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Abstract. We present a parameterized suite of benchmark problems arising from
our work on pipelined machine verification, in the hopes that they can be used to
speed up decision procedures. While the existence of a large number of CNF
benchmarks has spurred the development of efficient SAT solvers, the bench-
marks available for more expressive logics are quite limited. Our work on pipelined
machine verification has yielded many problems that not only have complex mod-
els, but also have complex correctness statements, involving invariants and sym-
bolic simulations of the models for dozens of steps. Many of these proofs take
hundreds of thousands of seconds to check using the UCLID decision procedure
and SAT solvers such as Zchaff and Siege. More complex problems can be gen-
erated by using PiMaG, a Web application that we developed. PiMaG generates
problems in UCLID, SVC, and CNF formats based on user-provided parameters
specifying features of the pipelined machines and their correctness statements.

1 Introduction

Fueled in part by advances in SAT solving, there is currently wide interest in obtaining
efficient decision procedures for richer logics [1, 4]. As is the case with SAT solv-
ing technology [10, 11], efficiency does not mean better worst-case behavior; rather, it
means better behavior on problems “arising in practice.” In contrast to the situation for
SAT, where hard CNF problems arising in practice are readily available, the supply of
hard benchmark problems for more expressive logics is quite limited. We believe that by
providing such problems we can help spur the growth of efficient decision procedures;
to this end, we provide a parameterized suite of benchmarks in UCLID [2], SVC, and
CNF formats that can be used to evaluate decision procedures and SAT solvers.

The core benchmark suite comprises of 210 benchmarks generated from our work
on refinement based pipelined machine verification [7, 8]. We also developed PiMaG
(Pipelined Machine Generator), a Web application that can be used to automatically
generate complex benchmarks based on user provided parameters [9]. The benchmarks
include not only the models, but also the properties to be proved, which include invari-
ants, symbolic simulation steps, and arithmetic.
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The paper is organized as follows. In Section 2, we briefly describe the refinement-
based correctness theorems. In Section 3, we describe the pipelined machine models
being verified, and in Section 4, we describe the benchmark suite, the tool, and give
an overview of the running times we obtained in checking these benchmarks using the
UCLID decision procedure [2] and the Siege SAT solver [11]. We conclude in Section 5.

2 Correctness Theorems

The benchmarks arise from our work on refinement-based pipelined machine verifica-
tion. We use the notion of Well-Founded Equivalence Bisimulation (WEB) refinement
to show pipelined machines and their instruction set architecture (ISA) have the same
safety and liveness properties up to stuttering [5, 6]. Refinement proofs are relative to
refinement maps, functions from pipelined machine states to ISA states, that show us
how to view a pipelined machine state as an ISA state. For example, refinement maps
have to hide the pipeline components that do not appear in the ISA. In [7], it is shown
how to automate the proof of WEB-refinement in the context of pipelined machine ver-
ification. Our benchmark problems use three different refinement maps; two of them
are based on commitment [5, 6] and one is based on flushing [3].

The idea with commitment is that partially completed instructions are invalidated
and the programmer visible components are rolled back to correspond with the last
committed instruction. Flushing is a kind of dual of commitment, where partially com-
pleted instructions are made to complete without fetching any new instructions. Using
refinement maps based on commitment requires the use of invariants, but they can be
automatically generated [7]. We use two different types of invariants that lead to two
types of commitment proofs, one of which tends to lead to significantly faster verifica-
tion times [8].

3 Pipelined Machine Models

The pipelined machine models are obtained by starting from a base model and ex-
tending it with various features to obtain more complex models. The most complex
model in the core benchmark suite is shown in Figure 1. The base processor model
is a 6 stage pipelined machine with fetch, decode, execute, memory1, memory2, and
write back stages. The pipeline stages memory1 and memory2 provide for a two-cycle
memory access. Instruction types such as ALU instructions with register-register and
register-immediate addressing modes, branch, loads, and stores are implemented. The
base processor model is extended with features such as a pipelined fetch stage, branch
prediction, an instruction queue, an instruction cache, a data cache, and a write buffer.

The pipelined machine models are described using the UCLID specification lan-
guage at the term-level. The data path is abstracted away using terms (integers) and
much of the combinational circuit blocks that are common between the pipelined ma-
chine and its instruction set architecture (ISA) are abstracted using uninterpreted func-
tions. The register file and the memory are modeled using lambda expressions.

We use the following naming convention for the pipelined machine models. The
model name starts with a number followed optionally by the characters “i”, “d”, “w”,
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Fig. 1. High-level organization of the most complex processor model with 10 pipeline stages,
instruction queue of length 3, instruction and data cache, and write buffer.

“b”, and “n”, which indicate the presence of an instruction cache, a data cache, a
write buffer, branch prediction abstraction scheme 1, and branch prediction abstrac-
tion scheme 2, respectively. The number indicates the number of pipeline stages. If no
branch prediction is used, the model predicts not taken.

4 Benchmarks

We have generated a core suite of 210 benchmarks that are available in UCLID, SVC,
and CNF formats. The benchmarks are obtained from the pipelined machine models
described in Section 3 using flushing and the two commitment refinement maps. Even
more complex benchmarks can be generated by our tool PiMaG. The benchmarks and
tool are available on the Web [9].

The benchmark naming conventions are as follows: the first letter is either “f”, “c”,
or “g” and indicates the use of flushing, commitment approach 1, or commitment ap-
proach 2, respectively. Then the name of the pipelined machine model, as described in
Section 3, follows. For machines based on commitment approach 1 only, there is an
optional suffix which can either be “-i” or “-r”, indicating that only the invariant proof,
or only the refinement proof should be generated, respectively.

We checked many of the benchmarks using the UCLID decision procedure (Version
1.0), and the Siege SAT solver (variant 4). The UCLID decision procedure compiles
UCLID specifications to SAT problems or to SVC formulas. All the benchmarks are
unsatisfiable and the verification times vary from a few seconds for the simpler models
to hundreds of thousands of seconds to being too complex for Siege to handle (e.g.,
f9idw and f10id, f10idw, f9bidw, f10bid, f10bidw, f9nidw, f10nid, and f10nidw).

To obtain even more complex problems, PiMaG can be used to automatically gener-
ate pipelined machine models, their ISA specifications, and their refinement theorems.
PiMaG takes seven parameters, the first specifies if the base model has 6 or 7 stages, the
second selects the refinement map used, the third provides the length of the instruction
queue, the fourth specifies what combination of the following three optional features to
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include: instruction cache, data cache, and write buffer, the fifth provides the length of
the write buffer, the sixth specifies the type of branch prediction abstraction scheme, and
the final parameter specifies what set of formats to generate benchmarks for. Some com-
binations of parameters can be too large for the tools to handle, and therefore PiMaG
enforces restrictions on the size of the instruction queue and write buffer.

5 Conclusions

We presented a parameterized suite of benchmarks in various formats arising from
pipelined machine verification and developed PiMaG, a Web application that can gen-
erate arbitrarily complex models and their correctness statements. Some of the bench-
marks are quite complex and their verification takes hundreds of thousands of seconds;
other benchmarks cannot be handled using state-of-the art tools such as UCLID and
the Siege SAT solver. Our goal in making these benchmarks readily available is to help
evaluate and stimulate further research in efficient decision procedures and SAT solvers.
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