
Algorithms for Ordinal Arithmetic

Panagiotis Manolios and Daron Vroon

Georgia Institute of Technology, College of Computing, CERCS Lab
801 Atlantic Drive, Atlanta, Georgia, 30332, USA,

{manolios,vroon}@cc.gatech.edu
http://www.cc.gatech.edu/∼{manolios,vroon}

Abstract. Proofs of termination are essential for establishing the cor-
rect behavior of computing systems. There are various ways of estab-
lishing termination, but the most general involves the use of ordinals.
An example of a theorem proving system in which ordinals are used to
prove termination is ACL2. In ACL2, every function defined must be
shown to terminate using the ordinals up to ε0. We use a compact nota-
tion for the ordinals up to ε0 (exponentially more succinct than the one
used by ACL2) and define efficient algorithms for ordinal addition, sub-
traction, multiplication, and exponentiation. In this paper we describe
our notation and algorithms, prove their correctness, and analyze their
complexity.

1 Introduction

Termination proofs are of critical importance for the mechanical verification of
computing systems. This is the case even with reactive systems, non-terminating
systems that are engaged in on-going interaction with an environment (e.g., net-
work protocols, operating systems, and distributed databases), as termination
proofs are used to show that some desirable behavior is not postponed forever,
i.e., to establish liveness properties. Proving termination amounts to showing
that a relation is well-founded [1]. Since every well-founded relation can be ex-
tended to a total order that is order-isomorphic to an ordinal, it makes sense to
base termination proofs on the ordinals.

The theory of the ordinal numbers has been studied extensively for over 100
years and is at the core of Cantor’s set theory [4–6]. The ordinals also play a
crucial role in logic, e.g., Gentzen proved the consistency of Peano arithmetic
using induction up to ε0 [13]. Since Genten’s work, proof theorists routinely use
ordinals to establish the consistency of various theories. To obtain constructive
proofs, constructive ordinals notations are employed [29, 34]. The general theory
of ordinal notations was initiated by Church and Kleene [7] and is recounted in
Chapter 11 of Roger’s book on computability [26].

Ordinal notations are also used in the context of automated reasoning to
prove termination. For example, the ordinals up to ε0 are the basis for termina-
tion proofs in the ACL2 theorem proving system [15, 16], which has been used on
some impressive industrial-scale problems by companies such as AMD, Rockwell

Collins, Motorola, and IBM. ACL2 was used to prove that the floating-point
operations performed by the AMD microprocessors are IEEE-754 compliant [25,
28], to analyze bit and cycle accurate models of the Motorola CAP, a digital
signal processor [3], and to analyze a model of the JEM1, the world’s first silicon
JVM (Java Virtual Machine) [14]. Termination proofs have played a key role in
various projects that use ACL2 to verify reactive systems. For example, in [20],
we develop a theory of refinement for reactive systems that has been used to
mechanically verify protocols, pipelined machines, and distributed systems [21,
19, 32]. Ordinals have also played a key role in projects to implement polyno-
mial orderings [23] and multiset relations [27]. The relationship between proof
theoretic ordinals and term rewriting is explored in [9, 12].

Even though ordinal notations have been studied and used extensively by
various communities for over 100 years, we have not been able to find a com-
prehensive treatment of arithmetic on ordinal notations. The ordinal arithmetic
problem for a notational system denoting the ordinals up to some ordinal δ, is as
follows: given α and β, expressions in the system denoting ordinals less than δ, is
γ the expression corresponding to α?β, where ? can be any of +,−, ·, exponentia-
tion? Solving this problem amounts to defining algorithms for ordinal arithmetic
on the notation system in question. We present a solution to the ordinal arith-
metic problem for a notational system denoting the ordinals up to ε0. Partial
solutions to this problem appear in various books and papers [29, 10, 8, 12, 24,
30, 34], e.g., it is easy to find a definition of < for various ordinal notations, but
we have not found any statement of the problem nor any comprehensive solution
in previous work.

In this paper, we provide an efficient solution to the ordinal arithmetic prob-
lem (for ε0). We use a notational system [2] that is exponentially more succinct
than the one used in ACL2 and we give efficient algorithms, whose complexity we
analyze. The importance of efficient algorithms becomes apparent when one con-
siders that the definitions are used both to decide ground expressions involving
ordinals operations (by computation) and as rewrite rules to simplify expres-
sions involving ordinals, in the general case. In both cases, efficient algorithms
can drastically affect the amount of time required to simplify expressions. We
have implemented versions of our algorithms in the ACL2 system, mechanically
verified their correctness, and developed a library of theorems that can be used
to significantly automate reasoning involving the ordinals [22]. Our library sub-
stantially increases the extent to which ACL2 can automatically reason about
the ordinals, as previously none of the ordinal arithmetic operations were de-
fined and proving termination required defining functions to explicitly construct
ordinals. It also allows users to ignore representational issues and instead work
in an algebraic setting. As an example, our library will (correctly) reduce

7 < m < ω ∧ 0 < n < ω ⇒ 5(ωω) + α < [ωn + w · 3](ω
m·2+ω5·5)ω

+ β

to α < β. Our library is now distributed with the latest version of ACL2 (ver-
sion 2.7) and has already been used to give a constructive proof of Dickson’s
lemma [33]. Knowledge of ACL2 is not required to read this paper, as only the

algorithms and their complexity are discussed; a discussion of the ACL2 library
will appear elsewhere [22].

