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Abstract
Rank polymorphism serves as a type of control flow used in
array-oriented languages, where functions are automatically
lifted to operate on high-dimensional arguments. The itera-
tion space is derived directly from the shape of the data, pre-
senting a challenge to compilation. A type system can char-
acterize data shape, though the level of detail is beyond what
can be reasonably expected from entirely human-generated
annotations. The task of checking or inferring shapes can
be phrased as solving constraints in the theory of the free
monoid over the natural numbers, but the constraints in-
volve both universal and existential quantification. Here is
a plan of attack for leveraging past work on decision proce-
dures, which has generally focused on the purely existential
fragment of the theory.

CCS Concepts • Theory of computation → Logic and
verification; Type structures; • Software and its engineer-
ing → Polymorphism; Control structures; Functional
languages;

Keywords array-oriented languages, free monoid, word
equations, first-order logic, type inference, indexed types
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1 Introduction
Rank-polymorphic array programming, a paradigm pioneered
by Iverson in his language APL [8] and expanded in the
successor language J [10], offers an expressive notation for
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computing on large regular data. In this model, all functions
automatically lift to operate on arguments of arbitrarily high
dimension. This polymorphism enables a form of code reuse
which is particularly convenient for domains such as scien-
tific programming, machine learning, and signal processing.
It also encourages programmers to write code in a way that
makes data dependence clear. A compiler for such a language
would not need the intricate analysis required in conven-
tional scalar languages to identify which operations are legal
to reorder or execute in parallel. However, even though the
distinction between loop-carried and loop-independent data
dependence is made clear in the code, the iteration space
itself may be statically unknown when it is generated from
arrays whose shape is dynamically computed.
Static characterization of the control structure of rank-

polymorphic code is the goal of Remora, a language which
generalizes the implicit function lifting of APL and J to han-
dle higher-order and higher-arity functions, using restricted
dependent types to describe array shapes. Using an array
type indexed by a sequence of natural-number dimensions,
Remora’s type system identifies how each argument in a
lifted function application must potentially be replicated to
match the “principal frame” of the function application.

Remora’s types are able to express detailed requirements
as to argument shape, but in the language’s current state,
the programmer must supply type annotations partially ex-
plaining how arguments actually satisfy those requirements.
For example, applying a matrix-inversion function that only
accepts non-empty square matrices, i.e., arrays with shape
(n + 1) × (n + 1), to a 4 × 4 matrix requires explicitly instan-
tiating the function at n = 3. Type-index variables may also
range over sequences of naturals. The sequence variable ®d in
3 × ®d places no restriction on whatever lesser axes an array
may have, but we require the major axis to have length 3.
The expressiveness of Remora’s types comes with a cost:

they can be so large that the actual program terms are lost
amidst the clutter of their type annotations. We’d like some
way of automatically inferring these types. The availability
of both dimension (natural number) and shape (sequences of
naturals) index variables means that the problem of inferring
these index arguments amounts to solving a system of word
equations which contains both universally and existentially
quantified variables.
This paper examines the decision problems involved in

both type checking and type inference for Remora from
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the perspective of constraints expressed in first-order logic.
We give an overview of the language and its type system,
including the language of type indices and the associated
algebraic theory. We then describe the encoding of type
checking as a constraint problem, along with how Remora’s
type checker ensures that actual constraint queries are in-
expensive to check. Since the analogous constraint problem
for type inference does not admit this simplification strat-
egy, we instead sketch a different plan of attack, which we
expect will allow us to take advantage of well-established
decision-procedure technology to automatically select index
arguments in Remora programs.

2 Typing Rank Polymorphism
We give the grammar for an explicitly-typed core language
representing a subset of Remora [18] in Figure 1. For the
purposes of this paper, we ignore type polymorphism and
dependent sums; dependent products are enough to illustrate
the problem at hand.

The type annotation on each formal parameter of a λ spec-
ifies the type of the argument cells, the fundamental units on
which the function operates. When applying a function, each
argument array is viewed as a two-level structure—a frame
containing cells arranged in a particular shape. In essence,
the shape of the cell is taken from the trailing dimensions
of the argument array, while the shape of the frame is the
remaining prefix of the argument’s shape.
For example, a norm operator for points in R3, with cell

type (Arr (Shp 3) Float), would view an argument of
type (Arr (Shp 2 4 3) Float) as a 2 × 4 matrix frame
containing 3-vector cells.When there aremultiple arguments
involved, lifting rules require that some argument’s frame
have as prefixes all other frames involved in the function
application; this is the principal frame of the application.
A cross-product operator expecting two arguments with 3-
vector cells could therefore be applied to a 2 × 4 × 3 array
(2 × 4 matrix frame) and a 2 × 3 array (2-vector frame), but
using the samematrix alongside a 4×3 array (4-vector frame)
as the second argument instead is not permitted. The scalar
shape (Shp) is a prefix of every shape, so a scalar frame is
of course compatible with anything.

Note the syntactic distinction between expressions (which
represent arrays and computations which produce them) and
atoms (the ur-elements which make up arrays). Constant
array literals, noted as array forms, specify their shape, and
constituent atoms, listed in “row major” order. The frame
notation serves a similar purpose for expressions, arranging
several array-expression cells (which must all have the same
shape) into some specified containing frame; the shape of
the resulting array is given by prefixing the shape of the
cells with the shape of the frame collecting them. Thus, a
frame whose cells are all literal arrays (with identical shape)
collapses to an array form by appending the frame and cell

e ∈ Expr ::= Expressions
x Variable reference

| (array (n...) a...) Array, containing atoms
| (frame (n...) e...) Frame of subarray cells
| (ef ea...) Term application
| (i-app ef ιa...) Index application

a ∈ Atom ::= Atoms
b Base value

| o Primitive operator
| (λ ((x τ)...) e) Term abstraction
| (Iλ ((x γ)...) v) Index abstraction

v ∈ Val ::= Array value forms
x

| (array (n...) a...)
τ ