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Abstract. We describe an approach to verifying bit-level pipelinecchiae models using a
combination of deductive reasoning and decision procedW#nile theorem proving systems
such as ACL2 have been used to verify bit-level designs, thpigally require extensive
expert user support. Decision procedures such as thoserimpted in UCLID can be used to
automatically and efficiently verifierm-levepipelined machine models, but these models use
numerous abstractions, implement a subset of the ingtrustt, and are far from executable.
We show that by integrating UCLID with the ACL2 theorem proyisystem, we can use ACL2
to reduce the proof that an executable, bit-level machifieagits instruction set architecture
to a proof that a term-level abstraction of the bit-level trine refines the instruction set
architecture, which is then handled automatically by UCLVIZe demonstrate the efficiency
of our approach by applying it to verify a complex seven sthigdevel interface pipelined
machine model that implements 593 instructions and haariessuch as branch prediction,
exceptions, and predicated instruction execution. Suctoef fis not possible using UCLID
and would require prohibitively more effort using just ACL2

Keywords: verification, pipelined machines, refinement, bit-levatgenated reasoning, ACL2

1. Introduction

The ever-increasing complexity of microprocessor desigmd the poten-
tially devastating economic consequences of shippingctieéeproducts has
made functional verification a bottleneck in the micropssme design cy-
cle, requiring a large amount of time, human effort, and ueses (Bentley,
2001; Semiconductor Industry Association, 2004). For eplamthe 1994
Pentium FDIV bug cost Intel $475 million and it is estimatédtta similar
bug in the current generation Intel Pentium processor woakt Intel $12
billion (Bentley, 2005).

One of the key optimizations used in these designs is pipglirBimula-
tion and property-based verification are the main appraathesalidating
such designs in industry (Bentley, 2001). The problem withugation is
that it is not exhaustive. This is also a problem with propbdsed veri-
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fication, because the very large number of complex progergguired to
specify the behavior of pipelined machines makes it easyave incomplete
specifications.

Pipelined machine verification has also received a fair arhofiinterest
from the research community. The two main approaches stuadebased on
the use of deductive reasoning and decision proceduresoAgipes that use
theorem provers such as ACL2 (Kaufmann et al., 2000b; Kanifret al.,
2000a) can be used to verify bit-level pipelined machine efmdut require
significant human effort from an expert user. Approachesdas decision
procedures such as UCLID (Bryant et al., 2002; Lahiri anchises2004)
are highly automated but their application is restrictedht® verification of
term-levelmodels, models that abstract away the datapath, implensnakh
subset of the instruction set, require the use of numerastsaaiions, and are
far from executable.

The restriction to term-level models has severely limitesl dpplicability
of approaches based on decision procedures because taustriaty appli-
cable, we need a firm connection to the RTL level, somethiag dbstract
term-level models do not provide. Our main contributionashow how to
attain a high degree of automation when verifying pipelimetthines defined
at the RTL level. We do this by combining deductive reasomiitg decision
procedures. Deductive reasoning, using the ACL2 theorewiqg system, is
used to reduce the correctness theorem for an executableydli pipelined
machine to a theorem about a term-level model, which can ltkesutomat-
ically discharged using decision procedures. We demdestiar approach
by integrating the UCLID decision procedure with the ACL2dhem prov-
ing system and using the combined system to verify a com@egrsstage
pipelined machine model defined mostly at the bit-level. Woek presented
in this paper extends a previous conference version (Masalkd Srinivasan,
2005c) by including a more detailed, thorough, and completription of
the techniques developed and their application.

Verification entails proving that the pipelined machinerre§ its instruc-
tion set architecture. The notion of refinement we use is Walinded Equiv-
alence Bisimulation (WEB), a compositional notion thatgemwes both safety
and liveness properties. We take advantage of the commuuality of WEB-
refinement to decompose the proof that the bit-level pipéelimachine model
refines its instruction set architecture into several refiext steps. The re-
finement steps that relate the bit-level models with the tewal models
are handled by ACL2, and the step relating the term-levedljgipd machine
model with its instruction set architecture is handled byLUZ

We use the ACL2 theorem-proving system because it has beeessai
fully applied to RTL-level hardware verification efforts industry. For ex-
ample, ACL2 has been used to verify the floating point unit@AMD-K5
processor (Russinoff, 1999), AMD-K7 processor (Russirn#B8), and IBM
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PowerdM processor (Sawada, 2002). ACL2 has also been used as part of
the verification effort of an IBM secure co-processor (Snathal., 1999)
and an intrinsic partitioning mechanism in the AAMP7 av@mmicropro-
cessor (Greve et al., 2004).

When verifying term-level models, we found that the UCLIDcidé&on
procedure is orders of magnitude faster than ACL2. For elxantipe veri-
fication of a simple five-stage DLX pipelined machine definetha term-
level took three seconds with UCLID, but took fifteen and & kdalyswith
ACL2 (Manolios and Srinivasan, 2004b).

Unfortunately, UCLID has several limitations of its own tHad us to
build a system integrating UCLID with ACL2. UCLID specifitas are
restricted to term-level models and are therefore not éabter We define
systems using the ACL2 programming language, which not ogdylts in
executable models, but even allows us to simulate the madal®se to C
speeds (Greve et al., 2000). A related point is that sinaca-tevel models
tend to contain only one instruction per instruction clalsey do not capture
the semantics of the instruction set architecture, whickanat impossible
to reason about software. None of these restrictions ajgpACL2, so we
can reason about machine code running on the pipelined nmecas we
discuss later in this paper. Another difference between 2@hd UCLID
is that ACL2 is far more expressive. For example, we cannlbt ftate the
refinement theorem in UCLID; instead we state the “core” efitsfinement
theorem. Even this requires that we drastically modify th@LUD models
by adding external inputs, state, and combinational loga. our models,
these modifications can involve on the order of one thousawed bf code,
making it difficult to guarantee that the correctness praoislving these
“polluted models” imply the correctness of the originalpotiuted models.
In our system, by using the expressive power of ACL2, thesblpms are
avoided.

The rest of the paper is organized as follows. In Section 2deseribe
the seven-stage pipelined machine model, most of whictfisetkat the bit-
level. In Section 3, we provide an overview of the refinemwmaged notion of
correctness we use to verify the seven-stage model. Indpedfiwe give a
high level description of our integration of UCLID with ACLsd as to allow
the reader to better understand the various issues thatiaribe refinement
proof. A more detailed description will appear elsewheextton 5 describes
in detail every major step in the refinement proof. Sectioriveégythe veri-
fication statistics of the proof in terms of the running tinmel a&xpert user
effort required. The ACL2 and UCLID proof scripts requiremreproduce
our results are available upon request. In Section 7, we dimw to re-
duce reasoning about software running on the pipelined imadt reasoning
about software running on the instruction set architedyrappealing to the

mai n. tex; 23/08/2006; 17:43; p.3



IF1 IF2 ID EX M1 M2 WB
Register
Branch File
Prediction [ ™ — ALUf->
Decoding Misprediction
™ Logic B B Logic >
Instruction
Data
Memory Memory

Figure 1. High-level organization of hit-level interface processuwdel

refinement and composition theorems. We describe relatediw&ection 8
and conclude in Section 9.

