is the work on decision

procedures for the CLU logic [6], which is based on previous

work on exploiting positive equality [5]. The decision pro-

cedure is implemented in UCLID, which has been used to

verify out-of-order microprocessors [14], and is one of the

most powerful, freely available tools for deciding formulas

arising from processor verification [9] and which we use to

verify the models presented in this paper.

Previous work on decomposing refinement proofs includes

the work of Arons and Pnueli [3], who use the PVS theorem

prover to verify a machine with speculative instruction exe-

cution. They use an inductive proof to show that machines

which differ only in the size of the retirement buffer are

related; however, due to the complexity of the refinement maps

involved, they conclude that a direct approach is far simpler

than the inductive one. Jones et al. [12] verify an out-of-order

execution unit using incremental flushing. Their approach

relates the implementation to an intermediate machine, where

the scheduling logic is abstracted, which is then related to the

ISA. In comparison, we can deal with any refinement map,

we have a general theory with a complete rule for relating any

number of intermediate machines, and we guarantee that all

safety and liveness properties are preserved.

The notion of correctness for pipelined machines that we

use was first proposed in [15], and is based on WEB-

refinement [16]. The first proofs of correctness for pipelined

machines based on WEB-refinement were carried out us-

ing the ACL2 theorem proving system [13]. The advantage

of using a theory of refinement over using the Burch and

Dill notion of correctness —even when augmented with a

“liveness” criterion— is that the Burch and Dill approach

cannot detect deadlock [15], whereas it follows directly from

the WEB-refinement approach that deadlock (or any other

liveness problem) will be detected. In [18], it is shown how to

automatically verify safety and liveness properties of pipelined

machines using WEB-refinement. Our results extend this work

by showing how to use WEB-refinement to automatically

prove safety and liveness in a compositional fashion.

Why hasn’t something like this been done before? Well,

consider carrying out this proof using the standard Burch and

Dill notion of correctness. The problem is that, while it is clear

how to prove that a pipelined machine refines an instruction set

architecture, how does one prove that one pipelined machine

refines another? If we use flushing, we have to flush both

machines, but then it would be easier to just verify against

the instruction set architecture directly. Our main contribution

is to show how to do this using state-of-the-art tools for both

safety and liveness (the Burch and Dill approach only provides

safety [15]), and with the use of any refinement map, not just

flushing.

Can we really obtain the benefits of composition without

paying a price? Actually, we often have to provide invariants.

But, invariants are needed to verify complex designs anyway.

For example, to verify a write-through cache, we need the in-

variant that the valid cache entries are consistent with memory.

The invariants we used were straight-forward, requiring a few

hours of thought; in contrast, defining the refinement maps

can easily take days. If one uses a hierarchical, refinement-

based approach to design, then the invariants should be known,

as they allow for the separation of concerns that enables

different engineers to implement different parts of the system

independently. Therefore, composition can fit nicely into the

design cycle, which is also compositional. Finally, there seems

to be industrial interest in taking a fresh look at refinement-

based methodologies.1

II. PRELIMINARIES ON REFINEMENT

In this section, we review the required background on the

theory of refinement used in this paper; for a full account

see [16], [17]. Pipelined machine verification is an instance of

the refinement problem: given an abstract specification, S, and

a concrete specification, I , show that I refines (implements)

S. In the context of pipelined machine verification, the idea is

to show that MA, a machine modeled at the microarchitecture

1For example, Greg Spirakis, a vice-president at Intel gave talks at FMCAD
2004 and DATE 2004 describing new work at Intel on higher-level and
refinement-based design.



level, a low level description that includes the pipeline, refines

ISA, a machine modeled at the instruction set architecture

level. A refinement proof is relative to a refinement map, r, a

function from MA states to ISA states. The refinement map,

r, shows us how to view an MA state as an ISA state, e.g., the

refinement map has to hide the MA components (such as the

pipeline) that do not appear in the ISA.

The ISA and MA machines are arbitrary transition systems

(TS). A TS, M, is a triple 〈S, 99K, L〉, consisting of a set

of states, S, a left-total transition relation, 99K⊆ S2, and a

labeling function L whose domain is S and where L.s (we

sometimes use an infix dot to denote function application)

corresponds to what is “visible” at state s.

Our notion of refinement is based on the following definition

of stuttering bisimulation [4], where by fp(σ, s) we mean

that σ is a fullpath (infinite path) starting at s, and by

match(B, σ, δ) we mean that the fullpaths σ and δ are equiv-

alent sequences up to finite stuttering (repetition of states).

Definition 1: B ⊆ S ×S is a stuttering bisimulation (STB)

on TS M = 〈S, 99K, L〉 iff B is an equivalence relation and

for all s, w such that sBw:

(Stb1) L.s = L.w

(Stb2) 〈∀σ : fp(σ, s) : 〈∃δ : fp(δ, w) : match(B, σ, δ)〉〉
Browne, Clarke, and Grumberg have shown that states

that are stuttering bisimilar satisfy the same next-time-free

temporal logic formulas [4].

Lemma 1: Let B be an STB on M and let sBw. For any

CTL∗ \ X formula f , M, w |= f iff M, s |= f .

We note that stuttering bisimulation differs from weak

bisimulation [22] in that weak bisimulation allows infinite stut-

tering. Stuttering is a common phenomenon when comparing

systems at different levels of abstraction, e.g., if the pipeline is

empty, MA will require several steps to complete an instruction,

whereas ISA completes an instruction during every step. Dis-

tinguishing between infinite and finite stuttering is important,

because (among other things) we want to distinguish deadlock

from stutter.

When we say that MA refines ISA, we mean that in the

disjoint union (⊎) of the two systems, there is an STB that

relates every pair of states w, s such that w is an MA state and

r(w) = s.

Definition 2: (STB Refinement) Let M = 〈S, 99K, L〉,
M′ = 〈S′, 99K

′, L′〉, and r : S → S′. We say that M is a STB

refinement of M′ with respect to refinement map r, written

M ≈r M′, if there exists a relation, B, such that 〈∀s ∈ S ::
sBr.s〉 and B is an STB on the TS 〈S ⊎ S′, 99K ⊎ 99K

′,L〉,
where L.s = L′.s for s an S′ state and L.s = L′(r.s)
otherwise.

A major shortcoming of the above formulation of refinement

is that it requires reasoning about infinite paths, something

that is difficult to automate [23]. In [16], WEB-refinement,

an equivalent formulation is given that requires only local

reasoning, involving only MA states, the ISA states they map to

under the refinement map, and their successor states. In [18], it

is shown how to automate the refinement proofs in the context

of pipelined machine verification. The idea is to strengthen,

thereby simplifying, the refinement proof obligation; the result

is the CLU-expressible formula, where rank is a function that

maps states of MA into the natural numbers.

Theorem 1: MA ≈r ISA if:

〈∀w ∈ MA :: s = r.w ∧ u = ISA-step(s) ∧

v = MA-step(w) ∧ u 6= r.v

=⇒ s = r.v ∧ rank .v < rank .w〉
In the formula above s and u are ISA states, and w and

v are MA states; ISA-step is a function corresponding to

stepping the ISA machine once and MA-step is a function

corresponding to stepping the MA machine once. It may help

to think of the first conjunct of the consequent (s = r.v) as

the safety component of the proof and the second conjunct

rank .v < rank .w as the liveness component.

Note that the notion of WEB refinement is independent of

the refinement map used. In this paper, we use the standard

flushing refinement map [7], where MA states are mapped to

ISA states by executing all partially completed instructions

without fetching any new instructions, and then projecting out

the ISA visible components. The emphasis of this paper is

on exploiting the compositionality of WEB refinement.

Theorem 2: (Composition) If M ≈r M′ and M′ ≈q M′′

then M ≈r;q M′′.

Above, r; q denotes composition, i.e., (r; q)(s) = q(r.s).
From the above theorem we can derive several other com-

position results; for example:

Theorem 3: (Composition)

MA ≈r · · · ≈q ISA

ISA ‖ P ⊢ ϕ

MA ‖ P ⊢ ϕ

The above theorem states that to prove MA ‖ P ⊢ ϕ (that MA,

the pipelined machine, executing program P satisfies property

ϕ, a property over the ISA visible state), it suffices to prove

MA ≈ ISA and ISA ‖ P ⊢ ϕ: that MA refines ISA (which

can be done using a sequence of refinement proofs) and that

ISA, executing P , satisfies ϕ. In this form, the above rule

exactly matches the compositional proof rules in [8]. What

makes such a rule useful is that it can lead to drastically

faster verification times, as we show in this paper. It will

turn out that the verification times depend much more on the

semantic difference between models than on their complexity,

e.g., verifying that a complex pipelined machine, MA, refines

a similar complex pipelined machine can take a fraction of a

second, even though current tools may not be able to verify

that MA refines (the much simpler) instruction set architecture.

III. PROCESSOR MODELING AND MONOLITHIC

VERIFICATION

In this section, we define a complex pipelined machine

and describe how to model and verify it using UCLID. The

machine is quite complicated and to make its definition a

manageable process, we defined a series of machines starting

with the base processor model M6, a 6 stage pipelined machine

with the following stages: instruction fetch (IF), instruction



Decoding
Logic

Register
File

ALU

PC

Instruction
Cache

Logic

Misprediction

Write
Buffer Data

Memory

Instruction 
Memory

ID EX M1 M2 WBIF5IF4IF3IF2IF1

Data
Cache

Instruction
Queue

Fig. 1. M10IDW is a processor model with 10 pipeline stages, an instruction queue, an instruction and data cache, and a write buffer.

decode (ID), execute (EX), data memory access (M1 and M2),

and write back (WB). M6 has the following instruction types:

branches, loads, stores, and ALU instructions. The address-

ing modes include register-register and register-immediate.

M6 also has a simple branch prediction scheme that always

predicts that the branch is taken. Once M6 was designed and

verified, we extended it with a pipelined fetch stage to obtain

M7; then we added an instruction queue holding up to 3

instructions, giving rise to machines M8, M9, and M10. Finally

we added a direct mapped instruction cache, a direct mapped

data cache, and a write buffer, giving rise to machines M10I,

M10ID, and M10IDW. The final machine, M10IDW is shown

in Figure 1.

The pipelined machine models in this paper are defined

using UCLID and are therefore term-level models, which

implies that they are quite abstract. For example: the datapath

is abstracted away, the ALU is modeled as an uninterpreted

function, and only a small number of instructions are consid-

ered. The details of how this is done for M10IDW are discussed

in detail elsewhere [19], [20]. Here we merely point out that

the caches are write-through and that inductive invariants —

essentially stating that all the valid entries in the caches are

consistent with memory— are required. The invariants took

only a few minutes to define. The write buffer is implemented

as a queue of length four and memory reads first check if the

data to be read is in the write buffer. A simple invariant stating

that the write buffer is consistent is needed.

Unfortunately, M10IDW is too complex to directly verify

with UCLID. In Table I we show various verification statistics

when checking that the processor models defined above refine

the instruction set architecture using flushing as the refinement

map. For all experimental results presented in this paper, we

used the default settings of the UCLID decision procedure

(version 1.0) coupled with the siege SAT solver [25] (variant

4), using an Intel Pentium III Mobile CPU, 1.2 GHz processor

with an L2 cache size of 512KB.

To understand the experimental results, first note that as was

pointed out in Section II, our refinement proofs imply that

the pipelined machines satisfy all the CTL∗ \ X-expressible

safety and liveness properties satisfied by the ISA machine.

Manolios and Srinivasan have shown that the running time

for checking safety and liveness using WEB refinement in-

creases by about 5% over the running time for only checking

safety [18]; hence, liveness is not the culprit. Second, as

can be seen from the table, the verification cost increases

exponentially as new features or pipeline stages are added,

leading eventually to machines that are too complex to directly

verify with UCLID and Siege. The reason for the exponential

increase in verification times is mostly due to the fact that the

number of symbolic simulation steps required by the flushing

approach depends on the length of the pipeline and that the

size of the SAT instance generated by UCLID depends on

the complexity gap between the pipelined machine and its

instruction set architecture.

Wouldn’t it be great if we could use the same approach

to verifying M10IDW that we used to design it? Recall that

since M10IDW was too complicated to design directly we

defined a sequence of intermediate machines instead. This

allowed us to add features one at a time, making the design

a manageable process. Why not verify M10IDW in the same

way? For example, when proving M7 refines ISA, why can’t

we use the already established result that M6 refines ISA to

simplify the proof? In the next section, we show how to do

this.

IV. COMPOSITIONAL VERIFICATION

In this section we develop techniques that allow us to prove

that M10IDW refines ISA in a compositional manner, by

proving that M10IDW refines M10ID, which refines M10I,

. . . , which refines M6, which refines ISA. We present a sound

and complete method for proving such theorems, where most

of the reasoning is local, i.e., restricted to pairs of machines.

By applying our techniques, we transform the problem of

verifying that M10IDW refines ISA from one that UCLID

cannot handle to one that takes less than 20 seconds.

A UCLID specification gives rise to a transition system

M = 〈S, 99K, L〉, where s is a state (s ∈ S) iff it maps

the variables appearing in the UCLID specification to values

of the right type. The transition relation 99K is similarly



Refinement CNF Verification Times (sec)
Proof Vars Clauses UCLID Siege Total

M6 28,256 83,725 8 10 18
M7 53,165 158,182 15 150 165
M8 95,092 283,465 25 766 791
M9 144,045 429,973 41 2,436 2,477
M10 198,375 592,660 55 6,762 6,817
M10I 293,862 876,820 92 8,641 8,733
M10ID 580,355 1,730,704 244 FAILED NA
M10IDW 690,598 2,060,557 297 FAILED NA

TABLE I

VERIFICATION TIMES AND CNF STATISTICS FOR THE VARIOUS PIPELINE

MACHINE MODELS.

defined over S. An inductive invariant, I , is a subset of S

that is closed under the transition relation (s ∈ I implies

99K ({s}) ⊆ I). Put another way, I is an inductive invariant

if M′ = 〈I, 99K |I , L|I〉, which we sometimes denote M|I ,

is a transition system (i.e., the restriction of 99K to I is a

subset of I2). It is sometimes useful to identify a subset of S,

Init(M), as “initial.” If B is a relation, we define BX(Y ) to

be B(Y ) ∩ X . We start with two basic observations.