The paper is organized as follows. In Section 2 we give an overview of the
ordinals and describe our representation. In Section 3 we define the ordinal arith-
metic operations and analyze their complexity. In Section 4 we prove that our
algorithms are correct. We analyze the complexity of the algorithms before prov-
ing correctness because our algorithms are driven by complexity considerations.
Due to space limitations, some of the proofs in this paper have been elided or
turned into proof sketches. Finally, in Section 5 we conclude and outline future
work.

2 Ordinals

We review the theory of ordinals [11, 18, 29]. A relation ≺ is well-founded if every
≺-decreasing sequence is finite. A woset is a pair 〈X,≺〉, where X is a set, and ≺
is a well-ordering, a total, well-founded relation, over X. Given a woset, 〈X,≺〉,
and an element a ∈ X, Xa is defined to be {x ∈ X | x ≺ a}. An ordinal is a
woset 〈X,≺〉 such that for all a ∈ X, a = Xa. It follows that if 〈X,≺〉 is an
ordinal and a ∈ X, then a is an ordinal and that ≺ is equivalent to ∈. In the
sequel, we will use lower case greek letters to denote ordinals and < or ∈ to
denote the ordering.

Given two wosets, 〈X,≺〉 and 〈X ′, ≺′〉, a function f : X → X ′ is said to be
an order-isomorphism if it is a bijection and for all x, y ∈ X, x ≺ y iff f.x ≺′ f.y.
Two wosets are said to be order-isomorphic if there exists an order-isomorphism
between them. A basic result of set theory states that every woset is order-
isomorphic to a unique ordinal. Given a woset 〈X,≺〉, we will denote the ordinal
to which it is order-isomorphic as Ord(X,≺). Since every well-founded relation
can be extended to a woset, we see that the theory of the ordinals is the most
general setting for proving termination.

Given an ordinal, α, we define its successor, denoted α′ to be α∪{α}. There
is clearly a minimal ordinal, ∅. It is commonly denoted by 0. The next smallest
ordinal is 0′ = {0} and is denoted by 1. The next is 1′ = {0, 1} and is denoted
by 2. Continuing in this manner, we get all the natural numbers. A limit ordinal
is an ordinal > 0 that is not a successor. The set of natural numbers, denoted
ω, is the smallest limit ordinal.

2.1 Ordinal Arithmetic

We define addition, subtraction, multiplication, and exponentiation for the or-
dinals. After each definition, we list various properties; proofs can be found in
texts on set theory [11, 18, 29].

Definition 1. α + β = Ord(A,<A) where A = ({0}×α)∪ ({1}× β) and <A is
the lexicographic ordering on A.

Ordinal addition satisfies the following properties.

α + 1 = α′

(α + β) + γ = α + (β + γ) (associativity)
(β < γ) ⇒ α + β < α + γ (strict right monotonicity)
(β < γ) ⇒ β + α ≤ γ + α (weak left monotonicity)
(α < ωβ) ⇒ α + ωβ = ωβ (additive principal property)
(α, β < ωγ) ⇒ α + β < ωγ (closure of additive principal ordinals)

Note that addition is not commutative, e.g., 1 + ω = ω < ω + 1.

Definition 2. α − β is defined to be 0 if α ≤ β, otherwise, it is the unique
ordinal, ξ such that β + ξ = α.

Definition 3. α · β = Ord(A,<A) where A =
⋃

ξ<β({ξ} × α) and <A is the
lexicographic ordering on A.

Ordinal multiplication satisfies the following properties.

n ∈ ω ∧ n > 0 ⇒ n · ω = ω
(α · β) · γ = α · (β · γ) (associativity)
(β < γ) ⇒ α · β < α · γ (strict right monotonicity)
(β < γ) ⇒ β · α ≤ γ · α (weak left monotonicity)
α · (β + γ) = (α · β) + (α · γ) (left distributivity)

Note that commutivity and right distributivity do not hold for multiplication,
e.g., 2 · ω = ω < ω · 2, and (ω + 1) · ω = ω · ω < ω · ω + ω.

Definition 4. Given any ordinal, α, we define exponentiation using transfinite
induction: α0 = 1, αβ+1 = α · αβ, and for β a limit ordinal, αβ =

⋃
ξ<β αξ.

Ordinal exponentiation satisfies the following properties.

αβ · αγ = αβ+γ

(αβ)γ = αβ·γ

(β < γ) ⇒ αβ < αγ (strict right monotonicity)
(β < γ) ⇒ βα ≤ γα (weak left monotonicity)
(p ∈ ω) ⇒ pω = ω

2.2 Ordinal Notations

Using the ordinal operations, we can construct a hierarchy of ordinals:
0, 1, 2, . . . , ω, ω+1, ω+2, . . . , ω ·2, ω ·2+1, . . . , ω2, . . . , ω3, . . . , ωω, . . . , and so on.
The ordinal ωωω...

is called ε0, and it is the smallest ordinal, α, for which ωα = α;
such ordinals are called ε-ordinals. We consider notations for the ordinals less
than ε0; the notations are based on the Cantor Normal Form for ordinals [29].

Theorem 1. For every ordinal α 6= 0, there are unique α1 ≥ α2 ≥ · · · ≥ αn(n ≥
1) such that α = ωα1 + · · ·+ ωαn .