2. Processor Model

We demonstrate our verification approach using a complesueable seven-
stage pipelined machine model, most of which is defined abitdevel. The
high-level organization of the pipeline is inspired by tinéel XScale archi-
tecture (Clark et al., 2001) and is shown in Figure 1. The rhbds seven
pipeline stages including a 2-cycle fetch, a decode, anusea 2-cycle
memory access, and a write back. The model has various ésasuich as
branch prediction, precise exceptions, and predicaterlcign execution.
The model is described at the bit-level except for the ir$iton and data
memories, the register file, and combinational circuit kéoguch as the ALU;
these blocks have bit-level interfaces., their inputs and outputs are bit-
vectors, but they are not necessarily defined at the bit-leternally. For
example, the ALU in our machine takes bit-vector inputs,veots the in-
puts to integers, performs the appropriate ALU operatiorthese integers,
and converts the result to a bit-vector, which is the outguhe ALU unit.
Therefore, we use the term “bit-level interface” to deseribe model. In the
bit-level interface model the instruction decoder, cangic, and data path
logic operate on bit-vectors. The model is described usiagNCL2 program-
ming language, and unlike term-level models it is execetdhnl Section 7, we
show an example program (a dynamic programming solutidmgé&hapsack
problem) that executes on the model. Instructions are 32rbiength and the
model has 16 registers. The size of the data path is a panathatecan be
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set to any integer value greater than one, and the verificditioes of our
correctness proofs do not vary with the size of the data path.

The model implements 16 types of ALU instructions, a retuontexcep-
tion instruction, and various branch, jump, load, and stestructions. Our
model has both register-register and register-immedidtiFressing modes
and our model supports predicated instruction executiefy,some instruc-
tions have an associated condition that depends on thegsarcstatus flags.
The instructions are allowed to complete and update thergnaogper visible
components such as the program counter, the data memorthamegister
file only if the condition associated with the instructiortrige. Each of the
ALU, branch, load, and store instructions can be executadyus different
conditions. ALU, load, and store instructions can also vsmédiate values.
In all, the model implements 593 instructions.

3. Refinement

In this section, we review the required background on therthef refinement
used in this paper; for a full account see (Manolios, 2001ndlias, 2003).
Pipelined machine verification is an instance of the refimgmeblem: given
an abstract specificatios, and a concrete specificatidn show that refines
(implements)s. In the context of pipelined machine verification, the idetoi
show that MA, a machine modeled at the microarchitecturel Jevlow level
description that includes the pipeline, refines ISA, a naehnodeled at the
instruction set architecture level. A refinement proof latiee to arefinement
map r, a function from MA states to ISA states. The refinement maypvsh
one how to view an MA state as an ISA stageg, the refinement map has
to hide the MA components (such as the pipeline) that do npéapin the
ISA. Refinement for us means that the two systemsstrtering bisimilar
for every pair of statew, s such thatw is an MA state and = r.w, one has
that for every infinite patlw starting ats, there is a “matching” infinite path
starting atw, and conversely. That andd “match” implies that applying to
the states id results in a sequence that is equivalerd tp to finite stuttering
(repetition of states). Stuttering is a common phenomenloarvwcomparing
systems at different levels of abstracti@ng, if the pipeline is empty, MA
will require several steps to complete an instruction, wheiSA completes
an instruction during every step.

The ISA and MA machines are arbitrary transition systems).(ASTS,
M, is a triple(S --»,L), consisting of a set of stateS, a left-total transition
relation,--»C $, and a labeling functioh whose domain iSand wherd..s
(we sometimes use an infix dot to denote function applicatiamresponds
to what is “visible” at states.
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In more detail, our notion of refinement is based on the falgundefi-
nition of stuttering bisimulation (Browne et al., 1988), vk byfp(a,s) we
mean that is a fullpath (infinite path) starting at and bymatcHB, o,d) we
mean that the fullpaths andd are equivalent sequences up to finite stuttering
(repetition of states).

DEFINITION 1. BC Sx S is a stuttering bisimulation (STB) on T% =
(S --»,L) iff B is an equivalence relation and for all\w such that sBw:

(Stbl) Ls=Lw
(Stb2 (Vo :fp(o,s) : (3: fp(d,w) : match(B,0,0)))

The formal definition of match follows.

DEFINITION 2. (match) Let i range ovelN. Let INC be the set of strictly
increasing sequences of natural numbers starting. athe ih segment of an
infinite sequence with respect tote INC, ™d', is given by the sequence
(o(mti),...,o(r(i+ 1) — 1)). We define mat¢B,0,8) = (I € INC::
corr(B,0,1,9,§)), where cor(B,0,1,8,&) = (Vi e N::(Vs,w:se "0' Awe
£51 : sBw)).

Browne, Clarke, and Grumberg have shown that states thatattering
bisimilar satisfy the same next-time-free temporal logioffulas (Browne
et al., 1988).

LEMMA 1. LetB be an STB o and let sBw. For anfCTL* \ X formula
f, M ,w=fiff M sl=f.

We note that stuttering bisimulation differs from weak tviglation (Mil-
ner, 1990) in that weak bisimulation allows infinite stuittgr Distinguish-
ing between infinite and finite stuttering is important, hessa(among other
things) we want to distinguish deadlock from stutter.

When we say that MA refines ISA, we mean that in the disjoinbar{y)
of the two systems, there is an STB that relates every paiatéswv, s such
thatw is an MA state andw=s.

DEFINITION 3. (STB Refinement) L8t = (S --»,L), M’ = (S,--»', L),
and r: S— S. We say thatM is a STB refinement a#/’ with respect to
refinement map r, writtetM ~, M’, if there exists a relation, B, such that
(Vse S::sBrs) and B is an STB on the T®WS,--» W --»', L), where
L.s=L'.sfor s an Sstate and..s= L'(r.s) otherwise.

STB refinement is a generally applicable notion. Howevacgssit is based
on bisimulation, it is often too strong a notion and in thiseaefinement

mai n. tex; 23/08/2006; 17:43; p.6



Y
%)

()—
;

rank.v < rank.w

Y

- - -» MA-Step ——= Compare states for equality
..... > ISA-Step # Compare states for inequalit

— Refinement map
Figure 2. Diagram shows the core theorem that can be expressed in @itJ lo

based on stutteringimulationshould be used (see (Manolios, 2001; Mano-
lios, 2003)). The reader may be surprised that STB refinetheorems can
be proved in the context of pipelined machine verificatidieraall, features
such as branch prediction can lead to non-deterministielipggd machines,
whereas the ISA is deterministic. While this is true, thesfiiped machine is
related to the ISA via a refinement map that hides the pipelifien viewed
in this way, the nondeterminism is masked and we can prouetiieatwo
systems are stuttering bisimilar (with respect to the IS#ble components).

