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Abstract. I develop a compositional theory of refinement for the branch-
ing time framework based on stuttering simulation and prove that if one
system refines another, then a refinement map always exists. The ex-
istence of refinement maps in the linear time framework was studied
in an influential paper by Abadi and Lamport. My interest in proving
analogous results for the branching time framework arises from the ob-
servation that in the context of mechanical verification, branching time
has some important advantages. By setting up the refinement problem
in a way that differs from the Abadi and Lamport approach, I obtain a
proof of the existence of refinement maps (in the branching time frame-
work) that does not depend on any of the conditions found in the work of
Abadi and Lamport e.g., machine closure, finite invisible nondetermin-
ism, internal continuity, the use of history and prophecy variables, etc.
A direct consequence is that refinement maps always exist in the linear
time framework, subject only to the use of prophecy-like variables.

1 Introduction

Computing systems are ubiquitous, controlling everything from cars and air-
planes to financial markets and the distribution of information. Such systems
tend to be very complicated and often contain costly errors. One approach to
dealing with this complexity is to specify a sequence of related systems, starting
with an abstract system, the specification, and ending with a concrete system,
the implementation. One then proves that every pair of adjacent systems is re-
lated, via a suitable, compositional notion of correctness, thereby establishing
that the specification is correctly implemented. For example, we can imagine ver-
ifying a netlist description of a pipelined microprocessor, the implementation, by
relating it via a sequence of refinements to an instruction set level specification—
the assembly programmer’s view of the processor.

Two important concepts that notions of correctness must account for are:

– Stuttering. Since the specification is defined at a more abstract level than
the implementation, notions of correctness should allow for stuttering, where
the implementation may require several steps before matching a single step
of the specification [14].



– Refinement. The implementation may contain more state components and
may use different data representations than the specification. Refinement
maps are used to show how to view an implementation state as a specification
state [1].

The classic paper on the topic by Abadi and Lamport [1], which has mo-
tivated the work appearing in this paper, contains an in-depth discussion of
these topics. The main idea is to use refinement maps to prove that systems
have related infinite computations, by reasoning locally, about states and their
successors, instead of globally, about infinite paths. Abadi and Lamport prove a
theorem about when such refinement maps exist in the linear time framework,
where the semantics of systems and properties correspond to sets of infinite
sequences.

My approach differs in that I work in the branching time framework, where
the semantics of systems are given by sets of infinite trees. Even so, the results
can be applied to the linear time framework, as I explain later.

The theorem proved by Abadi and Lamport holds only under certain con-
ditions. Briefly, they allow one to add history and prophecy variables to the
implementation, they require that the implementation is machine closed, and
they require that the specification has finite invisible nondeterminism and is in-
ternally continuous. My theorems do not depend on these conditions, but there
are important differences between the two approaches that are explored in depth
later.

There are two main reasons why I chose to work in the branching-time frame-
work. The first is that in the simple case where one is dealing with finite-state
systems, it makes sense to use algorithms that can check if one finite-state system
refines another. For example, in [17] we use algorithms for deciding stuttering
bisimulation to complete a proof of correctness for the alternating bit protocol
(this is an infinite-state problem that was reduced to a finite-state problem using
a theorem prover). The branching time notions of simulation and bisimulation,
due to Milner and Park [18, 21], can be decided in polynomial time [20, 7].
In contrast, the corresponding linear time notions, trace equivalence and trace
containment, are both PSPACE-complete problems [26].

Second, refinement maps allow one to show that one system simulates an-
other. This is inherently a branching time notion which has the advantage of
being structural and local. However, in order to use refinement maps in a lin-
ear time setting other mechanisms are needed to, in essence, hide the branching
structure of systems. Thus, we expect the branching time case to be simpler than
the linear time case. Obvious questions arise. How much simpler? What condi-
tions in the Abadi and Lamport theorem are there for this purpose? It turns out
that by using only prophecy-like variables, which have the effect of destroying
the branching structure of systems, we can get a completeness theorem for the
linear time.

Stuttering simulation is based on the notions of simulation and bisimula-
tion, which have had a deep impact on how we think about specifications. The
literature on this topic is vast and contains many fine surveys [23, 15, 6]. In ad-



dition, there have been various extensions of the Abadi and Lamport result [1],
including [5, 9, 2, 8]. In related previous work, Namjoshi [19] gives a sound
and complete proof rule for symmetric stuttering bisimulations which has heav-
ily influenced my work; however, Namjoshi does not consider simulations and
does not deal with refinement. Stuttering bisimulations and the related notion
of WEBs (Well-founded Equivalence Bisimulations) were used to link theorem
proving and model checking and to mechanically verify the alternating bit pro-
tocol in [17]. In [16], I proposed a notion of correctness for pipelined machines
based on WEBs and I showed that the variant of the Burch and Dill notion of
correctness [4] in [24, 25] can be satisfied by machines that deadlock. In addition,
I used the ACL2 theorem prover [12, 11, 10] to automate much of the verifica-
tion. I also verified variants of the pipelined machine including machines with
exceptions, interrupts (which lead to non-determinism), and netlist (gate-level)
descriptions and showed that my notion of correctness applies to these exten-
sions. Many of the variant machines were verified in stages, using the WEB
compositional proof rule. Unfortunately, stuttering bisimulation and WEBs are
often too strong a notion, just as trace equivalence is often too strong a notion in
the linear time case. I expect stuttering simulation to be much more applicable,
hence my interest in the topic.

The paper is organized as follows. In section 2, I describe my notational con-
ventions and review background material. In section 3, I develop a theory of
refinement based on stuttering simulation. In section 4, I discuss refinement in
the linear time framework and compare my work with that of Abadi and Lam-
port; some readers may want to start by skimming this section first. I conclude
in section 5.

2 Notation and Mathematical Preliminaries

N and ω both denote the natural numbers, i.e., {0, 1, . . .}. The ordered pair
whose first component is i and whose second component is j is denoted 〈i, j〉. [i..j]
denotes the closed interval {k ∈ N : i ≤ k ≤ j}; parentheses are used to denote
open and half-open intervals, e.g., [i..j) denotes the set {k ∈ N : i ≤ k < j}. The
disjoint union operator is denoted by ]. Cardinality of a set S is denoted by |S|.
P(S) denotes the powerset of S. Function application is sometimes denoted by an
infix dot “.”. For any binary relation R: I abbreviate 〈s, w〉 ∈ R by sRw, I write
R(S) for the image of S under R (i.e., R(S) = {y : 〈∃x : x ∈ S : xRy〉}), and R|A
denotes R left-restricted to the set A (i.e., R|A = {〈a, b〉 : (aRb) ∧ (a ∈ A)}).
The composition of binary relations R and T is denoted R;T or T ◦ R, i.e.,
R;T = T ◦R = {〈r, t〉 : 〈∃x :: rRx ∧ xTt〉}. The inverse of binary relation
R is denoted R−1 and is defined to be {〈a, b〉 : bRa}.

〈Qx : r : b〉 denotes a quantified expression, where Q is the quantifier, x the
bound variable, r the range of x (true if omitted), and b the body. I sometimes
write 〈Qx ∈ X : r : b〉 as an abbreviation for 〈Qx : x ∈ X ∧ r : b〉,
where r is true if omitted, as before. From highest to lowest binding power, we
have: parentheses, function application, binary relations (e.g., sBw), equality



(=) and membership (∈), conjunction (∧) and disjunction (∨), implication (⇒),
and finally, binary equivalence (≡).

Spacing is used to reinforce binding: more space indicates lower binding.
A binary relation, B ⊆ X×X, is reflexive if 〈∀x ∈ X :: xBx〉. B is symmetric

if 〈∀x, y ∈ X :: xBy ⇒ yBx〉. B is antisymmetric if 〈∀x, y ∈ X :: xBy ∧
yBx ⇒ x = y〉. B is transitive if 〈∀x, y, z ∈ X :: xBy ∧ yBz ⇒ xBz〉.
A binary relation is a preorder if it is reflexive and transitive. A preorder that
is also symmetric is an equivalence relation.

A finite sequence is a function from [0..n) for some natural number n. An
infinite sequence is a function from N. When I write x ∈ σ, for a sequence σ, I
mean that x is in the range of σ. A well-founded structure is a pair 〈W, l〉 where
W is a set and l is a binary relation on W such that there are no infinitely
decreasing sequences on W , with respect to l. I use < to compare natural
numbers and ≺ to compare ordinal numbers.

A transition system (TS) is a structure 〈S, 99K, L〉, where S is a set of states,
99K⊆ S × S is the transition relation, L is the labeling function: its domain is S
and it tells us what is observable at a state. I also require that 99K is left-total :
for every s ∈ S, there is some u ∈ S such that s 99K u. Notice that a transition
system is a labeled graph where the nodes are states and are labeled by L.

A path σ is a sequence of states such that for adjacent states s and u, s 99K u.
A path, σ, is a fullpath if it is infinite. fp.σ.s denotes that σ is a fullpath starting
at state s and σi denotes the suffix fullpath 〈σ.i, σ(i + 1), . . .〉. I use the symbol
“;” for concatenation of paths where the left path is finite, e.g., a; ab = aab.