For every α ∈ ε0, we have that α < ωα, as ε0 is the smallest ε-ordinal. Thus,
we can add the restriction that α > α1 for these ordinals. This is essentially the
ordinal notation used in ACL2 [15, 16]. However, as ωα · k + ωα = ωα · (k + 1)
and n ∈ ω, we can collect like terms and rewrite the normal form as follows [2].

Corollary 1. (Cantor Normal Form) For every ordinal α ∈ ε0, there are unique
n, p ∈ ω, α1 > · · · > αn > 0, and x1, . . . , xn ∈ ω\{0} such that α > α1 and
α = ωα1x1 + · · ·+ ωαnxn + p.

By the size of an ordinal under a representation, we mean the number of bits
needed to denote the ordinal in that representation.

Lemma 1. The ordinal representation in Corollary 1 is exponentially more suc-
cinct than the representation in Theorem 1.

Proof Consider ω ·k: it requires O(k) bits with the representation in Theorem 1
and O(log k) bits with the representation in Corollary 1. �

The ordinal notation we employ is based on Corollary 1 and we now de-
scribe it in detail. We use a definition of lists based on the notion of dot-
ted pairs as defined in the Lisp programming language. Nested pairs of the
form 〈a1, 〈a2, . . . 〈an−1, an〉 . . .〉〉 are lists and can be abbreviated by replacing
“,〈. . . 〉” by “. . . ” and “〈. . . 〉” by “(. . .)”, e.g., 〈a1, 〈a2, 〈a3, a4〉〉〉 can be written
as (a1 a2 a3 , a4). We will also use nil to denote the end of a list. CNF(α)
denotes our representation of the ordinal α. If α =

∑n
i=1 ωαixi + p then

CNF(α) = (〈CNF(α1), x1〉 〈CNF(α2), x2〉 . . . 〈CNF(αn), xn〉 , p).
We now define some basic functions for manipulating lists. Some of our

functions are partial, i.e., they are not specified for all inputs. In such cases,
we never use them outside of their intended domain. first(〈a,b〉) returns a
and rest(〈a,b〉) returns b. “a . b” abbreviates 〈a,b〉. When a sequence of
< condition > : < result > forms are used to define a function, the condi-
tions should be read from top to bottom until a condition that holds is found
and then the corresponding result is returned.

firstn(a,n) ;n is a natural number
n = 0 : nil

true : first(a) . firstn(rest(a),n-1)

restn(a,n) ;n is a natural number
n = 0 : a

true : restn(rest(a),n-1)

fe(a) ;the first exponent of a
atom(a) : 0

true : first(first(a))

fc(a) ;the first coefficient of a
atom(a) : a

true : rest(first(a))

atom(a) ;true iff a is not a list
a is not a list : true

true : false

|a| ;the length of a
atom(a) : 0

true : 1 + |rest(a)|

#a ;the size of a
atom(a) : 1

true : #fe(a) + #rest(a)

a@b ;append operator
atom(a) : b

true : first(a) . rest(a)@b

Note that a@b takes time |a| to complete.

3 Definitions and Complexity

We refer to the usual arithmetic operations on integers as <ω, +ω, −ω, ·ω, and
expω. For our analysis, we assume that these operations have constant running
time. One can later account for the integer operations by using the fastest known
algorithms. This approach allows us to focus on the interesting aspects of our
algorithms, namely the aspects pertaining to the ordinal representations.

cmpω(p,q) ;ordering on naturals
p <ω q : lt
q <ω p : gt
true : eq

cmpo(a,b) ;ordering on ordinals
atom(a) ∧ atom(b) : cmpω(a,b)

atom(a) : lt
atom(b) : gt
cmpo(fe(a),fe(b)) 6= eq : cmpo(fe(a),fe(b))
cmpω(fc(a),fc(b)) 6= eq : cmpω(fc(a),fc(b))
true : cmpo(rest(a),rest(b))

a <o b ;< for ordinals
cmpo(a,b) = lt : true

true : false

Theorem 2. cmpo(a, b) runs in time O(min(#a,#b)).

Proof Easily proven by induction. Note that a and b are explored together and
when an atom is encountered, the other is not explored further. �

cnfp(a) ;ordinal recognizer
atom(a) : a ∈ ω
true : ¬atom(first(a))

∧ fc(a) ∈ ω
∧ 0 <ω fc(a)
∧ cnfp(fe(a))
∧ cnfp(rest(a))
∧ fe(rest(a)) <o fe(a)

Lemma 2. 〈∀x ∈ ω ::
(
2x
x

)
≥ 2x〉.

Proof If x = 0, then 1 ≥ 1, else
(
2x
x

)
= (2x)!

x!x! = (2x)(2x−1)···(x+1)
x(x−1)···1 ≥ 2 · · · 2 ≥ 2x �

Lemma 3. 〈∀x, y ∈ ω :: x ≤ y ⇒ xxyy2x ≤ (x + y)x+y〉

Proof (x + y)x+y ≥ { by the binomial theorem } xxyy
(
x+y

x

)
≥ {y ≥ x}

xxyy
(
2x
x

)
≥ { by Lemma 2 } xxyy2x �

Lemma 4. 〈∀x, y ∈ ω :: x ≤ y ⇒ x log x + y log y + x ≤ (x + y) log(x + y)〉

Proof By Lemma 3, we know that xxyy2x ≤ (x + y)x+y. By the monotonicity
of log, this implies log(xxyy2x) ≤ log[(x+y)x+y], i.e., log xx+log yy +log 2x ≤
(x + y) log(x + y), i.e., x log x + y log y + x ≤ (x + y) log(x + y). �

Theorem 3. cnfp(a) runs in time O(#a(log #a)).