Lemma 2: If M = 〈S, 99K, L〉,M′ = 〈S′, 99K
′, L′〉 are

TS’s, and M ≈r M′ with witness B, then: (a) if I is an

inductive invariant of M, then I ′ = BS′

(I) is an inductive

invariant of M′ and M|I ≈r|I M′|I′ , and (b) if I ′ is an

inductive invariant of M′, then I = BS(I ′) is an inductive

invariant of M and M|I ≈r|I M′|I′ .

Proof: For the proof of (a), let s ∈ I ′ and let s 99K
′ w;

we show that w ∈ I ′. By the definition of I ′, there is some

u ∈ I such that uBs. Since s and u are stuttering bisimilar, w

can be matched by a state reachable from u, say by v, but since

I is an invariant, v ∈ I , therefore I ′ is an inductive invariant

of M′, and M|I ≈rI
M′|I′ with witness B ∩ (I ∪ I ′)2. The

proof of (b) is similar.

We will make use of the following corollary of Lemma 2,

since it applies to all of our examples in this paper.

Corollary 1: If in Lemma 2 the equivalence class, under

B, of every s ∈ I has exactly one element from S′, we can

replace BS′

(I) by r(I) and BS(I ′) by r−1(I ′).
Let’s consider applying what we have so far to show that

M10IDW refines ISA. Since we consider all states in ISA

to be initial, this means that our refinement map has to be

surjective. Recall that we are after a compositional proof, so

we will prove a sequence of theorems. Let us say that one of

these theorems shows that My refines Mx, which implies that:

(a) we have an inductive invariant, I , of My, giving rise to

My|I , and (b) My|I refines Mx, say with refinement map r.

To prove that Mz refines Mx, we only need to prove that

Mz refines My, say with refinement map q, as we can then

appeal to the composition theorem and the theorem that My

refines Mx. When one tries to do this in practice, the following

problem arises: we need an invariant on Mz whose image under

q is I , but defining such an invariant can be quite difficult,

requiring much trial and error. (For example, this arises when

proving that M9 refines M7, as we will shortly see.) As we

show with the following proof rule, it is in fact enough if the

image of the invariant under q is a superset of I .

In the sequel, if Z is a set, then Z= and Z≡ denote the

identity relation on Z and the reflexive, symmetric, transitive

closure on Z, respectively.

Theorem 4: Suppose that for all k ∈ [1..n], Ik is an induc-

tive invariant of TS Mk = 〈Sk, 99Kk, Lk〉. Suppose also that

for all k ∈ [2..n], (Mk)|Ik
≈rk

Mk−1 with witness Bk and

Ik−1 ⊆ I ′k−1, where I ′k−1 = B
Sk−1

k (Ik). Then, there exists

an inductive invariant I ⊆ In such that (Mn)|I ≈R (M1)|I1

with witness B and 〈∀s ∈ I1 :: 〈∃u ∈ I :: sBu〉〉, where R =
(rn; rn−1; · · · ; r2)|I and B = (I=;Bn;Bn−1; · · · ;B2; I

=
1 )≡.

Proof: The proof is by induction on n, where the

base case (n = 2) follows from Lemma 2. For the in-

duction step, we have by the induction hypothesis, I ′,

an inductive invariant of Mn−1, such that I ′ ⊆ In−1,

(Mn−1)|I′ ≈R′ (M1)|I1
, and 〈∀s ∈ I1 :: 〈∃u ∈ I ′ ::

sB′u〉〉, where R′ = (rn−1; rn−2; · · · ; r2)|In−1
and B′ =

(I=;Bn−1;Bn−2; · · · ;B2; I
=
1 )≡. Now, letting I = BSn

n (I ′),
we see that I ⊆ In and I is an inductive invariant, such that

(Mn)|I ≈rn|I (Mn−1)|I′ (by Lemma 2). By Theorem 2,

(Mn)|I ≈R (M1)|I1
. Finally, let s ∈ I1; by the induction

hypothesis, there is a w ∈ I ′ such that sB′w. Now, let

u ∈ BIn

n ({w}), which is non-empty, but since w ∈ I ′ and

I is an inductive invariant, u ∈ I .