A major shortcoming of the above formulation of refinementhiat it
requires reasoning about infinite paths, something thatffisudt to auto-
mate (Namjoshi, 1997). In (Manolios, 2001), WEB-refinemantequivalent
formulation is given that requires only local reasoningioling only MA
states, the ISA states they map to under the refinement majhain succes-
sor states. In (Manolios and Srinivasan, 2004a), it is shiogym to automate
the refinement proofs in the context of pipelined machinéfieation. The
idea is to strengthen, thereby simplifying, the refinemeanbp obligation;
the result is the following CLU-expressible formula, wheaak is a function
that maps states of MA into the natural numbers.

THEOREM 1. MA =, | SAIf:
(Vw,ve MA, suel SA ::
s=rw A u=ISA-step(s) A
v=MA-step(w) A U#rV
- s=rv A rankv < rankw)

In the formula aboves and u are ISA states, and/ andv are MA states;
| SA- st ep is a function corresponding to stepping the ISA machine once
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andMA- st ep is a function corresponding to stepping the MA machine once.
The proof obligation relating andv can be thought of as the safety com-
ponent, and the proof obligation thetnk.v < rank.w can be thought of as
the liveness component. The formula is represented padipiin Figure 2.
Notice that we can state the above theorem without usingdhabless, u,
andyv, as their values are uniquely determined by the value. of

Note that the notion of WEB-refinement is parameterized leyrdfine-
ment map used. In this paper, we use the commitment refinemam{Mano-
lios, 2000), where MA states are mapped to ISA states byidatig all
partially executed instructions in the pipeline, undoimy &ffect they had
on the programmer-visible components, and projecting leaprogrammer-
visible components. In previous work, we have explored #eeaf and impact
of refinement maps on pipelined machine verificatiex, in (Manolios and
Srinivasan, 2005b), we present a new class of refinement thapsan pro-
vide several orders of magnitude improvements in verificetimes over the
standard flushing-based refinement maps for term-level lode

WEB-refinement iompositionaland a complete compositional reason-
ing framework based on our notion of refinement is given inridles and
Srinivasan, 2005a). For example, one can prove the foliptvirorem, where
r;q denotes functional compositione., (r;q)(s) = q(r.s).

THEOREM 2. (Composition)
If M~ M and M’ ~q M" thenM ~.q M".

Another useful compositional theorem is the following.

THEOREM 3. (Composition)
ISA||PF &

MA|PF ¢

The above theorem states that to prove MR + ¢ (think of this as
saying that MA, a pipelined machine, executing prograsatisfies property
¢, a CTL"\ X property over the ISA visible components), it suffices tovero
MA =~ ISAand ISA|| P I ¢: that MA refines ISA and that ISA, executify
satisfiesh. This is a powerful rule as it allows us to reduce correctpessfs
about programs executing on the MA to proofs about prografesuting on
the ISA.
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4. Integrating UCLID with ACL2

Our integration of the UCLID decision procedure with the ACtheorem
proving system is coarse-grained, meaning that the usetoh@soke the
decision procedure explicitly. This allows us to avoid thalvknown difficul-
ties associated with the fine-grained integration of denigirocedures into
heuristic theorem provers (Boyer and Moore, 1988). In thigien, we will
give a high-level description of our shallow embedding & €@LU logic and
the UCLID specification language in ACL2. A description oé ttembedding
is useful in understanding the various issues that arigeingfinement proof.
However, this paper is about an application of the integratif UCLID with
ACL2 to verify a complex pipelined machine. The full detailsthe inte-
gration and the embedding of CLU and the UCLID specificatamgluage in
ACL?2 are rather technical and will be presented elsewhere.

The CLU syntax and semantics and the UCLID specificationdagg are
described in (Bryant et al., 2002), and (Seshia et al., 2008apectively.
The UCLID specification language is based on CLU, but extéhdgth
features such as macros and convenient commands for exgregsbolic
simulation. UCLID specifications are therefore more higbel than the cor-
responding CLU specifications, which means that UCLID djmtions are
semantically closer to ACL2 expressions, which is why wesehto inter-
face ACL2 with UCLID instead of just CLU. We can then use thellllk
symbolic simulation engine (implemented in the UCLID taolgenerate the
CLU formulas corresponding to the UCLID specification.

We first give an overview of how we embed CLU into ACL2. The CLU
logic contains the boolean connectives, uninterpretedtioms and predi-
cates, equality, counter arithmetic, ordering, and resili lambda expres-
sions. Booleans, integers, equality, ordering, succeaadmpredecessor func-
tions in CLU are mapped to the corresponding entities in AEIC2 U’s un-
interpreted functions (UFs) and uninterpreted predic@id3s) are modeled
in ACL2 using constrained functions. ACL2 hasarcapsulatioomechanism
that allows one to safely introduce functions about whicly anset of con-
straints is known. To model UFs, we use constrained funstishich have
the property that if their inputs are integers, then theitpats are integers
also. Similarly, UPs are modeled as functions that giveaget inputs re-
turn booleans. The embedding of UFs and UPs highlights orleoissues
with embedding CLU into ACL2, which is that the CLU logic olsey stati-
cally monomorphic type discipline, while ACL2 is untypednéther issue is
the embedding of lambda expressions, which is not straightfrd because

1 In fact, models of the CLU logic are only required to satisfyraall set of axioms over
equality, <, and the successor and predecessor functions. Therefokec@uld be used to
reason about other domains, say strings. Our system alleers wo do this by explicitly
providing the intended domain.
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ACL2 is first-order. We use fresh, lambda-lifted top levell&functions to
translate CLU lambda expressions.

We now consider the full UCLID specification language. UCLiind-
els contain a set of state elements, whose behavior is |Ekeifth initial
and next state functions. The initial and next state funstiare defined us-
ing CLU expressions extended with syntactic sugar and csm r@fer to
state variables. Notice that the value of a UCLID state \wei@an be given
by a CLU lambda expression. To map UCLID specifications infoL2,
we use the CLU to ACL2 embedding. The resulting ACL2 modelgeha
state elements corresponding to the UCLID state elementfoareach state
element, we define a pair of initial-state and next-statectfans. A ma-
jor problem with the translation is how to handle state eleimdhat are
themselves functions or predicates. As ACL?2 is a first-otdaguage, the
value of a variable cannot be a function. Therefore, we cadinectly trans-
late UCLID lambda expressions to ACL2 functions. The way vemdie
this is first to closure-convert (Landin, 1964) and lamhéta(louannaud,
1985) the relevant lambda expressions,, we extract the free state vari-
ables of each lambda term, and alter the term to take an awiglitargument,
which is an “environment” that packages up their currenti®al The result-
ing lambda term that takes an “environment” as input alontip ts other
input arguments is called a closure. Secondly, we perforrefandtionali-
sation step (Reynolds, 1998) on the resulting closurest iShave statically
know the call sites for each (functional) state variablectBa call must be
to the lambda expression produced by either the state Velgabitial-state
function, or its next-state function: there are only twoicks. Thus, we ex-
press the “code” part of the state-element’s closure witlosuce-converted
ACL2 function that can query its extra “environment” argurh@vhich cap-
tures the values of the preceding state) to determine iftdite & the initial
state or a non-initial state. If the former, the code exextite body of the
initial-state closure; if the latter, the body of the netdte closure. The result
is anevaluatorfunction when applied to the arguments of the lambda and
the “environment” evaluates to an expression correspgnttirthe original
lambda expression.

