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Abstract. Our Mathematical Programming Modulo Theories (MPMT)
constraint solving framework extends Mathematical Programming tech-
nology with techniques from the field of Automated Reasoning, e.g.,
solvers for first-order theories. In previous work, we used MPMT to syn-
thesize system architectures for Boeing’s Dreamliner and we studied the
theoretical aspects of MPMT by means of the Branch and Cut Modulo
T (BC(T )) transition system. BC(T ) can be thought of as a blueprint
for MPMT solvers. This paper provides a more practical and algorith-
mic view of BC(T ). We elaborate on the design and features of Inez, our
BC(T ) constraint solver. Inez is an open-source, freely available superset
of the OCaml programming language that uses the SCIP Branch and Cut
framework to extend OCaml with MPMT capability. Inez allows users
to write programs that arbitrarily interweave general computation with
MPMT constraint solving.

1 Introduction

The ILP (or, more generally, Mathematical Programming) Modulo Theories
(IMT or MPMT) framework accommodates Mathematical Programming in-
stances, where some variable symbols have meaning in background first-order
theories [19]. In previous work, we used this approach to solve systems ar-
chitectural synthesis problems with hard real-time constraints for Boeing and
we introduced the Branch and Cut Modulo T (BC(T )) architecture for solving
MPMT [15, 19]. BC(T ) combines Branch and Cut (B&C) with theory reason-
ing. B&C is the most established family of algorithms for solving ILP instances,
empowering such powerful solvers as CPLEX [2], Gurobi [3], and SCIP [7].

We have formalized BC(T ) as a highly non-deterministic transition sys-
tem [19]. By abstracting away solver implementation details, the BC(T ) transi-
tion system captures a wide range of possible implementations, and facilitates
theoretical analysis. BC(T ) can be thought of a design space for MPMT solvers.
Implementing an MPMT solver involves zooming in on a region of this design
space, with assorted performance trade-offs. To inform efficient solver design,
this paper provides an algorithmic (and more deterministic) view of BC(T ).

Inez 1 extends the SCIP [7] solver and we show how to implement MPMT on
top of a B&C-based solver. We explain as much of the operation of the B&C
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core as needed to demonstrate where theory solvers fit, with an emphasis on
the interface between theory solvers and B&C. We do not cover purely internal
operations of either side. For example, we treat Simplex (which handles real
relaxations within B&C) purely as a black box. We use congruence closure (CC)
as an example of a background procedure. Given that the core operations of CC
are well-known [27], our discussion only covers the BC(T )-specific aspects. Our
choice of CC is motivated by its wide applicability and by the relatively simple
(but not trivial) constraints and algorithms involved.

We provide an overview of the features of Inez. Notably, Inez provides database
techniques for reasoning in the presence of data [20]. Inez additionally supports
user-provided axioms through local theory extensions [30]. Inez is implemented in
OCaml, and makes extensive use of OCaml language constructs and technologies.
In fact, the standard way of interacting with the solver is via scripts in a superset
of OCaml. Programming with Inez is qualitatively different from programming
in a standard programming language because Inez allows us to write programs
that arbitrarily interleave general computation with MPMT constraint solving.
To our knowledge, Inez is the first system that allows expressing constraints over
uninterpreted functions within a programming language, with minimal syntactic
overhead, while providing type-safety.

The rest of the paper is organized as follows. Section 2 introduces our superset
of the OCaml language through a worked example, and explains how OCaml
facilitates our implementation efforts. Section 3 describes the core BC(T ) setup
as a set of algorithms, while Section 4 discusses extensions on top of this setup.
Section 5 provides an overview of related work. We conclude with Section 6.

2 The Inez Language

In this section, we introduce some of the most notable features of Inez by means
of a worked example. We focus on the user-facing aspects of Inez, i.e., on its input
language, which is a superset of OCaml. Our extensions over OCaml are language
constructs (and supporting APIs) for easily expressing logical constraints and
seamlessly integrating with the underlying constraint solver. Building on top of
OCaml allows us to provide a mixed functional and constraint language that
users can utilize to express their models in a compact and self-contained way.