Temporal logic was proposed as a formalism for specifying the correctness of
computing systems in a landmark paper by Pnueli [22]. I assume that the reader
is familiar with temporal logic.

3 Stuttering Simulation Refinement

Stuttering simulation depends on the notion of matching I now define. I start
with an informal account. Given a relation B on a set S, we say that an infinite
sequence σ (of elements from S) matches an infinite sequence δ (of elements
from S) if the sequences can be partitioned into non-empty, finite segments such
that elements in related segments are related by B. For example, if the first
segment of σ has three elements and the first segment of δ has seven elements,
then each of the three elements is related by B to each of the seven elements. I
use matching, where the infinite sequences are fullpaths of a transition system,
to define stuttering simulation.

Definition 1. (match) Let i range over N. Let INC be the set of strictly in-
creasing sequences of natural numbers starting at 0; formally, INC = {π : π :
N → N ∧ π.0 = 0 ∧ 〈∀i ∈ N :: π.i < π(i + 1)〉}. The ith segment of
an infinite sequence σ with respect to π ∈ INC, πσi, is given by the sequence
〈σ(π.i), . . . , σ(π(i + 1)− 1)〉.

For B ⊆ S × S, π, ξ ∈ INC , i, j ∈ N, and infinite sequences σ and δ, I
abbreviate 〈∀s, w : s ∈ πσi ∧ w ∈ ξδj : sBw〉 by ( πσi)B( ξδj).



In addition: corr(B, σ, π, δ, ξ) ≡ 〈∀i ∈ N :: ( πσi)B( ξδi)〉 and match(B, σ, δ) ≡
〈∃π, ξ ∈ INC ::corr(B, σ, π, δ, ξ)〉 .

Lemma 1. Given set S, B ⊆ S × S, and infinite sequences σ and δ,
〈∃π, ξ ∈ INC :: corr(B, σ, π, δ, ξ)〉

≡
〈∃π′, ξ′ ∈ INC :: corr(B, σ, π′, δ, ξ′) ∧ 〈∀i ∈ N :: | π

′
σi | = 1 ∨ | ξ

′
δi | = 1〉〉

The above lemma allows us to reason about segments using case analysis,
where the three cases are: both segments are of length 1, the right segment is of
length 1 and the left of length greater than 1, and the left segment is of length
1 and the right of length greater than 1.

3.1 Stuttering Simulation

A relation on B ⊆ S × S where M = 〈S, 99K, L〉 is a stuttering simulation, if
for every s, w such that sBw, s and w are identically labeled and every fullpath
starting at s can be matched by some fullpath starting at w.

Definition 2. (Stuttering Simulation (STS)) B ⊆ S×S is a stuttering simula-
tion on TS M = 〈S, 99K, L〉 iff for all s, w such that sBw:

(Sts1) L.s = L.w

(Sts2) 〈∀σ : fp.σ.s : 〈∃δ : fp.δ.w : match(B, σ, δ)〉〉

Lemma 2. (B ⊆ C) ⇒ [match(B, σ, δ) ⇒ match(C, σ, δ)]

Lemma 3. Let C be a set of STS’s on TS M, then G = 〈∪B : B ∈ C : B〉 is an
STS on M.

Corollary 1 For every TS M, there is a greatest STS on M.

Lemma 4. If R and S are STS’s, so is T = R;S.

Lemma 5. The reflexive, transitive closure of an STS is an STS.

Theorem 1. Given TS M, there is a greatest STS on M, which is a preorder.

Theorem 2. Let B be a STS on M and let sBw. For every ACTL∗ \X formula
f , if M, w |= f then M, s |= f .

3.2 Well-Founded Simulation

In order to check that a relation is an STS, we have to show that infinite se-
quences “match”. This can be problematic when using computer-aided verifi-
cation techniques. I present the notion of a well-founded simulation to remedy
this situation. To show that a relation is a well-founded simulation, we need
only check local properties; this is analogous to proving program termination by



exhibiting a function that maps states into a well-founded relation and showing
that the function decreases during every step of the program. As mentioned pre-
viously, the intuition is that for every pair of states s, w that are related by an
STS and u such that s 99K u, there are essentially three cases: either there is a v
such that w 99K v and u is related to v, or u is related to w, or there is a v such
that w 99K v and s is related to v. In the last two cases, we must also ensure
that we do not have an infinite sequence of states, each of which is related to
a single state. This is where the well-founded relation comes in: we must show
that in these cases there is an appropriate measure function into a well-founded
relation that decreases. Formally, we have:

Definition 3. (Well-Founded Simulation (WFS)) B ⊆ S × S is a well-founded
simulation on TS M = 〈S, 99K, L〉 iff:

(Wfs1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(Wfs2) There exists functions, rankt : S × S → W, rankl : S × S × S → N,

such that 〈W, l〉 is well-founded, and
〈∀s, u, w ∈ S : sBw ∧ s 99K u :

(a) 〈∃v : w 99K v : uBv〉 ∨
(b) (uBw ∧ rankt(u, w) l rankt(s, w)) ∨
(c) 〈∃v : w 99K v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉〉

3.3 Equivalence

In this section, I show that well-founded simulation completely characterizes
stuttering simulation. Thus, we can think of well-founded simulation as a sound
and complete proof rule.

Proposition 1 (Soundness) If B is a WFS, then it is an STS.

Proof Let aBb; we need to show Sts1 and Sts2. L.a = L.b since B is a WFS
(Wfs1), thus Sts1 holds. We show 〈∀σ : fp.σ.a : 〈∃δ : fp.δ.b : match(B, σ, δ)〉〉,
namely that Sts2 holds. Suppose fp.σ.a. We define fullpath δ and increasing
sequences π, ξ recursively as follows: δ.0 = b, π.0 = 0, ξ.0 = 0. The idea is that
from π.i, ξ.i, δ(ξ.i) we can define π(i + 1), ξ(i + 1), ξδi, δ.ξ(i + 1) with πσi, ξδi

matching. �
We now prove that every STS is a WFS. For the proof, we have to exhibit

the rank functions as per the definition of WFS. Here is a high-level overview.
The value of rankt(s, w) is important only if sBw, as otherwise there are no

restrictions required by the definition of WFS. If sBw, then consider the largest
subtree of the computation tree rooted at s such that no node in the subtree
matches a successor of w. The “rank” (a kind of height) of this subtree is the
value of rankt(s, w). The “rank” of s is greater than the “rank” of any of its
children in the tree, so case Wfs2b is satisfied.

The value of rankl(w, s, u) is important only if sBw and s 99K u, as otherwise
there are no restrictions required by the definition of WFS. If sBw and s 99K u,



then rankl(w, s, u) is the length of the shortest path from w that matches s, u. In
the case of Wfs2c, we can choose the next successor of w in this path to satisfy
the condition.

Given a TS M = 〈S, 99K, L〉, the notion of the computation tree rooted at a
state s ∈ S is standard. It is the tree obtained by unfolding M starting from s
and can be defined as follows. The nodes of the tree are finite sequences over S.
The tree is defined to be the smallest tree satisfying the following.

1. The root is 〈s〉.
2. If 〈s, . . . , w〉 is a node and w 99K v, then 〈s, . . . , w, v〉 is a node whose parent

is 〈s, . . . , w〉.

Definition 4. (tree) Given an STS B, if ¬(sBw), then tree(s, w) is the empty
tree, otherwise tree(s, w) is the largest subtree of the computation tree rooted
at s such that for every non-root node of the tree, 〈s, . . . , x〉, we have that xBw
and 〈∀v : w 99K v : ¬(xBv)〉.

Lemma 6. Every path of tree(s, w) is finite.

Since the child relation on nodes in tree.s is well-founded, we can recursively
define a labeling function, l, that assigns an ordinal to nodes in the tree as
follows: l.n = 〈∪c : c is a child of n : (l.c) + 1〉. This is the standard “rank”
function encountered in set theory [13]. We use the convention that the label of
a tree is the label of its root.

Lemma 7. If |S| � κ, where κ is an infinite cardinal ( i.e., ω � κ) then for all
s, w ∈ S, tree(s, w) is labeled with an ordinal of cardinality � κ.

Lemma 8. If sBw, s 99K u, u ∈ tree(s, w) then l.tree(u, w) ≺ l.tree(s, w).

Definition 5. (length) Given B, an STS, length(w, s, u) = 0 if ¬(sBw) or
¬(s 99K u), otherwise length(w, s, u) is the length of the shortest initial seg-
ment starting at w that matches 〈s, u〉. Formally:

length(w, s, u) = 〈min σ, δ, π, ξ : fp.σ.s ∧ σ.1 = u ∧ fp.δ.w ∧ π, ξ ∈ INC ∧
corr(B, σ, π, δ, ξ) : | ξδ0 |〉

As sBw and s 99K u, the above range is non-empty and length(w, s, u) ∈ N.

Lemma 9. If sBw, s 99K u and ¬〈∃σ, δ, π, ξ : fp.σ.s ∧ σ.1 = u ∧ fp.δ.w ∧ π, ξ ∈
INC : corr(B, σ, π, δ, ξ) ∧ ξδ0 = 〈w〉〉, then 〈∃v : w 99K v : length(v, s, u) <
length(w, s, u) ∧ sBv〉.