4.1. TRANSLATION EXAMPLES

In this section, we show two examples of translations froenUiCLID speci-
fication language to ACL2. The first example is a part of a methéat defines
a simple instruction set architecture (ISA). The secondrgta is a part of a
UCLID specification.

Part of a model of a simple ISA machine is shown in Figure 3. Mioeel
consists of DEFINE section that defines macros and&8$IGN section that
describes the initial and next values of state elements.niaeros can be
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MODULE spec

DEFI NE
inst := imend(sPC);
scond : = Get Cond(inst);
isconditiontrue :=
Condi t (scond , sNZCV_Fl ags);

val := case
MenmToReg : ReadDat a;
default : Result;
esac;
ASSI GN
i nit[sPC
next [ sPC]
case
initi : pcO;
project_inpl : project_pc;
(isa & i s_ReturnFronmException) : sEPC,
(isa & is_alu.exception) : ALUException_Handl er;
(isa & is_taken_branch) : TargetPC,
isa : pcadd(sPC);
default : sPC
esac;

pcO;

Figure 3. Example of a module defined in the UCLID specification languag

thought of as wires in the context of hardware systems. Cate siement
corresponding to a program counteP(€) is shown in the figure. For the state
element, aninit function and aext function are defined, which describe
the initial and the next value of the state element, respagtiFigure 4 shows
the ACL2 specification obtained by translating from the UG Ibhodel.

The UCLID module shown in Figure 3 is translated to two fuocs
spec-initialize-u (not shown in the figure due to space limitations)
and spec- si nul at e- u (shown in the figure), which are used to com-
pute the initial and next values of state elements in the eodespectively.
The macro definitions are sequential, meaning that the defindf a macro
can depend on previously defined macros. Therefore the U@idbros are
translated to nested let bindingseft ). Thei ni t andnext functions of
state elemensPC are translated to the ACL2 functionsni t spc- u and
next spc- u, respectively.

The second example (Figure 5) shows the control sectioneoUtBLID
specification that describes a formula to be checked fodiliAt the begin-
ning of theEXEC section all the state elements in the UCLID specification
are initialized to values defined by thai t functions using an implicit ini-
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(defun initspc-u (pc0) pcO)
(defun nextspc-u
(initi pcO project.inpl project_pc isa
i s_returnfronexception sepc is_alu.exception
al u_exception_handl er is_taken_branch targetpc spc)
(cond
(initi pcO)
(project_npl project_pc)
((and isa is_returnfromexception) sepc)
((and isa is_al uexception) alu_exception_handl er)
((and isa is_taken_branch) targetpc)
(isa (pcadd spc))
(t spc)))

(defun spec-sinulate-u
(spec st initi pcO project_inpl project_pc isa
al u_exception_handl er nzcv_fl agsO project_nzcv
epcO i sexception0)
(et ((spc (g 'spc spec))
)

(letx ((inst (imenD spc))
(scond (getcond inst))
(isconditiontrue (condit scond snzcv_flags))

(val (cond (nmentoreg readdata) (t result))))
(spec-state
(next spc-u
initi pcO project.nmpl project_pc
i sa i sreturnfronexception sepc
i s_al u_exception al u_excepti on_handl er
i s_taken_branch targetpc spc)

)
Figure 4. Translation to ACL2 of the UCLID module shown in Figure 3.

tialize command. The first command is a symbolic simulatiat assigns all
state elements to the values described by thext functions. After some
computation, theésood_MA_V and theRank Whvariables are assigned CLU
expressions. Finally, the formula to be checked for validst given in the
deci de command.

The translation of the UCLID control section to ACL2 is shownFig-
ure 6. The whole control section is translated tdef t hmconstruct, the
construct used to state theorems in ACL2. The implicit UCLihDialize
command at the beginning of tlE&XECis translated to theni ti al i ze- u
function. The UCLID simulate command is translated todlerul at e- u
function. The resulting states of the model obtained afigialization and
simulation are stored usinget * bindings and are used for further simulation
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CONTRCOL

EXEC
sinmul ate(l);

Good MAV := ( Equiv_.MAO | Equiv_MALl | EqQuivMA2 | ...);

Rank_W : = Rank;

deci de(
Good VALV &
((~((SpcO = 1pco) &
(Sxrf0 (al) =1xf0 (al)) &
(SdrmenD(al) = |_dnmenD(al))

)

Figure 5. Example of a control section in UCLID.

steps. Thesood_MA_V and theRank Whvariables are assigned values in the
| et * bindings. Finally, the formula to be checked is given.

5. Refinement Proof

In this section, we describe in detail the proof that the sestage bit-level
interface pipelined machine model (MB) refines its exedetaistruction set
architecture (IE). Both models MB and IE are described uiegACL2 pro-
gramming language. We use the combined system obtainedirfitegrating
UCLID with ACL2 for the proof. We first give an outline of the quf.

5.1. RROOFOVERVIEW

An outline of the proof that MB refines IE, both of which are defi in
ACLZ2, is shown in Figure 7. We make essential use of the cortipoality
of WEB-refinement to reduce the proof to a sequence of simmpfarement
proofs.

In the ACL2 models IE and MB, memory is modeled using assiaciat
lists mapping addresses to data values. In the other madetaory is mod-
eled using evaluator functions, because as described tioB6€g this allows
us to relate ACL2 models with UCLID models, where memory isdeled
using restricted lambda expressions.

The first refinement proof shows that MB refines MM, a bit-lanétrface
pipelined machine model that is similar to MB except that MiMiemories
are modeled using evaluator functions. The second refinepmeaf is used
to move from bit-vectors to integers. We do this by provingtiivACL?2) that
MM refines ME, an executable pipelined machine that is smdavM, but
which operates on integers, not bit-vectors.
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(defthm web_core-u

(inplies
(and (integerp pcO) (integerp epcO) ...)
(letx
((stO (initialize-u nil nil nil nil nil pcO ...))

(stl (sinmulate-u st0 bpstateO nil nil nil pcO ...))

(good_na_v
(or ... (or equiv_ma_0 equiv_na_1)
equiv_ma_2 ...)
(rank_w
(rank-u (g "mmwt (g 'inpl st2l))
zero

(g 'mwrt (g 'inpl st21))
(g 'emmt (g 'inpl st21))
(g "dewrt (g "inpl st21))

(g "fdwt (g "inpl st21))
(g "ffwt (g '"inpl st21))))
)
(and good_na_v
(or ...
(and (equal s_pcO i_pc0)
(equal (read-srf-u al s_stO0)
(read-prf-u al i_st0)))
(equal (read-sdmemu al s_stO0)
(read- pdmenmhi st_2-u al i_st0)))

)

Figure 6. Translation of the UCLID control section shown in Figure 5M0L2.