Inez utilizes the Camlp4 framework [1] to extend OCaml by assigning mean-
ing to programs that are syntactically valid (i.e., recognized by the unmodified
OCaml grammar) but semantically invalid. The semantics of programs accepted
by unmodified OCaml do not change under Inez. This design decision has mul-
tiple benefits. First, the syntax of Inez programs is natural, given that these
programs are syntactically valid OCaml anyway. Also, there are no additional
syntactic constructs to cause trouble for editors and other tools. Finally, the
implementation is cleaner, because all that it does is transform Abstract Syntax
Trees (ASTs) produced by the Camlp4 parser.

Our integration of OCaml and constraints has great impact from a user per-
spective. For instance, consider a problem that depends on raw data defined and



stored in a different location than the problem code, e.g., in a plain text file,
spreadsheet, database or web service. With Inez, data retrieval, data processing,
and constraint solving can all happen side by side, in the same environment.
We present concrete Inez code that obtains data from a database, defines data
structures to store and manipulate this data, and finally produces and solves an
MPMT instance. In the interest of succinctness, we omit the data retrieval code.
A complete implementation (based on MySQL [4] and the mysql protocol [5]
library) can be found online.2

The example is based on a facility location problem [9]. We are given a finite
set of locations and a finite set of cities. Each city requires a certain number of
units of some product. We have to decide where to place facilities in order to
satisfy the needs of the cities, while maximizing our earnings.

1 open S c r i p t ; ;
2 open Core . Std ; ;
3
4 let n c i t i e s = d b g e t n c i t i e s ( ) ; ;
5 let l o c a t i o n s = d b g e t l o c a t i o n s ( ) ; ;
6 let revenue = db get revenue ( ) ; ;
7 let capac i ty = db ge t capac i t y ( ) ; ;
8 let demand = db get demand ( ) ; ;
9 let n l o c a t i o n s = Array . l ength l o c a t i o n s ; ;

Lines 1 and 2 are a typical preamble for Inez scripts. The module Script

contains useful functions for interacting with Inez, while Core.Std refers to Jane
Street Core, which is a featureful alternative to INRIA’s OCaml base library.
Inez uses Jane Street Core internally, and we recommend that Inez scripts also
use this library. Lines 4 to 8 perform queries to a database instance to obtain
data relevant to the problem: (4) an integer n cities with the number of
cities we plan to serve; (5) an array locations where each position corresponds
to the ZIP code of a potential location; (6) a matrix revenue, such that for
0 ≤ i < n cities and 0 ≤ j < n locations, revenue .(i).(j) represents the
revenue of selling to city i a unit of product fabricated at location j; (7) an
array capacity, where for 0 ≤ j < n locations, capacity .(j) is the production
capacity for a factory in location j; and (8) an array demand that represents the
demand, in units of product, from each city. Finally, we define n locations as
the size of the array locations, i.e., the number of potential locations.

10 let bu i ld =
11 let f = f r e s h b o o l v a r ( ) in
12 Array . i n i t n l o c a t i o n s ˜ f ; ;
13
14 let product ion =
15 let f =
16 let f =
17 let v = f r e s h i n t v a r ( ) in
18 c o n s t r a i n (˜ l o g i c ( v >= 0 ) ) ; v in

2 http://www.ccs.neu.edu/home/pete/2015/cav-example.zip



19 Array . i n i t n l o c a t i o n s ˜ f in
20 Array . i n i t n c i t i e s ˜ f ; ;

Each city is identified by an integer c ∈ [0 . . .n cities − 1]. Each location is
identified by the corresponding ZIP code in the locations array. Line 10 defines
an array of size n locations, where each element is an Inez Boolean variable,
created by the function fresh bool var. The library function Array.init ini-
tializes each element of the array, by calling its f argument (a function) with
the corresponding index as the argument. (In our case, the argument to f is
ignored, hence the underscore.) Each Boolean variable corresponds to a loca-
tion and represents whether a facility is built there or not. Similarly, line 14
defines a two-dimensional matrix of Inez integer variables. The two dimensions
correspond to cities and locations: for each possible pair of city c and location l,
production.(c).(l) represents the planned production (in units of product) of
a factory to-be-built in location l destined to city c. The Inez-provided function
constrain adds a formula to the solver context. In line 18 we constrain each
integer variable so that it only takes positive values.