The proof rule embodied in Theorem 4 is completely

local —every proof obligation involves at most two TS’s—

and should be used where applicable. Unfortunately, it is

incomplete: it is possible that there is an inductive invariant

I ⊆ In such that (Mn)|I ≈R (M1)|I1
, but we cannot prove it

with the above proof rule. (This situation arises when proving

that M7 refines ISA, as explained later.) In such cases, the

following complete proof rule should be used.

Theorem 5: Suppose that for all k ∈ [1..n], Ik is an

inductive invariant of TS Mk = 〈Sk, 99Kk, Lk〉. Sup-

pose also that for all k ∈ [2..n], (Mk)|Ik
≈rk

Mk−1

with witness Bk. Then, there exists an inductive invari-

ant I ⊆ In such that (Mn)|I ≈R (M1)|I1
with

witness B and 〈∀s ∈ I1 :: 〈∃u ∈ I :: sBu〉〉

iff BS1

2 (· · ·B
Sn−2

n−1 (B
Sn−1

n (In)) · · · ) ⊆ I1, where R =
(rn; rn−1; · · · ; r2)|I and B = (I=;Bn;Bn−1; · · · ;B2; I

=
1 )≡.

Proof: Let I = BS1

2 (· · ·B
In−2

n−1 (B
In−1

n (In)) · · · ), I ′ =

BIn

n (· · ·BI3

3 (BI2

2 (I)) · · · ). For the proof from left to right,

we show that I, I ′ are inductive invariants, that I ⊇ I1, I
′ ⊆

In, and (Mn)|I′ ≈R M1|I . For the induction step, we

can use the conclusion of the induction hypothesis because

BS1

2 (· · ·B
Sn−2

n−1 (In−1) · · · ) ⊇ I1 (since B
Sn−2

n−1 (B
Sn−1

n (In)) ⊆

B
Sn−2

n−1 (In−1)). We now have that B
Sn−1

n (In) and In−1 are

inductive invariants, thus so is B
In−1

n (In), which is not empty

as B
Sn−2

n−1 (B
In−1

n (In)) = B
Sn−2

n−1 (B
Sn−1

n (In)). Using the in-

duction hypothesis, we get that I, I ′ are inductive invariants,

that I ⊇ I1, I
′ ⊆ In, and (Mn)|I′ ≈R M1|I . The rest of the

proof is similar to the proof of Theorem 4.

Notice that Theorem 5 gives us much more flexibility than

Theorem 4, because the relationship between I ′k and Ik can

be arbitrary. Also, if (as is the case in our applications) the



PC

IC

PC

IC

PC

IC

PC

DCDCWRB

PC

PC

ISA

M10 M9 M8 M7M10ID M10I M6 ISAM10IDW

Fig. 2. Refinement maps for the compositional verification of M10IDW.

equivalence class of every s ∈ Ii, under Bi, has exactly

one element from Si−1, then the global condition amounts

to showing that any state s ∈ I1 can be reached by starting

in some state in In and applying the following sequence of

refinement maps: rn, rn−1, . . . , r2. For pipelined machines,

this turns out to be easy to show because applying this

sequence of refinement maps to pipelined machines whose

non-ISA components are invalid amounts to projecting out the

ISA-visible components; thus, every state in ISA is reachable.

We have now developed all of the theory required to verify

M10IDW. An overview of the process is shown in Figure 2.

Our proof scripts are available upon request and the few

invariants required took us less than a day to define. In

addition, the rank functions required are much easier to define

than in the monolithic case, and there is a simple recipe for

doing this described elsewhere [18]. The verification times

and related statistics are given in Table II. The names in the

“Refinement Proof” column indicate which refinement proof

the row corresponds to. The models are expressed in the

UCLID language, and are translated to CNF formulas using

the UCLID tool.

Figure 3 depicts the verification times required for both the

direct and the composition methods for each of the processor

models. As can be seen from Figure 3, if we compare the

verification times required by the direct method versus our

compositional method, then we see that the verification cost

increases exponentially (the y-axis uses a logarithmic scale)

for the direct approach for each new feature/pipeline stage,

whereas, for the compositional approach, the verification cost

is almost a constant. The data reported for the compositional

proofs includes the total time required, including the time

required for the proof of invariants, and everything else

required by our proof rule. Notice that the SAT solver Siege

failed to produce a result when applying the direct approach to

M10ID, whereas with the compositional approach, the proof

of M10IDW required less than 20 seconds.

We now explain the refinement proofs shown in Figure 2 in

more detail. First, we discuss how to deal with deep pipelines.