Proof The running time can be given by the (non-linear) recurrence relation

T (a) =

{
k, if atom(a)
T (fe(a)) + T (rest(a)) + min(#fe(a),#rest(a)) + k, otherwise

for some constant, k, by Theorem 2. We will show by induction on #a, that
T (a) ≤ c(#a)(log #a) + t where c, t are constants such that t ≥ k and c ≥ 3t.
In the base case, we have T (a) ≤ k ≤ t. For the induction step, let x =
min(#fe(a),#rest(a)) and y = max(#fe(a),#rest(a)). Note that x + y = #a.
We have: T (a) = T (fe(a)) + T (rest(a)) + x + k ≤ { Induction hypothe-
sis } cx log x + t + cy log y + t + x + k ≤ {cx ≥ 2t + x as c ≥ 3t} c(x log x +
y log y + x) + k ≤ { Lemma 4 , t ≥ k} c(#a)(log #a) + t. �

a +o b ;ordinal addition
atom(a) ∧ atom(b) : a +ω b

cmpo(fe(a),fe(b)) = lt : b

cmpo(fe(a),fe(b)) = eq : 〈fe(a),fc(a) +ω fc(b)〉 . rest(b)
true : 〈fe(a),fc(a)〉 . (rest(a) +o b)

Theorem 4. a +o b runs in time O(min(#a, |a|#fe(b))).

Proof In the worst case, we compare all the exponents in a to fe(b), thus, by
Theorem 2, #a is an upper bound. In this same case we are comparing fe(b) |a|
times, thus, again by Theorem 2, |a|#fe(b) is an upper bound. �

a −o b ;ordinal subtraction
atom(a) ∧ atom(b) ∧ a ≤ω b : 0

atom(a) ∧ atom(b) : a −ω b

cmpo(fe(a),fe(b)) = lt : 0

cmpo(fe(a),fe(b)) = gt : a

fc(a) <ω fc(b) : 0

fc(a) >ω fc(b) : 〈fe(a),fc(a) −ω fc(b)〉 . rest(a)
true : rest(a) −o rest(b)

Theorem 5. a −o b runs in time O(min(#a,#b)).

Proof In the worst case, we recur along both a and b, as with cmpo. �
Here is a first attempt at defining multiplication:

a ∗o b ;ordinal multiplication
a = 0 ∨ b = 0 : 0

atom(a) ∧ atom(b) : a ·ω b

atom(b) : 〈fe(a),fc(a) ·ω b〉 . rest(a)
true : 〈fe(a) +o fe(b),fc(b)〉 . (a ∗o rest(b))

The problem with this definition is its running time. In the true case, the
algorithm walks down b, adding fe(a) to each exponent of b. This is equivalent
to adding some ordinal, cto a decreasing sequence of ordinals {d1, d2, . . . , dn}.
Using the addition algorithm, we find that for each di, fe(di) is compared to each
exponent of cuntil the first exponent of csuch that fe(di) is ≥ this exponent is
found. But since the di’s are decreasing, we know that fe(di) ≥ fe(di+1). There-
fore, if the jth exponent of cis greater than fe(di), we know that it is greater
than fe(di+1). This means that simply adding each element of the decreasing
sequence to cis inefficient. If we can keep track of how many exponents of cwe
went through before adding di, we can just skip over those when we add di+1.
Thus, a quicker way to compute multiplication is to use the following functions.

c(a,b) ;finds the index of the first exponent of a that is ≤ fe(b)
fe(b) <o fe(a) : 1 +ω c(rest(a),b)
true : 0

count(a,b,n) ;skips over the first n elements of a and then calls c
true : n + c(restn(a,n),b)

padd(a, b, n) ;skips over the first n elements of a and then adds the rest to b
true : firstn(a,n)@(restn(a,n) +o b)

pmult(a,b,n) ;psuedo multiplication for ordinals
a = 0 ∨ b = 0 : 0

atom(a) ∧ atom(b) : a ·ω b

atom(b) : 〈fe(a),fc(a) ·ω b〉 . rest(a)
true : 〈padd(fe(a),fe(b),m),fc(b)〉

. (pmult(a,rest(b),m))
where m = count(fe(a),fe(b),n)

a ·o b ;smarter ordinal multiplication

true : pmult(a,b,0)

For the next few theorems and lemmas, let a = (〈a1, x1〉〈a2, x2〉 . . . 〈an, xn〉, p),
a1 = (〈d1, z1〉〈d2, z2〉 . . . 〈dk, zk〉, r), and b = (〈b1, y1〉〈b2, y2〉 . . . 〈bm, ym〉, q).

Lemma 5. c(a, b) takes time O(
∑c(a,b)+1

i=1 min(#ai,#fe(b))).

Lemma 6. count(a, b, s) takes time O(s +
∑c(a,b)+1

i=s+1 min(#ai,#fe(b))).

Lemma 7. padd(a, b, s) runs in time O(min(#fe(restn(a, s)),#fe(b)) + s)
when s ≥ c(a, b).

Lemma 8. d < b ⇒ c(a, b) ≤ c(a, d)

Lemma 9. k ≤ c(a, b) ⇒ c(a, b) = count(a, b, k).