For expressing these constraints, we utilize the ~logic keyword. ~logic al-
lows expressing terms and formulas with minimal syntactic overhead. We utilize
Camlp4 infrastructure to preprocess applications of ~logic to ensure that the
intended meaning over terms and formulas applies. Specifically, (a) integer liter-
als become Inez integer terms; (b) the literals true and false become formulas;
and (c) operators like + and && obtain meaning over terms and formulas (as
opposed to their standard meaning over OCaml integers and Booleans, respec-
tively). For instance, given integer variables x and y, ~logic (x + 1) is an Inez
term, while ~logic (1 <= y && x <= 0) is an Inez formula. Inez integer terms
and formulas are regular OCaml values that can be passed around.

21 let co s t ( : Int ) = (˜ f r e e : Int ) ; ;
22
23 for i = 0 to n l o c a t i o n s − 1 do
24 let i = t o i i in
25 c o n s t r a i n
26 (˜ l o g i c ( co s t i >= h i s t l b i && cos t i <= h i s t u b i ) )
27 done ; ;

Now consider the following situation. During an early planning phase, the
exact cost of building a facility on a given location may be unknown. However,
experience from similar previous developments could provide bounds for these
costs. We use an uninterpreted function (UF) to express this. Given an integer
representing the ID of a location, the UF cost (Line 21) returns an integer that
corresponds to the cost of building a facility on that location. The syntax for UFs
follows closely the standard syntax for defining OCaml functions. Inez recognizes
the declaration of cost as its own responsibility because of the keyword ~free in
the function body. The declaration produces an actual OCaml function cost from
integer terms to integer terms. (Integer terms belong to an OCaml datatype that
describes symbolic integer expressions; integer terms differ from OCaml integers.)



Functions can also operate over Booleans. (The Int annotations could have been
omitted, because integer is the default.)

The function toi (Line 24) converts an OCaml integer to an integer term.
We use constrain to bound the return values of cost (Line 26). The upper
(respectively lower) bound for each location is computed by the OCaml function
hist ub (respectively hist lb), which retrieves historical construction data from
a database and analyzes the current situation in order to provide estimate bounds
for the cost of building. We impose this constraint across all locations by means
of a standard OCaml for loop (Lines 23-27).

Also, suppose that we have some knowledge about the global building costs
for each location and how they compare to one another. That is, given two ZIP
codes, we can determine where it is cheaper to build a factory. This knowledge
allows us to define an ordering among ZIP codes, and thus assign to each a
unique identifier in the range [0 . . .n locations − 1] such that the ZIP code with
id 0 is the cheapest location and the one with id n locations − 1 is the most
expensive. Given such ids, cost is monotonically increasing:

∀x.∀y.[x ≤ y ⇒ cost(x) ≤ cost(y)] (1)

Such a constrain can be expressed on Inez by means of an axiom as follows:

28 as se r t ax iom
29 (˜ f o r a l l x (˜ f o r a l l y ( [ x <= y ] , co s t x <= cos t y ) ) ) ; ;

The function assert axiom is used to introduce an axiom. The keyword ~forall

defines two universally quantified variables x and y. We subsequently provide a
list of assumptions (in this case just x <= y), followed by a conclusion (cost x

<= cost y). We provide details on our implementation of axioms in Section 4.2.
We subsequently add constraints to ensure that the units produced by each

factory that is built will not exceed its capacity, i.e., that

∀l ∈ locations.

[
(

∑
c∈cities

production[c][l]) ≤ build [l] ∗ capacity [l]

]
. (2)

The Inez encoding is

30 for l = 0 to n l o c a t i o n s − 1 do
31 c o n s t r a i n
32 ( let c i t i e s = L i s t . i n i t n c i t i e s ˜ f : Fn . id
33 and f c = product ion . ( c ) . ( l ) in
34 ˜ l o g i c
35 (sum c i t i e s ˜ f <= i i t e bu i ld . ( l ) ( t o i capac i ty . ( l ) ) 0 ) )
36 done ; ;

We notably use the Inez-provided function sum (Line 35), to express the sum of
Inez terms resulting from the application of the function f on each element of
the list cities. Additionally, we use the function iite (Line 35) that encodes
an if-then-else condition. The first argument to iite is an Inez formula, while



the second and third are Inez integer expressions for each possible case. Our
application of iite ensures that, if a factory is built on location l, then we
obtain the capacity from the corresponding array, otherwise the capacity is zero.