Second, we show how to handle caches and write buffers.

Finally, we discuss counterexamples.

A. Deep Pipelines

The first five refinement proofs in Table II, which together

show that MA10 refines ISA, are described next. We use

IM to denote the invariant on machine M and rM to denote

the refinement map from machine M. (The range is uniquely

determined by Table II.) Recall that IISA is the set of all ISA

states. The proof of M6-ISA is a straightforward direct proof

using flushing as the refinement map, thus IM6 is the set of all

M6 states.

Our first refinement proof involving two pipelined machines

relates M7 to M6 using refinement map rM7 (see Figure 2). We

now describe rM7 and merely note that the refinement maps for

the other proofs are similar. We name pipeline latches based on

the pipeline stage names surrounding them, e.g., the pipeline

latch between IF1 and ID in the 6 stage machine is IF1 ID.

The only essential difference between M7 and M6 is that

when a branch mispredict occurs, the number of cycles re-

quired for M7 to recover is four, while M6 only needs three

cycles. To deal with this stuttering, we define three invariants

on M7; essentially, they state that a branch mispredict results

in four consecutive bubbles in the pipeline. The invariants are

1) if IF1 IF2 is invalid, then IF2 ID, ID EX, and EX M1

are invalid; 2) if IF1 IF2 is valid and IF2 ID is invalid,

then ID EX, EX M1, and M1 M2 are invalid; and 3) if both

IF1 IF2 and IF2 ID are valid, and ID EX and EX M1 are

invalid, then M1 M2 and M2 WB are invalid.

The definition of the refinement map rM7 consists of three

cases. In all the cases, the pipeline latches EX M1, M1 M2,

M2 WB, the register file, the instruction memory, and the data



Refinement CNF Verification Times (sec)
Proof Vars Clauses UCLID Siege Total

M6-ISA 28,256 83,725 8.00 10.00 18.00
M7-M6 1,116 3,124 0.39 0.06 0.45
M8-M7 479 1,291 0.24 0.01 0.25
M9-M8 380 1,045 0.21 0.01 0.22
M10-M9 433 1,201 0.29 0.01 0.30
M10I-M10 213 562 0.08 0.01 0.09
M10ID-M10I 469 1,210 0.15 0.01 0.16
M10IDW-M10ID 837 2,149 0.23 0.03 0.26

TABLE II

VERIFICATION TIMES AND CNF STATISTICS FOR THE COMPOSITIONAL

VERIFICATION PROBLEMS.

memory in M7 get mapped to their counterparts in M6. Case

1 occurs if in M7, IF1 IF2 is invalid, IF1 IF2 is valid

and IF2 ID is invalid, or IF1 IF2 and IF2 ID are valid

and ID EX and EX M1 are invalid. In this case, the program

counter, IF1 IF2, and IF2 ID in M7 get mapped to the

program counter, IF1 ID, and ID EX in M6, and the rank

is 1. Case 2 occurs when IF1 IF2, IF2 ID, and ID EX in

M7 are valid and EX M1, M1 M2, and M2 WB are invalid. This

is the result of a stuttering step by M7. The rank is 0 and we

map the program counter associated with the instruction in

IF1 IF2 of M7 to the program counter in M6, while IF2 ID

and ID EX in M7 are mapped to IF1 ID and ID EX in M6.

Otherwise, the mapping of states is the same as in case 2,

except that the rank is 0.

To prove compositionally that M7 refines ISA requires the

use of Theorem 5. To see why, note that the use of Theorem 4

requires that rM7(IM7) ⊇ IM6, which is not true, as I6 is the

set of all M6 states. However, IM7 satisfies the property that

rM6(rM7(IM7)) ⊇ IISA, and therefore we can use Theorem 5.

To prove this using UCLID, we define a witness function, f ,

that given an ISA state returns the M7 state with the same

programmer visible components, but all of whose pipeline

latches are invalid. It is now enough to show that for every

state s in IISA, we have that rM6(rM7(f(s))) = s and that

f(s) ∈ IM7.

For the rest of the deep pipeline proofs, it turns out that we

can use the simpler Theorem 4. For example, in case of the

M8-M7 proof, we have to show that rM8(IM8) ⊇ IM7, which

we do by defining a suitable witness function that maps states

in IM7 to IM8 and then proceed as above.

B. Instruction Caches, Data Caches, and Write Buffers

We now show how to verify the instruction cache, the data

cache, and the write buffer. This corresponds to the last three

refinement proofs in Table II. For all of these proofs, we use

the proof rule given in Theorem 4. Since we have seen how

to apply the theorem in the previous section, here we only

describe the refinement map, invariants, and witness function

for each of the proofs.