Recall that our goal is to move towards refinement steps tirabe han-
dled by UCLID, and, as mentioned previously, this requiheg tve “pollute”
the models by adding extra inputs and logic in order to stagetore” re-
finement theorems. The refinement step from ME to MEP, a galluérsion
of ME, does exactly this.

The pipeline is dealt with next, when MEP is shown to refine, l&pol-
luted version of IE. As we will see shortly, both ACL2 and UCLa&re used
for this refinement proof.

What remains is to show that IEP refines IM, which can be thbafjas a
purification step that removes the pollution introducedieciand that IM re-
fines IE, which transforms the memory models based on lamkpl@ssions
in IM to the association lists based memory models in IE.

The proof that MEP refines IEP cannot be directly handled WigtLID,
e.g, the models use arithmetic operations on integers thatarexpressible
in the CLU logic or the UCLID specification language. Therefoseveral
abstractions are employed, resulting in machines MA and ¥ckvabstract
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Memory Bit-level Pollute Pipeline  Purify Memory
MB —=MM —®ME — MEP — IEP — IM — |E
—_—

Term level ﬁ

MA — |A
— N

i)

MUA — IUA
—

UCLID to ACL2 ‘A

MU —= U |

A—=B : Arefines B (proof by ACL2)
:> : Functional Instantiation
A— B | :Arefines B (proof by UCLID)

R : Translation from UCLID to ACL2
Figure 7. Proof outline that uses ACL2 and UCLID to show that MB refings |

MEP and IEP, respectively. MA and IA are term-level modeld ere prove
that MA refines IA by translating this proof obligation to a UKD theorem
stating that MU refines IU. MU and IU are the UCLID analogs of ldad |A,
respectively. MUA and IUA are obtained by translating MU dddo ACL2
using our trusted translator. The UCLID theorem that MU il is also
translated to ACL2 using our trusted translator resultmgn ACL2 theorem
stating that MUA refines IUA, which is then used to prove thak kéfines
IA. Several of the ACL2 refinement proofs use functional amsiation, an
ACL2 proof technique that allows one to lift theorems invoty constrained
functions to theorems involving functions satisfying ttwnstraints. This is
how we use UCLID proofs, which contain UFs and UPs, to proestbms
about defined functions and predicates.

We now describe in detail aspects of the refinement proofe Nwit the
various models are very large (for example, the MA model isuat2,500
lines of ACL2 code) and given the limited space, it is not flassto fully
describe these models.
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5.2. MEMORY MODELS

In this section, we describe the parts of the refinement pitwaif relate the
machine models MB and IE with machine models MM and IM, retpely.
MB and IE use association lists to model memory whereas MMikhdse
the evaluator function to model memory.

Typically, memories are thought of as arrays of data valueaCL2, we
use association lists (lists of key/value pairs that are aterred to as alists)
to model memories usinggetto write into a memory location argetto read
the value of a memory location. The data memory, the insomanhemory,
and the register file in machine models MB and IE are modeled)usists.

In UCLID, memories are modeled using restricted lambda esgons,
which are essentially functions that map addresses to daias/ The lambda
expressions are restricted so that they only take integeesguments and
there is no way to express recursive definitions. A read froemory is an
application of the lambda expression corresponding to theany to the ad-
dress, and a memory update results in a new lambda expressi@sponding
to the new memory.

Lambda expressions in UCLID are mapped in ACL2 to evaluatoc
tions and an “environment” variable as follows. Memory isdaled as a list
st of elements containing an address, data, and a number offalus that
we call the condition fields. The condition fields togethes ased to define
the memory update condition and memory is updated only ifnileenory
update condition holds. During every step of the machine,ligt st is up-
dated with the address, the data value, and the conditiasfi€he evaluator
function is used to read memory. It takes an address anddtet ds input
and returns the data corresponding to the address, whiaHiiged to be the
first write to the address where the update condition hofdso lsuch write
exists, the initial value is returned.

In order toillustrate how the evaluator function can be usadodel mem-
ories, we give a simple example. Consider a registerfile,in a machine
that is updated every time the sigmdlupdat e is true. First, we define the
“environment” as the lisst , whose every element is a list that has the fields
addr, dat a, andr f updat e corresponding with the register file address,
the data to be written to the register file, and the sigriaipdat e, respec-
tively. The listst is updated every time the machine model is stepped. The
evaluator function for the register fitd is defined as shown in Figure 8.

In Figure 8,car andcdr return the first element of a list, and the rest of a
list, respectively. The functionsddr - st , dat a- st , andr f updat e- st
are functions that return the fielésldr , dat a, andr f updat e of an ele-
ment ofst , respectively. Theval rf function returns the data field of the
firstelement irst , whose addr field is equal teddr and whose f updat e
field is true. If no such element is founa&val r f returns the initial value
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(defun eval rf (addr st)
(if (endp st)
(rf0 addr)
(if (and (rfupdate-st (car st))
(equal (addr-st (car st)) addr))
(data-st (car st))
(evalrf addr (cdr st)))))

Figure 8. ACL2 code of the evaluator function for the register file exden

given by an Uninterpreted Functionf(0). Notice thatst is like the regis-
ter file, except that every element has an additional fidldpdat e; also,
eval rf is the read function for the register file.

For the proof that IM refines IE, the refinement map maps alsthtes in
IM that are not memories to corresponding states in IE. Sinemories in
IM are modeled using evaluators, the refinement map maps nesrio IM
to alists in IE by starting with an empty alist and updatingsing the address
and data fields of every element in the IM memory withr@ memory
update condition. IM and IE are very similar in structure alodnot stutter
with respect to each other. Therefore, we actually proveltlaand IE are
bisimilar.

To prove that MB refines MM we prove that MB and MM are bisimibgr
defining a refinement map from MM to MB that is similar to the mefnent
map from IM to IE.

5.3. REASONING ABOUTBIT-LEVEL INTERFACE DESIGNS

In this section we describe the part of the refinement pragifrédates the bit-
level pipelined machine model MM to ME, a pipelined machipemting on
integers. This proof is carried out exclusively using ACLftlas parameter-
ized with respect to the word sizeg., our proof remains the same regardless
of the word size of the machines involved. Since MM and ME dbstatter
with respect to each other, we prove that the two systemsisirsilar.

The refinement map from MM to ME converts unsigned and signed b
vectors in MM to naturals and integers, respectively. Ferdftoof, we devel-
oped a bit-vector library in ACL2. For example, we defined aesleloped
a theory of rules for functions to convert bit-vectors to r@rs and vice-
versa. The functions includeubv (which converts naturals to unsigned bit-
vectors) ubwv-n (which converts unsigned bit-vectors to naturalsfv(which
converts integers to signed bit-vectors), abai (which converts signed bit-
vectors to integers). The library required about four daysah expert ACL2
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user to develop. For the refinement proof, we required tmessuch as the
following.