Our concrete example additionally enforces that the demands of each city
are satisfied, which can be expressed mathematically as:

∀c ∈ cities.

[
(

∑
l∈locations

production[c][l]) = demand [c]

]

In the interest of brevity, we omit the corresponding Inez code.
Finally, we define an objective function, which is to maximize the earnings,

i.e., the total revenue minus the cost of building the factories:∑
c∈cities, l∈locations

(revenue[c][l] · production[c][l])−
∑

l∈locations

(build [l] · cost(l))

The corresponding Inez code specifies the optimization criterion by means of the
maximize function (and re-uses constructs that we have described already):

37 maximize
38 ( let c i t i e s = L i s t . i n i t n c i t i e s ˜ f : Fn . id
39 and l o c a t i o n s = L i s t . i n i t n l o c a t i o n s ˜ f : Fn . id in
40 let s1 =
41 ˜ l o g i c (sum c i t i e s ˜ f : ( fun c −> sum l o c a t i o n s ˜ f : ( fun l −>
42 revenue . ( c ) . ( l ) ∗ product ion . ( c ) . ( l ) ) ) )
43 and s2 =
44 ˜ l o g i c (sum l o c a t i o n s ˜ f : ( fun l −>
45 i i t e bu i ld . ( l ) ( co s t ( t o i l ) ) 0 ) ) in
46 ˜ l o g i c ( s1 − s2 ) ) ; ;
47
48 s o l v e p r i n t r e s u l t ( ) ; ;

Line 48 starts the solving process and prints the result (which can be one of
opt, sat, unsat, unbounded, or unknown) to the standard output. Note that our
example builds a single set of constraints, and calls the underlying solver once. In
general, Inez provides an incremental push/pop interface that allows the user to
add and remove constraints, and perform multiple queries. As an example, con-
sider that for the presented problem we had two different optimization criteria:
first maximize the earnings and second minimize the number of factories. One
could achieve this by push-ing the first maximization criterion, solving the prob-
lem, registering the maximum value obtained, and finally pop-ing the criterion.
One could then add a constrain that restricts the first criterion to be equal to
the registered value and minimize the second criterion. The full power of OCaml
is available to determine future steps by examining intermediate results. Inez
thus provides a framework for constraint-based algorithms.

We conclude this section with an overview of the OCaml features that we
have utilized to provide the functionality described in this section. Interestingly,
(a) Generalized Algebraic Data Types (GADTs) [16] allow us to represent terms



and formulas in a type-safe way; (b) the extensibility of Inez is reflected on the
module system, i.e., extending the backend amounts to instantiating a functor
that given a theory solver (wrapped up as a module) produces a solver for the
resulting logic (i.e., another module); (c) the toplevel system allows us to build
custom read-evaluate-print loops that interactively interpret OCaml plus our
logic fragments; finally, (d) camlidl enables relatively seamless interaction with
C/C++ code (like SCIP and our implementation of CC).

3 An Algorithmic View of BC(T )

This section provides a set of interconnected algorithms that describe the oper-
ation of a BC(T )-based solver. We thus document the architecture empowering
the backend of Inez.

The algorithms primarily operate upon nodes and sets thereof. Each node is
described by a set of integer linear constraints, i.e., constraints of the form c1·v1+
· · ·+ cn · vn {< | ≤ | = | ≥ | >} c, where ci are integer constants, vi are variable
symbols, and the right-hand side c is an integer constant. While we provide
support for mixed integer linear constraints (i.e., integer and real variables side-
by-side) through an experimental version of Inez, our discussion focuses on the
integer case for simplicity. A node characterizes an open subproblem that needs
to be explored. Nodes also carry metadata, like known variable bounds.

In addition to the linear constraints, the input to the solver contains UF
constraints. We assume that the input has been purified [18], resulting in ILP
constraints that do not involve UF terms. The definitions symbol that is used in
the pseudocode stands for a collection of atomic formulas of the form v = f(l),
where v is a variable symbol, f is a UF symbol, and l is a list of arguments
of the form w + k, where w is a variable symbol and k is an integer constant.
(Entirely concrete terms are a special case that can be encoded with a single
integer variable fixed to zero.) UF terms thus involve limited arithmetic, as is
common practice [27]. definitions is an immutable global constant.