Theorem 6. pmult(a,b,s) runs in time O(|fe(a)||b|+ #restn(fe(a), s) + #b)
if s ≤ c(fe(a), fe(b)).

Proof Let m = count(fe(a), fe(b), s); then m = c(fe(a), fe(b)) by Lemma 9.
Thus, using Lemmas 6 and 7, we can construct the following recurrence relation
to bound the running time of pmult:

T (a, b, s) =


d, if atom(b) ∨ a= 0
T (a, rest(b), m) + k1 · (s +

∑m+1
i=s+1 min(#di,#fe(fe(b))))

+k2 · (min(#fe(restn(fe(a), m)),#fe(b)) + m) + d, otherwise

for some constants k1, k2, and d. The proof involves using induction to show
that T (a, b, s) ≤ k · (|fe(a)||b|+#restn(fe(a), s)+#b) where k ≥ k1 +k2 +d. �

Corollary 2. a ·o b runs in time O(|fe(a)||b|+ #fe(a) + #b).

exp1(p,b) ;raising a natural number to an infinite ordinal power
cmpo(fe(b),1) = eq : (〈fc(b),expω(p,rest(b))〉,0)
atom(rest(b)) : (〈(〈fe(b) −o 1,fc(b)〉,0),expω(p,rest(b))〉,0)
true : (〈〈fe(b) −o 1,1〉 . fe(c),fc(c)〉,0)

where c = exp1(p,rest(b))

Theorem 7. exp1 runs in time O(|b|)
exp2(a,q) ;raising a limit ordinal to a positive integer power

q = 1 : a

true : (〈fe(a) ·o (q - 1),1〉,0) ·o a

Theorem 8. exp2(a, q) runs in time O(|fe(a)||a|+ #a)

Proof Note that fe(a) ·o (q−1) takes constant time, since q−1 is of size 1. Also,
note that the #(fe(a) ·o (q − 1)) = #fe(a) and |fe(a) ·o (q − 1)| = |fe(a)|. So,
by Corollary 2, we get that the running time is k · (|fe(a)||a|+ #fe(a) + #a) ≤
k · (|fe(a)||a|+ #a + #a) ≤ 2k · (|fe(a)||a|+ #a) for some constant, k. �

limitp(a) ;returns true if a = 0 or a represents a limit ordinal
atom(a) : a = 0

true : limitp(rest(a))

limitpart(a) ;returns the greatest ordinal, b, such that limitp(b) and b <o a
atom(a) : 0

true : first(a) . limitpart(rest(a))

natpart(a) ;returns the natural part of an ordinal
atom(a) : a

true : natpart(rest(a))

helper-exp3(a,p,n,q) ;helper function for exp3

q = 0 : p

true : padd(exp2(a,q) ·o p, helper-exp3(a,p,n,q-1), n)

exp3(a,q) ;raising an infinite ordinal to a natural power
q = 0 : 1

q = 1 : a

limitp(a) : exp2(a,q)

true : padd(firstn(exp2(c,q), helper-exp3(c,natpart(a),n,q-1), n))

where c = limitpart(a) and n = |a|

Lemma 10. helper-exp3(a, p, n, q) runs in time O(q · (|fe(a)||a|+ #a)) when
limitp(a), p ∈ ω, n= |a|, and q is a positive natural number.

Theorem 9. exp3(a, q) runs in time O(q · (|fe(a)||a|+ #a)).

exp4(a,b) ;raising an infinite ordinal to a possibly infinite power

true : (〈fe(a) ·o limitpart(b),1〉,0) ·o exp3(a,natpart(b))

Lemma 11. k ∈ ω ⇒ #padd(a, b, k) ≤ #a + #b.

Lemma 12. limitp(b) ⇒ |a ·o b| = |b|.

Lemma 13. limitp(b) ⇒ #(a ·o b) ≤ #fe(a)|b|+ #b.

Theorem 10. exp4(a, b) runs in time O(natpart(b)[|a||b|+ |fe(a)||a|+#a] +
#fe(fe(a))|b|+ #b).

Proof The proof involves analyzing the complexity of the two multiplications
and the call to exp3, and uses Lemmas 12 and 13 to compute the length and
size of fe(a) ·o limitpart(b). �

expo(a,b) ;ordinal exponentiation (raises a to the b power)
b = 0 ∨ a = 1 : 1

a = 0 : 0

atom(a) ∧ atom(b) : expω(a,b)

atom(a) : exp1(a,b)

atom(b) : exp3(a,b)

true : exp4(a,b)

Theorem 11. expo(a, b) runs in time O(natpart(b)[|a||b|+ |fe(a)||a|+#a] +
#fe(fe(a))|b|+ #b).

Proof This follows directly from Theorems 7, 9, and 10. �

4 Proofs Of Correctness

In this section we prove the correctness of the algorithms for ordinal arithmetic
given in the previous section. In the sequel, the ordinals α and β have the
following Cantor normal form decompositions α =

∑n
i=1 ωαixi + p and β =∑m

i=1 ωβiyi + q. Also, we will let a = (〈a1, x1〉 . . . 〈an, xn〉 , p) = CNF(α), and
b = (〈b1, y1〉 . . . 〈bm, ym〉 , q) = CNF(β). We start with a comparison function
for ordinals: cmp(α,β) is lt if α < β, gt if α > β, and eq otherwise.

Theorem 12. For all α, β ∈ ε0, cmpo(CNF(α),CNF(β)) = cmp(α, β).