1. natp(a) A natp(n) Alen(n-ubv(a)) < n
= ubwn(extendn(n-ubva),n)) = a
2. integerg(a) A natp(n) A len(i-sbya)) < n
= sbvi(signextendn(i-sbva),n)) = a
3. bvp(x) Anatp(a) A (a< len(x)) = bitp(nth(a,x))
4. bvp(a) Abvp(b) A (len(a) = len(b))
= (ubwn(a) = ubvn(b)) & (a=Dh)
5. bvp(a) Abvp(b) A (len(a) = len(b))
= (sbwi(a) =sbvi(b)) < (a=Db)

In the above theoremden(x) is the length of the bit-vectox, natp(a)
denotes that is a natural numbeintegerga) denotes thah is an integer,
bvp(a) denotes thaa is a bit-vectorbitp(a) denotes thaa is a bit, nth(n, x)
corresponds to the" element of listx, extendn(b, n) extends the unsigned
bit-vectorb to a length ofn, andsign-extendn(b,n) sign extends the signed
bit-vector b to a length ofn. Theorems 1, 2, 4, and 5 are used to reason
about the refinement map and Theorem 3 is useful for reas@fingt the
instruction decoder, which generates control signals ftwrbit-vector corre-
sponding to instructions. The theorems described above @ssential for our
proof, but our proofs required many other theorems all ofchtare included
in our bit-vector library. Also, the bit-vector library wagveloped based on
what was required for the refinement proof, and can be eadignded with
more bit-vector operations and rules.

5.4. FOLLUTION AND PURIFICATION OF MODELS

Due to the limited expressiveness of the UCLID specificataorguage, to
define refinement maps, we have to modify (pollute) the ma&cimodels by
adding external inputs, logic, and history variables @ales that record pre-
vious values of state elements). That theorems about pdlimodels imply
something about the original models requires proof.

Refinement maps are used to map implementation states tidicgiemm
states. We use the commitment refinement map for this purghdaeolios,
2000; Manolios and Srinivasan, 2004a), where a pipelinedhina state is
related to an instruction set architecture state by inaéilig all the partially
executed instructions in the pipeline and rolling back tregpammer-visible
components so that they correspond with the last committsiduiction. To
define the refinement map, two functions are required. Onkeeidmmit-
ment function that commits the pipelined machine state hadther is the
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projection function that projects the programmer visibbenponents of the
pipelined machine state to the ISA state.

The pipelined machine model can essentially be thought affasction
that describes the operational semantics of the pipelinechine. Both the
pipelined machine model and the commitment function are diffi@rent
functions that modify the state of the pipelined machinentyshe UCLID
specification language, it is not possible to define two dhffié functions,
both of which modify the same state elements. Thereforanfeément the
commitment function, we modify the pipelined machine moblgladding
an external inputommitimpl, history variables—variables that record the
history of some of the state elements—and some extra logldtireg in what
we call the polluted pipelined machine model. When the irqgmmitimpl
is false, the polluted pipelined machine model corresponds to trerasp
tional semantics of the pipelined machine, and wéemmitimplis true, the
polluted pipelined machine model corresponds to the comarit function.
Similarly, we modify the ISA model by adding an inpptojectimpl and
some control logic to implement the projection function.

Itis not clear that proving the polluted pipelined machinedal is correct
implies that the original pipelined machine model is carréicis possible
that an external input or a history variable modifies the redroperation of
the pipelined machine and hides a bug that exists in thenadighachine.
For example, consider a buggy variant of the seven-stageintiuat does not
stall the program counter when the pipeline is stalled. T;mdehe commit-
ment refinement map for the seven-stage pipelined machimelmee use
a history variablestallp that records the value of the stall signal from the
previous step of the machine. We abstract and pollute thelipgd machine
model so that we can define the commitment refinement mapelprticess
of pollution, we stall the program counter if the next valdestallp is true.
Now, we can prove using UCLID that the polluted pipelined mae model
refines the ISA model. But, in fact, this does not tell us amghabout the
original pipelined machine model because the polluted ineskes thestallp
history variable in the program counter logic, whereas tigiral model has
no history variables.

Therefore, we check in ACL2 that if the external inputs in dlyged
pipelined machine model are set to values correspondinget@perational
semantics of the pipelined machine, then the unpollutedigable model
(ME) refines the polluted executable model (MEP). Similgidy the purifi-
cation step, we check that the polluted executable ISA m@&é#t) refines
the purified ISA model (IE). ME and MEP do not stutter with resjpto each
other and neither do IE and IEP. Therefore, we can prove mbiation result.
The bug in the program counter logic of the buggy variant ef¢aven-stage
model will be caught using our method when we try to prove thairiginal
pipelined machine model refines the polluted model.
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5.5. RELATING EXECUTABLE MODELS AND TERM-LEVEL MODELS

In this section, we give an overview of the proof that MEP resifEP. This
refinement step deals with the pipeline and uses UCLID. Hewav order to
use UCLID, we have to show a relationship between executabtéines and
term-level machines. The difficulty is in mechanically ¥gng the various
abstractions employed, which are used to deal with memdmiaach predic-
tion, instruction classes, etc. Below we describe two absbn techniques
that are very hard to mechanically verify. Both these abstma techniques—
one for memories and the other for branch predictors— arelwidsed in
term-level modeling.

Memoaries in UCLID can be modeled using lambda expressiodssach
memories can be matched with ACL2 memories as describedcitnge.2.
However, in cases where reads and writes are in oréays-this is the case
for the data memory of our machine—memory can be modeled aseger
variable using two UFs, one to read and one to write. This hingletyle
leads to faster verification times than the approach usimtbdas (Lahiri
et al., 2002). However, it is much more difficult to use if thestraction
has to be mechanically verified. To mechanically verify diistraction, we
have to encode the memory state as an integer and define tharr@avrite
operations for this encoding of the memory, in order to obtair executable
model. This is possible using Godel encoding scheme, agrshelow.

((a]_ . dl) (ag . dz) (an . dn)) —

a)+1 ap+1 an+1 dy+1 _dy+1 dn+1
P3™ Pg~ Pni2 P3Py Prp2
P P2

In the above equation, the data memory is an alist whose ssldiements
areay, a,...,a, and whose data elements ate ds....,d,. Theit" prime
is denotedp;. Any finite memory can now be represented as a single inte-
ger, but there are several problems with the above apprdéamhexample,
the theorem proving effort required to show that this sch&mgks is non-
trivial, e.g, it requires that we prove the prime decomposition theoram.
addition, the above encoding scheme cannot be used fortenfimemories,
as there is no bijection between the set of infinite memonesthe natural
numbers. Therefore, we find that the time savings attainembbtracting the
data memory with an integer are not worth the added theorewiry effort
required to justify this abstraction.

Branch predictors in UCLID can also be modeled using an ertegriable
that represents the state of the branch predictor and thiFsethat take the
branch predictor state as input and return the next statkeobtanch pre-
dictor, a prediction for the branch direction, and a predicfor the branch
target (Lahiri et al., 2002). To show that the above coryeattstracts an
executable implementation, for example a Branch TargeteBYBTB), we
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are required to model the environment of the BTB using amgerteHowever,
since the next state of the BTB depends on the entire protstsie, we
have to encode the state of the processor with one integecaWelo this
using Godel encoding schemes, as described above, pdotlidanemories
are finite, but the effort required would be considerablesr&fore, we use an
alternate abstraction, where we simply model the brancHigior choices
using non-determinism. Justifying this abstraction isigtitforward, thus
the ACL2 verification effort is drastically simplified. In dition, the UCLID
verification times are comparable to the verification timeguired by the
standard approach.