Our pseudocode uses sum types (also known as tagged unions) for some of
the variables. Sum types have multiple constructors that correspond to different
cases for the values carried. The constructor of a particular element serves as a
tag denoting which case the element belongs in. Furthermore, the magic constant
∗ stands for non-deterministic Boolean choice. ∗ is used in conditionals where
heuristics apply. 〈e〉 denotes that standard operators within e are to be inter-
preted over syntactic objects, e.g., 〈v−w〉 is not a concrete integer or real, but a
term representing the subtraction of w from v. We follow a generally applicative
style, e.g., operations that modify a node (by producing new linear constraints
and bounds) produce a new node. Our presentation is top-down. Our CC solver
is implemented by the functions with suffix cc.

3.1 High-Level Functions

The top-level B&C procedure, bc, accepts as its argument a set of linear con-
straints, p. p corresponds to the root node of the B&C search tree. bc keeps



function bc(p : node) : (Unsat|Optimal(assignment))
P ← {p}
α← None
while P 6= ∅ do

q ← pick(P )
P ← P \ {q}
match solve node(q, obj(α)) with

case Unsat
noop () // do nothing

case Solved(β)
α← Some(β)

case Branched(Q)
P ← P ∪Q

match α with
case None

return Unsat

case Some(β)
return Optimal(β)

track of a set P of nodes to be examined (initialized with {p}). α carries a can-
didate satisfying (integer) assignment. α, belonging in a sum type, is of the form
Some(β) if an assignment β is known; α is None otherwise. The loop body in bc

picks one of the remaining nodes in P and processes it by calling solve node.
The implementation of pick (not provided) may involve sophisticated heuristics
for the choice of next node to be examined. We expect a bias towards the children
of the node that was more recently branched upon (i.e., depth-first search).

solve node receives as arguments the node p to be processed, in addi-
tion to an upper bound l for the objective values of the solutions of inter-
est; l corresponds to an already-known solution. (We assume that the function
obj that computes l and our comparisons with l take care of the possibility
of no known solution or unbounded solution, by supporting special constants
+∞,−∞.) solve node performs three processing stages: (a) propagation (Sec-
tion 3.2); (b) solving a real relaxation of the linear constraints; and (c) enforcing
constraints against a relaxation-obtained solution (Section 3.3). Enforcing may
result in branching (Section 3.4). The aforementioned stages operate on one
node at a time, always called p in the respective functions. (Their output may
be multiple nodes, as a result of branching.)

3.2 Propagation

The function propagate attempts to reduce the domain of variables. In the
process of doing so, it may detect infeasibility (response Unsat); if it succeeds,
propagate returns a version p′ of the original node p modified with new bounds



function
solve node(p : node, l : int) : (Unsat| Solved(assignment)|Branched({node}))

match propagate(p) with
case Unsat

return Unsat

case Unchanged
noop ()

case Modified(p′)
p← p′

match solve relaxation(p) with
case Unsat

return Unsat

case Modified(p′)
return solve node(p′)

case Solved(α)
if obj(α) ≥ l then

return Unsat
else

match enforce(p, α) with
case Sat

return Solved(α)

case Unsat
return Unsat

case Modified(p′)
return solve node(p′)

case Branched(P )
return Branched(P )

(Modified(p′)); Unchanged means that no propagation was possible, neither was
the function able to detect infeasibility. The implementation we provide combines
ILP (propagate ilp) and CC (propagate cc) propagation techniques. Either
kind of propagation can be skipped. We repeatedly perform propagation, until
a fixpoint is reached, or until a heuristic for termination returns true, e.g., after
a fixed number of rounds. In practice, SCIP employs various constraint handlers
that provide propagation procedures of different priority. The top-level propa-
gation procedure takes into account priorities to combine the sub-procedures.