Proof The proof is by induction on the sizes of CNF(α) and CNF(β). Only
a sketch is given here. The correctness is trivial if α ∈ ω or β ∈ ω. Oth-
erwise, the key insight is that

∑n
i=2 ωαixi < ωα1 . If α1 6= β1, then suppose

without loss of generality that α1 < β1. Then α < ωα1(x1 + 1) < ωβ1 ≤ β.

By the inductive hypothesis, cmpo(fe(a), fe(b)) = lt, so cmpo is correct. If
α1 = β1 and x1 6= y1, then without loss of generality, suppose x1 < y1. Then
α < ωα1(x1 + 1) ≤ ωβ1y1 ≤ β. Hence, by the correctness of cmpω, cmpo

is correct. Otherwise, ωα1x1 = ωβ1y1, and by the strict right monotonicity of
ordinal addition, cmp(α, β) ≡ cmp(

∑n
i=2 ωαixi,

∑m
i=2 ωβiyi). By the inductive

hypothesis, this is equivalent to cmpo(rest(a), rest(b)). �

Theorem 13. For all α, β ∈ ε0 CNF(α + β) = CNF(α) +o CNF(β).

Proof The proof is by induction on α. The intuition of the correctness is based
on the definition of additive principal ordinals. Let i be the least index such
that αi < β1. Then by the closure of additive principal ordinals under addition,∑n

k=i ωαixi < ωβ1 , and thus
∑n

k=i ωαixi +ωβ1 = ωβ1 . So β smashes these terms
of α. If αi−1 > β1, we are done, since we are in CNF. Otherwise, αi−1 = β1,
in which case ωαi−1xi−1 + ωβ1y1 = ωαi−1(xi−1 + y1) by the left distributive
property. Hence, our algorithm recurses down a until we find an exponent that’s
at most the first exponent of b. Then we take the appropriate action depending
on whether that exponent of a is less than or equal to the first exponent of b.
�

Theorem 14. For all α, β ∈ ε0 such that β ≤ α, CNF(α − β) = CNF(α) −o

CNF(β).

Proof The proof requires showing that CNF(β) +o CNF(α) −o CNF(β) =
CNF(α) and cnfp(α −o β). This follows using induction on #CNF(α) and
#CNF(β). �

For the following theorems and lemmas assume cnfp(a), cnfp(b), and cnfp(d).

Lemma 14. padd(a, b, c(a, b)) = a +o b

Proof Proof is by induction on c(a,b). �

Lemma 15. k ≤ c(a, b) ⇒ pmult(a, b, k) = a ∗o b.

Proof This is easily proven by induction on |b| using Lemma 14. �

Corollary 3. a ·o b = a ∗o b.

Lemma 16. For all α, β ∈ ε0, CNF(α · β) = CNF(α) ∗o CNF(β).

Proof Clearly, the algorithm is correct when α = 0 or β = 0, and when α, β ∈ ω.
Otherwise, we use transfinite induction on β, where the base case has already
been established. If β ∈ ω, then αβ = α(1 + β − 1) = α + α(β − 1). Using
the induction hypothesis and the definitions of +o and ∗o, we see that the CNF
representation of this ordinal is what ∗o returns. Finally, if β is not a natural
number, we apply the left distributivity property to distribute α over β: αβ =∑m

i=1 αωβiyi + αq. So, since we know how to deal with αq, we only have to
deal with terms of the form αωβiyi. By the properties of ordinal multiplication
and exponentiation, we get for any z ∈ ω, ωα1z · ωβiyi = ωα1(z · ωβi)yi =
ωα1ωβiyi = ωα1+βiyi. Hence, by the left weak monotonicity of multiplication,
α < ωα1(x1 + 1) ⇒ α · ωβiyi ≤ ωα1+βiyi and α ≥ ωα1x1 ⇒ α · ωβiyi ≥
ωα1+βiyi. �

Theorem 15. For all α, β ∈ ε0, CNF(α · β) = CNF(α) ·o CNF(β)

Proof This follows directly from Corollary 3 and Lemma 16. �

Lemma 17. ∀p, x ∈ ω, β ∈ ε0 such that β > 0, pωβx = ωωβ−1x

Proof pωβx = pω1+β−1x = pω·ωβ−1x = (pω)ωβ−1x = ωωβ−1x �

Theorem 16. For all p ∈ ω, β ∈ ε0 such that β ≥ ω, CNF(pβ) =
exp1(CNF(p),CNF(β)).

Proof The proof is by induction on β, and uses Lemma 17. �

Lemma 18. For all a, b such that cnfp(a), cnfp(b), ¬(atom(a)) and limitp(b),
a ·o b = (〈fe(a), 1〉, 0) ·o b.

Proof The proof is by induction on |b|. �

Theorem 17. For all α ∈ ε0, q ∈ ω such that α ≥ ω, limitp(CNF(α)), and
q > 0, CNF(αq) = exp2(CNF(α),CNF(q)).

Proof The proof is by induction on q, using Lemma 18 when q = 2. �

Lemma 19. For all a and q ∈ ω such that cnfp(a) and ¬(a <o CNF(ω))
helper-exp3(limitpart(a), p, |a|, q) = (

∑q−1
i=0 exp2(limitpart(a), q−i)·op)+op

where p = natpart(a) (and the summation is with respect to +o).