Proposition 2 (Completeness) If B is an STS, then B is a WFS.

Proof Wfs1 follows from Sts1. Let W = (|S|+ω)+. Note that + denotes cardinal
arithmetic; we add ω to |S| to guarantee that we have an infinite cardinal; κ+

is the successor cardinal to κ.
Clearly, (W,≺) is well-founded. Let rankt = l.tree and let rankl = length.

Let sBw and s 99K u. There are three cases:



1. 〈∃v : w 99K v : uBv〉. By lemma 1, if (1) does not hold, then for every
σ, δ, π, ξ such that fp.σ.s∧ σ.1 = u ∧ fp.δ.w ∧ π, ξ ∈ INC ∧ corr(B, σ, π, δ, ξ),
either s marks the end of πσ0 or w marks the end of ξδ0, but not both.

2. 〈∃σ, δ, π, ξ : fp.σ.s∧σ.1 = u∧fp.δ.w∧π, ξ ∈ INC∧ ξδ0 = 〈w〉 : corr(B, σ, π, δ, ξ)〉
and (1) does not hold. This implies that | πσ0 | > 1, uBw, and u ∈ tree(s, w);
hence, rankt(u, w) ≺ rankt(s, w) by lemma 8.

3. If (1) and (2) do not hold, we must have ¬〈∃σ, δ, π, ξ : fp.σ.s ∧ σ.1 = u ∧
fp.δ.w ∧ π, ξ ∈ INC : corr(B, σ, π, δ, ξ) ∧ ξδ0 = 〈w〉〉. By lemma 9 and the
definition of rankl , 〈∃v : w 99K v : rankl(v, s, u) < rankl(w, s, u) ∧ sBv〉. �

Theorem 3. (Equivalence) B is an STS iff B is a WFS.

A consequence of the above theorem is that all of the properties proved for
STSs carry over to WFSs; I use this fact freely, without reference, in the sequel.

3.4 Refinement

Up to this point, I have developed a theory for relating states. I now show how
to apply the theory to transition systems. In this section, I define a notion of
refinement and show that STSs can be used in a compositional fashion. For
states s and w, I write s v w to mean that there is an STS B such that sBw.

By theorem 1, s v w iff sGw, where G is the greatest STS. I now lift this
idea to transition systems.

Definition 6. (Simulation Refinement) Let M = 〈S, 99K, L〉, M′ = 〈S′, 99K′

, L′〉, and r : S → S′. We say that M is a simulation refinement of M′ with
respect to refinement map r, written M vr M′, if there exists a relation, B,
such that 〈∀s ∈ S :: sB(r.s)〉 and B is an STS on the TS 〈S ]S′, 99K ] 99K′,L〉,
where L.s = L′(s) for s an S′ state and L.s = L′(r.s) otherwise.

In the above definition, it helps to think of M′ as the specification and M as
the implementation. That M is a simulation refinement of M′ with respect to
r implies that every visible behavior of M (where what is visible depends on r)
is a behavior of M′. There are often other considerations, e.g., it might be that
M and M′ have certain states that are “initial”. In this case one might wish to
show that initial states in M are mapped to initial states in M′.

One has a great deal of flexibility in choosing refinement maps. The danger is
that by choosing a complicated refinement map, one can bypass the verification
problem all together. To make this point clear, let PRIME be the system whose
single behavior is the sequence of primes and let NAT be the system whose single
behavior is the sequence of natural numbers. We do not consider NAT to be an
implementation of PRIME, but using the refinement map from NAT to PRIME
that maps i to the ith prime, we can indeed prove the peculiar theorem that
NAT is a refinement of PRIME. The moral is that we must be careful to not
bypass the verification problem with the use of such refinement maps. Simple
refinement maps with a clear relationship between implementation states and
their image under the map are best. The reason we do not place restrictions



on refinement maps is that it is not a priori apparent what the “reasonable”
relationships between implementation states and specification states might be,
e.g., suppose that the specification system represents numbers in decimal but
the implementation system represents numbers in binary, or that numbers in
the specification are spread across several registers in the implementation, and
so on. Often refinement maps are especially clear, which makes it easy to check
that they are in fact appropriate. Suppose that associated with states is a set of
variables, each of a particular type. Furthermore, suppose that the variables in
the implementation are a superset of the variables in the specification and that
the refinement map just hides the implementation variables that do not appear
in the specification. Then, it is clear that the refinement map is a reasonable
one. More precisely, given TS M = 〈S, 99K, L〉, if L has the following structure,
we say that M is typed.