propagate cc is described in a declarative way. Our concrete implementa-
tion is similar to the CC procedures in SMT. propagate cc takes offsets into
account [25]. equalities(p) stands for known equalities of the form v = w + k,
where v and w are integer variables and k is an integer constant. We implement
this by defining an auxiliary variable dv,w = v − w for every interesting pair of
variables v and w. We can subsequently query whether dv,w is fixed. For any
equality v = w + k implied by the already known equalities (conjoined with



function propagate(p : node) : (Unsat|Modified(node)|Unchanged)
m← false
while ∗ do

if ∗ then
match propagate ilp(p) with

case Unsat
return Unsat

case Modified(p′)
p← p′

m← true

case Unchanged
noop ()

if ∗ then
match propagate cc(p) with

case Unsat
return Unsat

case Modified(p′)
p← p′

m← true

case Unchanged
noop ()

return m ? Modified(p) : Unchanged

definitions), we try to fix the upper and lower bound of v − w to k (via the
functions set lb and set ub that provide an interface to the ILP solver), and
report unsatisfiability if this is impossible. The outer forall statement should be
read as a declarative specification (i.e., we range over all relevant v, w), not as
a suggestion for efficient implementation.

3.3 Enforcing Real Relaxations

Propagation is followed by solving a real relaxation (solve relaxation). A re-
sponse Unsat for the relaxation implies that the (strictly harder) integer con-
straints of the node are also unsatisfiable. If solve relaxation returns an as-
signment α (case Solved(α)), solve node first checks whether α is better than
the already known solution (obj(α) < l), and does not further process the node
if not; integer solutions can be at most as good as the solution to the relaxation.
Otherwise, enforce is executed. If α is not integer, or if it is theory-inconsistent,
enforce is responsible for explaining why, e.g., by introducing implied linear con-
straints violated by α. enforce may determine that α satisfies all constraints
(response Sat), or that the node (and not just α) is infeasible (response Unsat). In
either of these cases, solve node has solved p. Enforcing may result in learning
new linear constraints or bounds (case Modified(p′)), in which case solve node

needs to process the node again.



function propagate cc(p : node) : (Unsat|Modified(node)|Unchanged)
m← false
forall v, w ∈ variables(p) do

if equalities(p) ∧ definitions |=Z v = w + k for some k ∈ Z then
match set lb(p, 〈v − w〉, k) with

case Unsat
return Unsat

case Modified(p′)
m← true
p← p′

case Unchanged
noop ()

match set ub(p, 〈v − w〉, k) with
case Unsat

return Unsat

case Modified(p′)
m← true
p← p′

case Unchanged
noop ()

return m ? Modified(p) : Unchanged

enforce combines different kinds of enforcement in much the same way that
propagate combines different kinds of propagation. The part of enforcement
that is related to integrality (enforce ilp) may branch around a real solution, or
apply cut generation techniques [13, 21]. Exposition of cut generation is beyond
the scope of this paper. Conversely, the implementation of enforce ilp is not
shown. We proceed to describe CC enforcement (enforce cc). First, enforce cc

calls check cc to check whether α is theory-consistent. check cc reports that α
does not satisfy the UF constraints if there exist calls v = f(l) and v′ = f(l′) of
some function f , such that all arguments in the respective positions of the lists
of arguments l and l′ have the same value under α, but α(v) 6= α(v′). check cc

then returns the conflict (f, v, v′, l, l′) to explain what is wrong with α. If no
conflict is found, bc receives α. and α becomes the new candidate solution.

In case check cc returns a conflict, enforce cc ensures that propagation has
happened by calling propagate cc again. The latter function may have been
skipped during the propagation stage. enforce cc only needs to act further if
propagation can neither detect unsatisfiability, nor produce new information. In
this case, enforce cc proceeds by branching.

Note that CC enforcement happens after the corresponding method for the
ILP constraints. CC enforcement thus only ever deals with integer assignments,
which yields cleaner implementation. Additionally, this design prioritizes ILP-
related over theory-related operations, thus emphasizing ILP-heavy problems.



function
enforce(p : node, α : assignment) : (Sat|Unsat|Modified(node)|Branched({node}))

match enforce ilp(p, α) with
case Sat

return enforce cc(p, α)

case Unsat
return Unsat

case Modified(p′)
return Modified(p′)

case Branched(P )
return Branched(P )

function enforce cc(p : node, α : assignment) :
(Sat|Unsat|Modified(node)|Branched({node}))

match check cc(p, α) with
case Conflict(c)

match propagate cc(p) with
case Unsat

return Unsat

case Modified(p′)
return Modified(p′)

case Unchanged
return Branched(branch cc(p, c))

case Sat
return Sat

3.4 Branching

Branching is what our CC implementation performs when all else fails. Con-
cretely, the following invariant holds when we get to branch cc. There exists
an integer solution for the non-theory constraints of p (given that integrality
enforcement has succeeded), but the integer bounds that hold for p do not allow
any information to be propagated, neither can we deduce unsatisfiability of p.