Proof The proof follows fairly easily by induction on q, using Lemma 14. �

Theorem 18. For all α ∈ ε0, q ∈ ω such that α ≥ ω and q > 0, CNF(αq) =
exp3(CNF(α),CNF(q)).

Proof Let δ =
∑n

i=1 ωαixi. Note that CNF(δ) = limitpart(CNF(α)). By
Lemma 19, all we need to prove is that αq = δq + (

∑q−1
j=1 δq−j) + p for all q > 0.

We will do so by induction on q. If q = 1, this is clearly true. Suppose q > 1 and
αq−1 = δq−1 + (

∑q−2
j=1 δq−1−j) + p. Then we get

αq = αq−1 · α
= (δq−1 + (

∑q−2
j=1 δq−1−j)p + p) · α { induction hypothesis }

= (δq−1 + (
∑q−2

j=1 δq−1−j)p + p) · (δ + p)

= ((δq−1 + (
∑q−2

j=1 δq−1−j)p + p) · δ) + ((δq−1 + (
∑q−2

j=1 δq−1−j)p + p) · p)

Looking at each piece seperately, we let γ =
∑q−2

j=1 δq−1−j . We then get:

CNF((δq−1 + γp + p) · δ)
= padd(CNF(δq−1),CNF((

∑q−2
j=1 δq−1−j)p + p), n) ·o CNF(δ)

= (〈CNF(α1 · (q − 1)), 1〉, 0) ·o CNF(δ) { Lemma 19 }
= exp2(CNF(δ), q)
= CNF(δq)

and

CNF((δq−1 + γp + p) · p)
= CNF((δq−1 + γp + p)) ·o p
= padd(CNF(δq−1),CNF(γp + p), n) ·o p
= padd(exp2(CNF(δ),CNF(q − 1)),CNF(γp + p), n) ·o p
= padd(〈CNF(α1 · (q − 1)), x1〉 . rest(exp2(δ, q)),CNF(γp + p), n) ·o p
= padd(〈CNF(α1 · (q − 1)), x1 · p〉 . rest(exp2(δ, q)),CNF(γp + p), n)
= padd(〈CNF(α1 · (q − 1)), x1〉 . rest(exp2(δ, q)) ·o p, CNF(γp + p), n)
= padd(CNF(δq−1p),CNF(γp + p), n)
= CNF((

∑q−2
j=0 δq−1−j)p + p)

= CNF((
∑q−1

j=1 δq−j)p + p)

Hence, we have αq = δq + (
∑q−1

j=1 δq−j)p + p). �

Theorem 19. For all α, β ∈ ε0, such that α, β ≥ ω, CNF(αβ) =
exp4(CNF(α),CNF(β)).

Proof CNF(αβ) = CNF(α
∑m

i=1 ωβiyi +q) = CNF(
∏m

i=1α
ωβiyi ·αq). Now given

any ξ ∈ ε0 and z ∈ ω, consider the following two inequalities:

α < ωα1+1 ⇒ αωξz ≤ (ωα1+1)ωξz ⇒ αωξz ≤ ω(α1+1)·ωξz ⇒ αωξz ≤ ωα1·ωξz

α > ωα1 ⇒ αωξz ≥ (ωα1)ωξz ⇒ αωξz ≥ ω(α1)·ωξz ⇒ αωξz ≥ ωα1·ωξz

Hence,

CNF(αβ) = CNF(
∏m

i=1α
ωβiyi · αq)

= CNF(
∏m

i=1ω
α1·ωβiyi · αq)

= CNF(ωα1·
∑m

i=1 ωβiyi · αq)
= (〈fe(CNF(α)) ·o limitpart(CNF(β)), 1〉, 0) ·o exp2(α, q)
= exp4(CNF(α),CNF(β)) �

Theorem 20. For all α, β ∈ ε0,CNF(αβ) = expo(CNF(α),CNF(β)).

Proof The proof follows from Theorems 16, 18, and 19. �

5 Conclusion

We presented efficient algorithms for ordinal addition, subtraction, multiplica-
tion, and exponentiation on succinct ordinal representations, proved their cor-
rectness, and analyzed their complexity. We implemented a version of the algo-
rithms in the ACL2 system, mechanically verified their correctness, and devel-
oped a library of theorems that can be used to significantly automate reasoning
involving the ordinals [22]. This library is part of the current ACL2 distribu-
tion [16]. While the theory of the ordinal numbers has been studied by various

research communities for over 100 years, we believe that we are the first to
provide a complete solution to the ordinal arithmetic problem, i.e., to give algo-
rithms for ordinal arithmetic on ordinal notations.

Our work can be extended by replacing ε0 with larger countable ordinals. No
ordinal notation can represent all countable ordinals but there are well known no-
tations that can represent ordinals up to Γ0 (which is needed to show termination
of some term rewrite systems [9, 12]) and further into the Veblen hierarchies [35]
and further still [24, 30, 31]. Another possible extension is to define additional
operations on ordinals, e.g., division, taking logs, etc.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. A. Beckmann, S. R. Buss, and C. Pollett. Ordinal notations and well-orderings in
bounded arithmetic. Annals of Pure and Applied Logic, pages 197–223, 2003.

3. B. Brock, M. Kaufmann, and J. S. Moore. ACL2 theorems about commercial micro-
processors. In M. Srivas and A. Camilleri, editors, Formal Methods in Computer-
Aided Design (FMCAD’96), pages 275–293. Springer-Verlag, 1996.