Let VARS be a set and let TYPE be a function whose domain is VARS .
Think of VARS as the variables of TS M, where TYPE gives the type of the
variables. For all s ∈ S, let L.s be a function from VARS such that L.s.v ∈
TYPE .v. The lemma below shows why the appropriateness of refinement maps
that hide some of the implementation variables is easy to ascertain.

Lemma 10. If M = 〈S, 99K, L〉 vr M′ = 〈S′, 99K′, L′〉, both M and M′ are
typed TSs, and L′(r.s) = L.s|V , then for every pair of states s, r.s such that
s ∈ S, and every ACTL∗ \ X formula, f , built out of expressions that only
depend on variables in V , we have M′, r.s |= f ⇒ M, s |= f .

Lemma 11. If B is an STS on TS M = 〈S ⊇ S1 ∪ S2, 99K, L〉, S1 ∩ S2 = ∅,
states in S1 can only reach states in S1, and states in S2 can only reach states
in S2, then B̂ = {〈s1, s2〉 : s1 ∈ S1 ∧ s2 ∈ S2 ∧ s1Bs2} is an STS on M.

Theorem 4. (Composition) If Mvr M′ and M′ vq M′′ then Mvr;q M′′.

4 The Linear Time Case

The theorem on the existence of refinement maps in the previous section does
not apply to the linear time framework because simulation is a stronger property
than trace containment. However, note that if we destroy the branching structure
of transition system M to obtain transition system M′, then M′ vr N iff the
set of infinite sequences of M, labeled by r, is a subset of the set of sequences
of N . We can destroy the branching structure of M by using an oracle variable
to record values for every non-deterministic choice made along an infinite path
in the computation tree of M. We have thus sketched a proof of the existence
of refinement maps in the linear time framework.

Theorem 5. If the set of traces of M is a subset of the traces of N , then there
exists M′, a transition system obtained from M by adding an oracle variable,
and a refinement map r such that M′ vr N .



I now review the work of Abadi and Lamport on the existence of refinement
maps. The review addresses the essential points, but is necessarily concise and
readers are urged to read the full paper. I then present several examples, taken
from Abadi and Lamport, that are used to justify the conditions appearing in
their theorem. At the end of this section, I compare the two approaches.

4.1 Review of Abadi and Lamport Results

I begin by reviewing some initial definitions. A behavior is an infinite sequence
and a property is a set of behaviors closed under finite stuttering. A specification
is a (possibly infinite) state machine, consisting of externally visible components
and internal components, and a supplementary property to represent fairness
constraints. The complete property of a state machine is obtained by closing
the set of behaviors allowed by the machine under (possibly infinite) stuttering.
The externally visible property of a state machine is obtained by projecting the
externally visible components of the complete property of the state machine.
The property defined by a specification is obtained by intersecting the complete
property of its state machine with the supplementary property. The externally
visible property of a specification is obtained by projecting the externally visible
components of the property of the specification.

We say that I, a “concrete” specification (the Implementation), implements
S, an “abstract” specification (the Specification) if every externally visible be-
havior of I is also a behavior of S. Proving that I implements S can require
reasoning about arbitrary sequences because one has to show that if I admits
the behavior 〈〈e0, z0〉, 〈e1, z1〉, . . . , 〈en, zn〉, . . .〉, where the ei correspond to the
externally visible components and the zi to the internal components, then S
admits the behavior 〈〈e0, y0〉, 〈e1, y1〉, . . . , 〈en, yn〉, . . .〉. Notice that yn can de-
pend upon the entire sequence 〈〈e0, z0〉, 〈e1, z1〉, 〈e2, z2〉, . . .〉, which can make
the proof difficult. We prefer to avoid such global reasoning and would rather
reason locally e.g., if there is a function f such that 〈ei, yi〉 = f(ei, zi), it can be
used to prove that I preserves the safety property of S by reasoning about pairs
of states instead of arbitrary sequences of states. If such a function also pre-
serves liveness, it is called a refinement mapping and Abadi and Lamport prove
the following completeness theorem, showing under what conditions refinement
mappings exist.

Theorem 6. If the machine-closed specification I implements S, a specification
that has finite invisible nondeterminism and is internally continuous, then there
is a specification Ih obtained from I by adding a history variable and a specifi-
cation Ihp obtained from Ih by adding a prophecy variable such that there exists
a refinement mapping from Ihp to S.