When we call branch cc from enforce cc, we have access to a conflict
(f, v, v′, l, l′). Note that there must be some position i ∈ [0, arity(f) − 1] such
that the equality l[i] = l′[i] is not implied by the bounds visible to propagate cc.
Otherwise, all arguments would have been equal, and propagate cc would have
produced the equality v = v′, which is violated. This means that the conflict
provides a witness for the gap between α (which is not feasible with respect to
UF) and the more limited information that is available as bounds in p (which do
not entail infeasibility). In order to steer the ILP solver away from the problem-
atic assignment α (and other assignments similar to it), we have to examine the
aforementioned gap. We do so by branching driven by the conflict. It is always



function check cc(p : node, α : assignment) : (Sat|Conflict(conflict))
m← {} // m is a map

foreach 〈v = f(l)〉 ∈ definitions do
c← [α(w) + k|〈w + k〉 in l] // comprehension over the list l
if (f, c) ∈ keys(m) then

(v′, l′)← m[(f, c)]
if α(v) 6= α(v′) then

return Conflict(f, v, v′, l, l′)

else
m[(f, c)]← (v, l)

return Sat

possible to branch on whether l[i] < l[i′], l[i] = l′[i], or l[i] > l[i′]. If, according
to the bounds on v − v′, v = v′ is a possibility, then we may instead choose to
branch on whether v < v′, v = v′, or v > v′.

The branching strategy we outlined is in alignment with the Nelson-Oppen
(NO) scheme for combining decision procedures [24, 18]. We branch on pairs
of variables that are shared between ILP and UF, i.e., make progress towards
an arrangement of the shared variables. Such branching will eventually produce
subproblems for which CC has all the information on the shared variables that it
needs to determine (in)feasibility of the UF constraints (in definitions); similarly,
for the UF-feasible subproblems, the ILP solver (with no more input possible
from CC) has all the information it needs to apply complete techniques and
determine feasibility. We thus guarantee termination of the combination.

4 Extensions

4.1 Propositional Structure

We have so far not discussed conjunctions of integer linear constraints that
appear under arbitrary propositional structure. Inez provides such support by
utilizing indicator constraints. Such constraints have the form l ⇒ Σ0≤i<n[ci ·
xi] ≤ c, where l is a possibly negated Boolean variable, ci and c are constants,
and vi are variables. Indicator constraints can establish equivalence between
a Boolean variable b and an inequality Σ0≤i<n[ci · xi] ≤ c via the constraints
b⇒ Σ0≤i<n[ci·xi] ≤ c and ¬b⇒ −Σ0≤i<n[ci·xi] ≤ −c−1. Once we have Boolean
variables like b, encoding propositional structure can be done via clauses (which
are a special case of integer linear inequalities) in a Tseitin-like fashion.

Indicator constraints can be encoded in terms of integer linear constraints [19],
based on a technique that is known as Big-M. SCIP deals with indicator con-
straints via a specialized constraint handler (rather than via Big-M). This han-
dler implements indicator constraints through propagation, enforcing, and branch-
ing functions that fit in BC(T ) just like their CC counterparts (Section 3).



function branch cc(p : node, (f, v, v′, l, l′) : conflict) : {node}
if ∗ ∧ lb(p, 〈v − v′〉) ≤ 0 ∧ ub(p, 〈v − v′〉) ≥ 0 then

P ← {〈p ∧ v = v′〉}
if lb(p, 〈v − v′〉) < 0 then

P ← P ∪ {〈p ∧ v < v′〉}
if ub(p, 〈v − v′〉) > 0 then

P ← P ∪ {〈p ∧ v > v′〉}
return P

for i ∈ [0, arity(f )− 1] do
if α(l[i]) = α(l′[i]) then

if lb(p, 〈l[i]− l′[i]〉) < 0 ∨ ub(p, 〈l[i]− l′[i]〉) > 0 then
P ← {〈p ∧ l[i] = l′[i]〉}
if lb(p, 〈l[i]− l′[i]〉) < 0 then