The state components of M10I and M10 are identical

except for the instruction cache. Thus, the refinement map

just ignores the instruction cache and is the identity mapping

for all other state components. Since two machines do not

 10

 100

 1000

 10000

 100000

M10IDWM10IDM10IM10M9M8M7M6

V
e

ri
fi
c
a

ti
o

n
 T

im
e

  
[s

e
c
]

Pipelined machine

Direct
Extrapolated Direct

Composition

Fig. 3. Comparison of direct and compositional approaches.

stutter with respect to one another, we can in fact prove a

bisimulation. This means that the WEB-refinement proof can

be reduced further, as no rank function is needed. The only

invariant required is that the valid instruction cache entries are

consistent with the instruction memory.

The data cache is direct mapped and is similar to the

instruction cache. The proof of M10ID-M10I is similar to

the proof of M10I-M10. The refinement map ignores the data

cache and retains all the other state components, including the

instruction cache. Also, an invariant similar to the one used for

the instruction cache is required stating that all valid entries

in the data cache are consistent with the data memory.

M10IDW differs from M10ID only in that it contains a write

buffer. These two machines do not stutter with respect to each

other; thus, we can prove a bisimulation result, as before. The

refinement map is obtained by first updating the data memory

with the valid entries in the write buffer, and projecting out

the remaining state elements (including the instruction and

data cache states). We prove the invariant that the combined

state of the write buffer and the data memory is consistent

with the state of the data memory of a machine that does not

have a write buffer.

Finally, the witness function from IM10 to IM10I just adds an

instruction cache, all of whose elements are invalid to an IM10
state. The witness functions for the other proofs are similarly

defined.

C. Counterexamples

The most tedious and time-intensive part of the verification

effort is often debugging and understanding counterexamples.

Since the compositional approach reduces the verification

problem into simpler subproblems, the debugging process is

much simplified. This is because one can isolate the cause of

failure simply by noting which stage of the composition proof

fails. This is impossible to do when verifying the complex

processor in a monolithic fashion and it is difficult to overstate

the importance of this aspect of our work, as the differences

in the complexity of the error traces can be quite drastic.

As a concrete example of how compositional verification

simplifies the debugging task, we note that when we tried



to verify a buggy variant of the instruction cache —there

was a bug because when determining whether a cache hit

has occurred, the design did not check the validity of the

cache block— we found that the counter example generated by

UCLID for the direct approach was 4,429 lines long while the

counter example generated from the composition step was 390

lines long. Obviously, the shorter counterexample was much

simpler to understand and, consequently, fixing the bug was

much easier. All the bugs we encountered were similarly much

easier to check in the compositional framework and this aspect

of compositional verification may well be more important than

the improvement we obtained in verification times.

V. CONCLUSIONS AND FUTURE WORK

We presented a complete compositional framework based on

refinement for proving that pipelined machine models satisfy

the same safety and liveness properties as their corresponding

instruction set architecture models. This allowed us to obtain

exponential savings in verification times over previous mono-

lithic approaches, and, in fact, we were able to easily verify

models that state-of-the-art tools cannot directly handle. We

also showed how compositional reasoning based on refinement

can be integrated into the design cycle and how this leads to

faster verification times, shorter and clearer counterexamples,

and enhanced design understanding by verification engineers.

All of our models are available upon request and for future

work we plan to extend our compositional results to refinement

based on stuttering simulation and to apply compositional

reasoning to more complex processors.

REFERENCES

[1] M. D. Aagaard, N. A. Day, and R. B. Jones. Synchronization-at-
retirement for pipeline verification. In Formal Methods in Computer-

Aided Design (FMCAD), volume 3312 of LNCS, pages 113–127.
Springer-Verlag, November 2004.

[2] T. Arons. Verification of an advanced mips-type out-of-order execution
algorithm. In Computer-Aided Verification, CAV’04, volume 3114 of
LNCS, pages 414–426. Springer-Verlag, 2004.

[3] T. Arons and A. Pnueli. A comparison of two verification methods
for speculative instruction execution. In Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’00), volume 1785 of
Lecture Notes in Computer Science, pages 487–502. Springer-Verlag,
March 2000.

[4] M. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite
Kripke structures in propositional temporal logic. Theoretical Computer

Science, 59, 1988.

[5] R. E. Bryant, S. German, and M. N. Velev. Exploiting positive equality
in a logic of equality with uninterpreted functions. In N. Halbwachs and
D. Peled, editors, Computer-Aided Verification–CAV ’99, volume 1633
of LNCS, pages 470–482. Springer-Verlag, 1999.