A final abstraction that we briefly mention concerns the irtton set.
The UCLID models only have one instruction per instructitass, whereas
the executable models have the full instruction set. Thise out to be
surprisingly easy to deal with because the UCLID modelgabstthe instruc-
tions by using uninterpreted functions (UFs) that take {heode as argument
and collapse the instructions corresponding to variousegbf the opcode
to one instruction. When we instantiate the UCLID model, wplace the
uninterpreted functions that take the opcode as input withtfons that check
the value of the opcode and perform the appropriate opetdfior example,
the UCLID model only has one ALU operation, but the execwahnlbdel
first checks the opcode to determine whether it is an add obtmes etc.,
and then performs the appropriate operation.

Executable models have other advantages. We can use thesbuag d
designs more easily. For example, using UCLID counterexesnpne can
determine the sequence of instructions that leads to a gt might be
more difficult to determine what the actual bug is. Using owositable mod-
els, we can use test inputs that simulate the same sequeirsrottions to
track the bug in the design. Note that counterexamples gtweby UCLID
correspond to counterexamples for the refinement relateiwden ACL2
models MUA and IUA, and for the refinement relation betweerLA@odels
MA and IA.

Executable models also allow proofs of properties that inigh be the-
orems in the abstract models. In addition, while the refirgrpeoof estab-
lished that the pipelined machine model (MB) behaves likdristruction set
architecture model (IE), how do we know that the instrucgeharchitecture
model (IE) is correct? Executable models allows us to ruh gesgrams.
In our case, while executing a simple program, we found theegs in the
instruction set architecture model (IE), which are desatibelow.

— Instructions are 32 bits with the least significant bit arglrost signif-
icant bit corresponding to thé"obit and the 3% bit of the instruction,
respectively. The bug was in the functions that implemeatiriktruction
decoder, which were reading the 32-bit instruction in thesrge order.
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For example, if a decoder function was supposed to read'fheit5it
was instead reading the ®@it (31 - 5) of the instruction.

— The register file is updated by both ALU and load instructiohgle-
coder function that takes the instruction as input is usetktermine if
that instruction updates the register file. The function gy in that
it did not signal that the register file should be updatedsdfitiput was a
load instruction.

— The processor has 4 flags that are used to store various fegper
the result obtained from the previous instruction. For examif the
previous instruction was an ALU instruction whose resuls wero, then
the Z flag is set. Thaipdatenzcvfunction that takes the result and the
previous value of the flags is used to update the processa. fldge
updatenzcvwas buggy in that the two input arguments to the function
were swapped.

Since the decoder functions and tinedatenzcvfunction are abstracted
using uninterpreted functions (UFs) in the term-level nisdaone of the
above bugs could have been caught during the verificatioheofdrm-level
models using UCLID.

The bugs described above bring up an important aspect ahatitoterm-
level verification using decision procedures such as UCIRBcall that in
order to use such methods, one must abstract away the ALUiettading
logic, etc. using UFs shared by both the MA and ISA. While ¢hakstrac-
tions drastically reduce the complexity of the verificatfjmoblem, they also
lead to ISA models that are structurally similar to MA modé&isA models
tend to have next state relations for each of the componérte dvA ma-
chine and this way of specifying the MA model makes senseusecthey
are inherently parallel machines whose every componermtrisrziously up-
dated. ISA models defined in UCLID tend to have the same sireics their
corresponding MA models. This is what allows them to shaeesime UFs as
their MA models, but it also is what makes it easy to mask thekiof errors
reported above. Notice, however, that ISA models are imtgraequential
and, conceptually, the simplest way to define them is to jagela big case
statement that checks the type of the next instruction aedut®s code cor-
responding to the semantics of this instruction. If we def® models in
this way, we have a much better chance of catching errordqyeasemantic
gap between the MA and ISA models is now larger. Using our@gagr, we
can in fact define such an ISA machine and can prove that ifirreckby IE.
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5.6. ABSTRACTMODELS

MA and IA are term-level models, and we are finally at the paoititere

we can invoke UCLID, which is optimized to automatically asfficiently

reason about such models. MA, IA, and the refinement theohatré¢lates
these models are translated to the UCLID specification lagguThe result-
ing UCLID models are MU and IU. UCLID proves the refinementattesn

and our (trusted) translator returns an equivalent ACL2r®, now about
the models generated by our translator, IUA and MUA. Usingacfional

instantiation, as outlined previously, ACL2 is able to cdete the proof
automatically.

6. Verification Statistics

The verification times for the proofs and the expert userrefiequired in
terms of man-weeks for each intermediate step in the refinep®of is
shown in Table I. In the “Proof Step” column in the table,-A B means
that system A refines system B. For all the proof steps, exdkpt— 1U,
we used the ACL2 theorem proving system (version 2.9). For-MUJ, we
used the UCLID decision procedure (version 1.0) couplet thi¢ siege SAT
solver (Ryan, 2004) (variant 4). All the experiments wene on a 3.06 GHz
Intel Xeon machine, with a cache size of 512 KB. The user effauired
for the proof steps is an estimate of the effort that woulddspuired for an
expert user of both the UCLID tool and the ACL2 theorem prgwgstem to
apply this verification approach to verify another pipeireachine design
of similar complexity. The times reported above do not ideldhe time re-
quired to learn UCLID and ACL2 and do not include the time ieepl for
the integration, which took several months.

7. Reasoning about Programs

An advantage of executable models over abstract modelstisvih are able
to reason about programs running on pipelined machines &gl &bout
compilers that generate code for pipelined machines. Weritbesa simple
example in ACL2 that demonstrates our ability to use the atedaility of
our pipelined machine model and the refinement theorem #ates the
pipelined machine to its instruction set architecture tiziehtly reason about
programs running on the pipelined machine model, sometttiag signifi-
cantly extends the kind of analysis one can perform whemicest to using
term-level models.

The program that we consider is one that solves the Knapsabkem, a
commonly arising optimization problem. We have a knapsaitk eapacity
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Table I. Verification times and expert user ef-
fort required for the refinement proofs.

Proof Step | Proof Time | User Effort
(secs) (man-weeks)
MU — IU 84 3
MA — IA 3 2
MEP — IEP 5 2
IEP — IM 4 1
IM — IE 90 1
ME — MEP 2 2
MM — ME 233 3
MB — MM 12 1
K(0) :=0
for c =1to T
max := 0
for j =1ton
if &j) <c
x 1= K(e-C(j)) + V(j)
if x > max
max = X
K(c) := max

return K(T)

Figure 9. Pseudo code for solving the Knapsack problem.