The above theorem depends on various conditions, which I now explain. We
say that a specification I is machine-closed if the supplementary property of I
does not specify any safety property not already specified by the state machine
of I. A specification S has finite invisible nondeterminism if for every finite



prefix of every behavior allowed by S, whenever an infinite nondeterministic
choice is made, all but a finite part of that choice is immediately revealed in
the externally visible components of the resulting state. A specification S is
internally continuous if for every behavior, if the behavior is not allowed by the
specification, this can be determined by looking at the externally visible part of
the behavior and some finite portion of the complete behavior.

A history variable is used to extend the state space of a specification with
a component that records past information, but in a way that does not affect
the externally visible behaviors of the specification. Abadi and Lamport give
five conditions that must be satisfied in order to show that if a specification Sh

is obtained from a specification S by adding a history variable, then the two
specifications define the same externally visible property. A prophecy variable is
the dual of a history variable. Instead of recording past information, it guesses
future information. Abadi and Lamport give six conditions that must be satisfied
in order to show that if a specification Sp is obtained from a specification S by
adding a prophecy variable, then the two specifications define the same externally
visible property.

4.2 Examples due to Abadi and Lamport

This section contains several examples that Abadi and Lamport use to explain
the conditions found in their completeness theorem. After the examples are in-
troduced, I show how they can be handled using in my framework.

In the first example, system S is a three-bit clock, where only the low-order
bit is externally visible and system I is a one-bit clock. I implements S since
they have the same traces (up to stuttering). However, no refinement mapping
can be used to show this because there is no way to define the internal state of S:
consider an arbitrary refinement mapping, r, and suppose that r(〈0〉) = 〈0, y0〉
and r(〈1〉) = 〈1, y1〉, then either 〈0, y0〉 does not transit to 〈1, y1〉 or 〈1, y1〉 does
not transit to 〈0, y0〉. This is one reason for introducing history variables and
they are used to resolve the dilemma as follows. A history variable is added to I
and the variable “remembers” what I did in the past. The result is that the state
space of I is expanded so that there are enough states to define an appropriate
refinement mapping.

Using the approach outlined in this paper, we find that history variables are
not needed as we can define a refinement map that maps the state in I whose
counter is 0 to any state in S whose low-order bit is 0 and similarly with the other
state in I. The equivalence relation that relates states with the same low-order
bit in the disjoint union of the two systems is a stuttering simulation.

The second example is used to motivate the need for prophecy variables.
System S chooses ten values non-deterministically and displays each in turn,
whereas system I chooses each value as it is displayed. I implements S since
they have the same traces, but there is no refinement mapping that can be used
to show this, as should be clear. This example highlights that proofs based on
refinement mappings are based on simulation, a branching time notion. Thus,
when I is not a stuttering simulation of S, one cannot directly use refinement



mappings to prove that I implements S (in the linear time sense). This is one rea-
son for introducing prophecy variables and they are used to resolve the dilemma
as follows. A prophecy variable is added to I and the variable “guesses” what
I will decide to do in the future. There is now a refinement map, based on
this prophecy variable, that can be used to show that I implements S. What is
happening is that the prophecy variables allow one to push all of the branching
in the computation tree of I up to the root, thereby destroying the branching
structure of I.

This example shows why oracle variables are used in theorem 5. Note that
from the branching point of view I does not implement S, e.g., from the ini-
tial state in I, there is a successor that has more than one possible future, a
branching-time expressible property that does not hold in the initial state of S.
It seems that any refinement-based approach will need a mechanism for dealing
with this issue, whether it is by destroying the branching structure of implemen-
tations, by adding branching structure to specifications, or by some combination
thereof.

The third example shows why a prophecy variable is needed to slow down
an implementation that runs faster than a specification, even though the spec-
ification is just stuttering. Both I and S specify clocks in which the hours and
minutes are externally visible, whereas the seconds are internal. Furthermore,
I increments the clock by one second, whereas S increments the clock by ten
seconds. Both I and S have the same externally visible behaviors and proving
that S implements I using refinement mappings is easy. However, there is no
way to show that I implements S, because there is a behavior of S such that
the minute hand changes every six steps, but any behavior of I requires at least
sixty steps between minute hand changes.

In my formulation, the implementation is allowed to run faster than the
specification, as we can both add and remove stuttering steps, thus it is easy to
deal with the third example.

Abadi and Lamport present examples showing why the conditions of finite
invisible nondeterminism and internal continuity are required. The examples are
similar in that the implementation, I, has the same externally visible behaviors
as the specification, S, but I has a richer branching structure than S, i.e., S
is a simulation refinement of I, but not the other way. As we have seen in
the second example, above, prophecy variables can be used to deal with this
problem. However, in these examples there are states in I that are related to
an infinite number of states in S, and Abadi and Lamport’s prophecy variables
cannot be used in this case (see their paper for the full details). To summarize,
the conditions of internal continuity and finite invisible nondeterminism in the
completeness theorem of Abadi and Lamport can be traced to the branching
structure of the systems involved.