4. G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische
Annalen, xlvi:481–512, 1895.

5. G. Cantor. Beiträge zur Bgründung der transfiniten Mengenlehre. Mathematische
Annalen, xlix:207–246, 1897.

6. G. Cantor. Contributions to the Founding of the Theory of Transfinite Numbers.
Dover Publications, Inc., 1952. Translated by Philip E. B. Jourdain.

7. A. Church and S. C. Kleene. Formal definitions in the theory of ordinal numbers.
Fundamenta mathematicae, 28:11–21, 1937.

8. N. Dershowitz. Trees, ordinals, and termination. In Proceedings of the 4th In-
ternational Joint Conference on Theory and Practice of Software Development
(TAPSOFT), volume 668 of LNCS, pages 243–250. Springer-Verlag, April 1993.

9. N. Dershowitz and M. Okada. Proof-theoritic techniques for term rewriting theory.
In 3rd IEEE Symp. on Logic in Computer Science, pages 104–111, 1988.

10. N. Dershowitz and E. M. Reingold. Ordinal arithmetic with list structures. In
Logical Foundations of Computer Science, pages 117–126, 1992.

11. K. Devlin. The Joy of Sets: Fundamentals of Contemporary Set Theory. Springer-
Verlag, second edition, 1992.

12. J. H. Gallier. What’s so special about Kruskal’s theorem and the ordinal Γ0? A
survey of some results in proof theory. Annals of Pure and Applied Logic, pages
199–260, 1991.

13. G. Gentzen. Die widerspruchsfreiheit der reinen zahlentheorie. Mathematische An-
nalen, 112:493–565, 1936. English translation in M. E. Szabo (ed.), The Collected
Works of Gerhard Gentzen, pp. 132-213, North Holland, Amsterdam, 1969.

14. D. A. Greve. Symbolic simulation of the JEM1 microprocessor. In Formal Methods
in Computer-Aided Design – FMCAD, LNCS. Springer-Verlag, 1998.

15. M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, July 2000.

16. M. Kaufmann and J. S. Moore. ACL2 homepage. See URL http://www.cs.-

utexas.edu/users/moore/acl2.

17. M. Kaufmann and J. S. Moore, editors. Proceedings of the ACL2 Workshop 2000.
The University of Texas at Austin, Technical Report TR-00-29, November 2000.

18. K. Kunen. Set Theory - an Introduction to Independence Proofs, volume 102 of
Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam,
1980.

19. P. Manolios. Correctness of pipelined machines. In W. A. Hunt, Jr. and S. D.
Johnson, editors, Formal Methods in Computer-Aided Design–FMCAD 2000, vol-
ume 1954 of LNCS, pages 161–178. Springer-Verlag, 2000.

20. P. Manolios. Mechanical Verification of Reactive Systems. PhD thesis, University
of Texas at Austin, August 2001.

21. P. Manolios, K. Namjoshi, and R. Sumners. Linking theorem proving and model-
checking with well-founded bisimulation. In N. Halbwachs and D. Peled, edi-
tors, Computer-Aided Verification–CAV ’99, volume 1633 of LNCS, pages 369–379.
Springer-Verlag, 1999.

22. P. Manolios and D. Vroon. Ordinal arithmetic in ACL2, 2003. Submitted to the
4th International Workshop on the ACL2 Theorem Prover and Its Applications.

23. I. Medina-Bulo, F. Palomo-Lozano, and J. A. Alonso-Jimenez. Implementation in
ACL2 of well-founded polynomial orderings. In M. Kaufmann and J. S. Moore,
editors, Proceedings of the ACL2 Workshop 2002. 2002.

24. L. W. Miller. Normal functions and constructive ordinal notations. Journal of
Symbolic Logic, 41:439–459, June 1976.

25. J. S. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the
AMD5K86 floating-point division program. IEEE Trans. Comp., 47(9):913–926,
September 1998.

26. H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT
Press, 1st paperback edition, 1987.

27. J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo, and F.-J. Martin. Multiset relations:
A tool for proving termination. In Kaufmann and Moore [17].

28. D. M. Russinoff. A mechanically checked proof of IEEE compliance of a register-
transfer-level specification of the AMD-K7 floating-point multiplication, division,
and square root instructions. London Mathematical Society Journal of Computa-
tion and Mathematics, 1:148–200, December 1998.

29. K. Schütte. Proof Theory. Springer-Verlag, 1977. translated by J. N. Crossley
from the revised version of Beweistheorie, 1st edition, 1960.

30. A. Setzer. Ordinal systems. In B. Cooper and J. Truss, editors, Sets and Proofs,
pages 301–331. Cambridge University Press, 1999.

31. A. Setzer. Ordinal systems part 2: One inaccessible. In Logic Colloquium ’98,
volume 13 of ASL Lecture Notes in Logic, pages 426–448, 2000.

32. R. Sumners. An incremental stuttering refinement proof of a concurrent program
in ACL2. In Kaufmann and Moore [17].

33. M. Sustik. Proof of Dixon’s lemma using the ACL2 theorem prover via an explicit
ordinal mapping, 2003. Submitted to the 4th International Workshop on the ACL2
Theorem Prover and Its Applications.

34. A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University
Press, second edition, 2000.

35. O. Veblen. Continuous increasing functions of finite and transfinite ordinals. Trans-
actions of the American Mathematical Society, 9:280–292, 1908.