T and a set oh items, each of which has a co€}( -) , and a valuey/( -) ,
associated with it. The value of the knapsack is the sum obdhees of the
items in it, where we allow multiple instances of the samait&Similarly,
the cost of the knapsack is the sum of the costs of the items\hat is the
maximum value our knapsack can attain without exceedingaipacity? A
dynamic programming solution to the knapsack problem, @uge-code, is
shown in Figure 9.

The assembly-level program and the machine code prograhe dfnap-
sack problem for the bit-level interface pipelined machiradel MB is shown
in Table 1l. To show that the program works correctly, we aquired to
prove the property thd€( T) is the maximum value achievable with a knap-
sack of capacityl.

Using ACL2, we can prove that the machine code for MB satigfiexor-
rectness property of the Knapsack solution. As we have $4Bris a com-
plex bit-level pipelined machine with branch predictionyvwarding logic,
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Table Il. Assembly-level program and machine code for thap&ack problem.

Assembly Code| Machine Code|| Assembly Code (Cont.| Machine Code (Cont.)

storeirl 0 3886092288 addr11r11r13 3768299533
movi r6 0 3815792640 movi r0 20 3815768084
addir6ré6 1 3800457217 subr9rllr7 3780874247
movir10 0 3815809024 bn ro 1249902592
movi r7 0 3815796736 mov r7 rll 3787157515
add r14r3r10 | 3767787530 movi r0 5 3815768069
add r15r4rl0 | 3767857162 subrl1r5rl10 3780489226
addirl0rl01 | 3800735745 bnz r0 444596224

load r12 r14 3854483470 add r11rlr6 3767644166
load r13 r15 3854553103 store r11r7 3853234183
movi r0 20 3815768084 movi r0 2 3815768066
subrllr6rl2 | 3780554764 subrllr2r6 3780292614
bn r0 1249902592 bnz r0 444596224

addrllrllrl | 3768299521 addrl1rlr2 3767644162
load r11r11 3854282763 load r9ril 3854274571

stalls etc. This makes it difficult to reason about even stnppbgrams execut-
ing on MB. Itis much simpler to show the correctness of proggaunning on
IE, the high-level non-pipelined model. Our theory of refirent allows us to
do exactly this, but notice that the preservation of liven@ays a crucial role,
e.g, were we to use a notion of refinement that did not presereadiss, then
a proof that the program runs correctly on IE does not ruldlmipossibility
of livelock on MB.

Having reduced the problem of reasoning about code runniniglB to
code running on IE, the final concern is how to reason about codning
on IE. To prove partial correctness, at the very least weeageired to define
a sufficient collection of program invariants. In fact, a hwat that requires
only this is due to Moore (Moore, 2003), who shows how to usd 2@
automatically generate the verification conditions reggiito show that the
program invariants imply partial correctness. There ase aktensions that
allows us to prove total correctness results (Matthews and iy, 2004).

8. Related Work

Previous work on pipelined machine verification can be rbughassified
into automatic approaches based on decision proceduresppnoaches that
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use deductive reasoning. An early work on the use of auterdatision pro-
cedures was by Burch and Dill who showed how to automaticaiiyppute
the abstraction function using flushing (Burch and Dill, 4p@nd gave a
decision procedure for the logic of uninterpreted fundienth equality and
boolean connectives. Another, more efficient decision gaace was given
in (Bryant et al., 1999) that exploits positive equality.eTlwork was further
extended in (Bryant et al., 2002), where a decision proeeflur the CLU
logic that exploits optimized encoding schemes (Seshib, &093Db) is given.
The decision procedure is implemented in UCLID, which hasnbesed to
verify out-of-order microprocessors (Lahiri et al., 20@2)d which we use
to verify the models presented in this paper. Recently,etligrinterest in
abstracting bit-level designs to UCLID specifications, thetse methods only
work on very simple examples and have some severe limigtig, they
do not handle memories (Andraus and Sakallah, 2004). Weealsect that
recent advances in decision procedures (Ganzinger etOfl4; 2le Moura,
2005) will drastically reduce the verification times of tetevel pipelined
machine models.

An early, pioneering body of work on the use of theorem prgvior the
verification of microprocessors is the CLI stack work (Hub®89; Hunt,
1994; Bevier et al., 1989). Another notable use of theoreavipg in the
context of hardware verification used ACL2 to reason abouiokéda’'s CAP
digital signal processor (Brock and Hunt, 1997). SawadaHumt have used
the ACL2 theorem proving system to verify the FM9801 Micarecture.
Their work is based on computing an intermediate abstnactithe pipelined
machine state called MAETT that keeps track of completed iafftight
instructions. Using the MAETT abstraction, they check tath of the in-
structions in the pipeline executes correctly. Hosabetl g Hosabettu et al.,
1998; Hosabettu et al., 1999) use the PVS theorem proverrify pgelined
processors. Their work is based on the use of completiortibmecthat speci-
fies the effect of completing an instruction in the pipelimetioe programmer
visible components. The abstraction function is computediging a com-
position of completion functions, one for every partialkeeuted instruction
in the pipeline. Arons and Pnueli (Arons and Pnueli, 2000)haso used
the PVS theorem prover to verify a machine with speculativariction
execution. In (Kroning, 2001), data consistency and ligsnef pipelined
machine models is verified using the PVS theorem prover. Thdets are
synthesizable and are described very close to the gatk-leve

The notion of correctness for pipelined machines that wewese first
proposed in (Manolios, 2000), and is based on WEB-refinerfManolios,
2001). The first proofs of correctness for pipelined machiveesed on WEB-
refinement were carried out using the ACL2 theorem provirgjesy (Kauf-
mann et al., 2000b; Kaufmann and Moore, 2004). The advardagsing
a theory of refinement over using the Burch and Dill notion @frectness,
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even if augmented by a “liveness” criterion, is that deakllowmy avoid de-
tection with the Burch and Dill approach (Manolios, 2000hereas it fol-
lows directly from the WEB-refinement approach that deddloc any other
liveness problem) is ruled out. In (Manolios and Srinivas2®04a), it is
shown how to automatically verify safend livenesproperties of pipelined
machines using WEB-refinement.

9. Conclusions and Future Work

We have shown how to verify executable pipelined machineaisodith bit-
level interfaces using our integration of the UCLID deaisfmrocedure with
the ACL2 theorem proving system. This has allowed us to @raecthe ma-
jor limitation of approaches based on decision procedurasiely that they
only work for abstract term-level models and do not provifieraconnection
with RTL models. Theorem proving approaches can reasont &du+level
designs, but tend to require heroic human effort. With opreach, the proof
required only minutes of CPU time and the human theorem pgpeifort
required was modest. Our proofs are based on WEB-refineraethigory
of refinement that is compositional and preserves both saifed liveness
properties. We also demonstrated that we can decomposeabietipat code
running on the pipelined machine is correct by first showirag the pipelined
machine refines the instruction set architecture and thewislg that the soft-
ware running on the instruction set architecture is correot future work,
we plan to apply this approach to a wider class of pipelinedhmes and to
determine what other domains can benefit from our work.
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