P ← P ∪ {〈p ∧ l[i] < l′[i]〉}
if ub(p, 〈l[i]− l′[i]〉) > 0 then

P ← P ∪ {〈p ∧ l[i] > l′[i]〉}
return P

assert(false) // unreachable

4.2 Local Theory Extensions

We demonstrate how to support user-provided axioms within BC(T ) and Inez.
Such axioms constrain newly defined function symbols (beyond the ones in the
signature ΣZ of Linear Integer Arithmetic, e.g., +). We thus extend QFLIA by
axiomatizing new functions. Throughout this section, we assume a first-order
signature Σ, comprised of the axiomatized function symbols.

An example of the kinds of axioms we support was given in Equation 1. Equa-
tion 1 is only meaningful as an extension of (Integer Linear) Arithmetic. The
intended meaning (monotonicity of cost) is only achieved because ≤ is already
constrained by Arithmetic. More generally, we support axioms that are univer-
sally quantified disjunctions of inequalities that may contain function symbols.
Our focus on clauses is not a restriction. (Every universally quantified axiom
over the union of Σ and the signature of arithmetic can be encoded as a set of
universally quantified clauses.)

Our implementation of axioms in Inez builds upon results on local theory
extensions [30] that allow us to replace axioms like the one in Equation 1 with a
finite set of instances thereof (computed based on the set of terms that appear
in the formula). In our case, the instantiation procedure produces clauses, where
the literals involve arithmetic and the Σ-function symbols.

While in principle we can simply encode the axiom instances of interest as
part of the input formula (Section 4.1), our implementation applies a more spe-
cialized procedure that retains the clausal structure. The literals are inequalities,
e.g., for our example of Equation 1 we have inequalities of the form x ≤ y and
cost(x) ≤ cost(y) over x and y that appear in the input as arguments to cost.



By introducing fresh variables, we simplify these literals by rewriting them to
the form v ≤ c, where v is a variable and c is a constant. We then employ a SCIP
handler 3 for constraints of the form

∨
i vi ≤ ci that notably employs SAT-like

techniques for clauses.

4.3 Databases

Inez provides an extension aimed at database analysis [20]. The workhorse of
this extension is what we call table membership constraints, which have the form

(x1+c1, . . . , xk+ck) ∈ {(y1,1+d1,1, . . . , y1,k+d1,k), . . . , (yl,1+dl,1, . . . , yl,k+dl,k)},

where xi, yi,j are variables and ci, di,j are (integer) constants. On top of table
membership, Inez provides higher-level database-inspired modeling constructs.

Table membership fits in BC(T ) just like CC. Functions propagate db and
enforce db replace (or enhance) the corresponding CC functions, while every-
thing else remains unchanged. Design decisions in enforce db resemble the ones
in enforce cc, e.g., branching (driven by the data) happens only as a last resort.

5 Related Work

Frontend: Existing projects that enhance programming languages with con-
straints [17, 31, 6] differ from Inez both with respect to the language constructs
that they provide and the underlying constraint technology.

Backend: Inez seeks to combine the strengths of Mathematical Programming
solvers [2, 3, 7] and solvers for first-order theories [23, 29, 24], e.g., as implemented
within Lazy SMT [28]. Previous work on combining ideas from these two areas
has mostly focused on improving the arithmetic capabilities [11, 14] of SMT
solvers by integrating MILP engines [12, 22, 8], and on implementing optimiza-
tion within SMT [26, 10]. MPMT differs by having as its core an MILP solver,
as opposed to a SAT solver. In contrast to SMT, MPMT targets applications
where a MILP-based approach is appropriate (e.g., the example of Section 2), but
involve requirements that are hard or impossible to encode as linear inequalities.

6 Conclusions

We provided an overview of the techniques that empower the Inez constraint
solver. Inez is an open-source, freely available system that instantiates the BC(T )
architecture for Mathematical Programming Modulo Theories. We described the
concrete algorithms used to in Inez to efficiently implement BC(T ). Inez is an ex-
tension of OCaml that allows users to write programs that orchestrate arbitrary
interleaving between general computation and MPMT constraint solving.

3 http://scip.zib.de/doc-3.1.0/html/cons bounddisjunction 8h.php
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