[6] R. E. Bryant, S. K. Lahiri, and S. Seshia. Modeling and verifying
systems using a logic of counter arithmetic with lambda expressions
and uninterpreted functions. In E. Brinksma and K. Larsen, editors,
Computer-Aided Verification–CAV 2002, volume 2404 of LNCS, pages
78–92. Springer-Verlag, 2002.

[7] J. R. Burch and D. L. Dill. Automatic verification of pipelined
microprocessor control. In Computer-Aided Verification (CAV ’94),
volume 818 of LNCS, pages 68–80. Springer-Verlag, 1994.

[8] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[9] L. de Moura and H. Ruess. An experimental evaluation of ground
decision procedures. In Computer Aided Verification, CAV’04, volume
3114 of LNCS, pages 162–174, July 2004.

[10] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Assume-guarantee
refinement between different time scales. In N. Halbwachs and D. Peled,
editors, Computer-Aided Verification–CAV ’99, volume 1633 of LNCS,
pages 208–221. Springer-Verlag, 1999.

[11] R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Proof of correctness of
a processor with reorder buffer using the completion functions approach.
In N. Halbwachs and D. Peled, editors, Computer-Aided Verification–

CAV ’99, volume 1633 of LNCS. Springer-Verlag, 1999.
[12] R. Jones, J. Skakkebæk, and D. Dill. Reducing manual abstraction

in formal verification of out-of-order execution. In G. Gopalakrishnan
and P. Windley, editors, Formal Methods in Computer-Aided Design

(FMCAD), volume 1522 of Lecture Notes in Computer Science, pages
2–17. Springer-Verlag, November 1998.

[13] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reason-

ing: An Approach. Kluwer Academic Publishers, July 2000.
[14] S. Lahiri, S. Seshia, and R. Bryant. Modeling and verification of out-of-

order microprocessors using UCLID. In Formal Methods in Computer-

Aided Design (FMCAD’02), volume 2517 of LNCS, pages 142–159.
Springer-Verlag, 2002.

[15] P. Manolios. Correctness of pipelined machines. In W. A. Hunt, Jr. and
S. D. Johnson, editors, Formal Methods in Computer-Aided Design–

FMCAD 2000, volume 1954 of LNCS, pages 161–178. Springer-Verlag,
2000.

[16] P. Manolios. Mechanical Verification of Reactive Systems. PhD thesis,
University of Texas at Austin, August 2001. See URL http://-

www.cc.gatech.edu/∼manolios/publications.html.
[17] P. Manolios. A compositional theory of refinement for branching time. In

D. Geist and E. Tronci, editors, 12th IFIP WG 10.5 Advanced Research

Working Conference, CHARME 2003, volume 2860 of LNCS, pages
304–318. Springer-Verlag, 2003.

[18] P. Manolios and S. Srinivasan. Automatic verification of safety and
liveness for XScale-like processor models using WEB-refinements. In
Design Automation and Test in Europe, DATE’04, 2004.

[19] P. Manolios and S. Srinivasan. A computationally efficient method
based on commitment refinement maps for verifying pipelined machines
models. In ACM-IEEE International Conference on Formal Methods and

Models for Codesign, pages 189–198, 2005.
[20] P. Manolios and S. Srinivasan. A parameterized benchmark suite of

hard pipelined-machine-verification problems. In Advanced Research

Working Conference on Correct Hardware Design and Verification

Methods, 2005. to appear.
[21] P. Manolios and S. Srinivasan. Refinement maps for efficient verification

of processor models. In Design Automation and Test in Europe,

DATE’05, pages 1304–1309, 2005.
[22] R. Milner. Communication and Concurrency. Prentice-Hall, 1990.
[23] K. S. Namjoshi. A simple characterization of stuttering bisimulation. In

17th Conference on Foundations of Software Technology and Theoretical

Computer Science, volume 1346 of LNCS, pages 284–296, 1997.
[24] S. Ray and W. A. Hunt, Jr. Deductive verification of pipelined machines

using first-order quantification. In Computer-Aided Verification, CAV’04,
volume 3114 of LNCS, pages 31–43. Springer-Verlag, 2004.

[25] L. Ryan. Siege homepage. See URL http://www.cs.sfu.ca/
∼loryan/personal.

[26] J. Sawada. Formal Verification of an Advanced Pipelined Machine. PhD
thesis, University of Texas at Austin, Dec. 1999. See URL http://-

www.cs.utexas.edu/users/sawada/dissertation/.
[27] J. Sawada. Verification of a simple pipelined machine model. In

M. Kaufmann, P. Manolios, and J. S. Moore, editors, Computer-Aided

Reasoning: ACL2 Case Studies, pages 137–150. Kluwer Academic
Publishers, June 2000.