Oracle variables can be used in my approach to deal with these examples.
The intuition is that oracle variables allow us to quantify over every possible non-
deterministic choice and can be used to transform I into a linear time equivalent
system in which all nondeterministic choices have been made at the onset.



4.3 Comparison with the Approach of Abadi and Lamport

There are various differences between my approach and that of Abadi and Lam-
port. A major difference is that I deal with branching time notions because in the
context of mechanical verification they provide certain advantages, as outlined
above. However, in order to simplify the comparison, in this section I consider
only the linear time aspects of my results.

There are differences in how stuttering is dealt with; namely, Abadi and Lam-
port allow infinite stuttering, whereas I do not. Consider the example of pipelined
machine verification. Using the Abadi and Lamport approach, we would define
the instruction set architecture using a state machine, say where every com-
ponent is externally visible. By definition, the property generated by the state
machine includes infinite stuttering, e.g., it includes the behavior where noth-
ing happens. Thus, a supplementary property would be used to rule out such
behaviors by requiring that non-stuttering steps are eventually taken, a live-
ness property. In contrast, in my approach, every step of the transition system
modeling the instruction set architecture corresponds to the execution of an
instruction, with the stuttering being handled by the definition of stuttering
simulation. Notice that no supplementary property is required. In addition, the
condition that a pipelined machine makes progress is now a safety property, be-
cause the number of steps required is bounded by the number of stages in the
pipeline [16].

Lamport and Abadi require that systems have the same externally visible
states. They make the point that one cannot say whether the value 11111100
corresponds to −3 without knowing how to interpret a sequence of bits as an
integer. They go on to say that given such an interpretation, they can trans-
late the externally visible states to the appropriate representation. In my case,
instead of having a separate interpretation phase, I allow refinement maps to
alter the labels of states directly. I have found that in practice this extra power
is necessary. For example, when proving that a pipelined machine implements
the instruction set architecture, I have used refinement maps that either mod-
ify the value of the program counter (when using my “commit” approach to
correctness) or modify the register file and memory (using the Burch and Dill
“flushing” approach to correctness) [16]. The point is that when using my com-
mit approach to correctness, if we consider the program counter to be externally
visible then we cannot use the Abadi and Lamport approach to prove that a
pipelined machine implements the instruction set architecture. Similarly, when
using the Burch and Dill approach, if we consider the register file or memory to
be externally visible, then we cannot use the Abadi and Lamport approach to
prove that a pipelined machine implements the instruction set architecture.

The refinement mappings of Abadi and Lamport are required to preserve
the supplementary property of the specification. As they point out, this is not a
local condition, but one can apply local methods such as well-founded induction
for the proof. Unfortunately, they do not provide any guidance on constructing
such arguments. In my case, the proof of proposition 2 (if B is an STS, then
B is a WFS) shows how to construct the appropriate well-founded relations



and measure functions, rankt and rankl . The proof also shows that two measure
functions, one from pairs of states and one from triples of states to the naturals,
are enough regardless of the transition systems involved.

Finally, my theorems are stronger than the ones given by Abadi and Lam-
port. For example, they show that even when S is not internally continuous a
refinement map exists to show that I satisfies the safety property specified by
S. They continue “We do not know if anything can be said about proving arbi-
trary liveness properties.” Since my refinement theorems apply to any systems, a
simple corollary is that, with my approach, refinement maps can always be used
to prove both safety and liveness properties. This is something that we used
in [17] where we used theorem proving to reduce an infinite-state system to a
finite-state system in such a way that stuttering-insensitive properties, including
liveness, were preserved. We then model checked the reduced system and were
able to lift the results to the original system.

5 Conclusions

I have introduced compositional notions of refinement for stuttering simulation.
I have shown that if one system refines another in the branching time framework,
then a refinement map always exists, without relying on any of the conditions
present in the approach taken by Abadi and Lamport, e.g., machine closure, finite
invisible nondeterminism, internally continuity, the use of history and prophecy
variables, etc. I also showed that refinement maps always exist in the linear time
framework, subject only to the use of oracle variables.

My main motivation is the mechanical verification of systems. Notions of
refinement based on stuttering bisimulation have proved useful for this pur-
pose [17, 16]. However, stuttering bisimulation is applicable only in limited con-
texts, as usually specifications contain more nondeterminism than implementa-
tions. Thus, I expect that stuttering simulation will turn out to be more useful
than stuttering bisimulation.
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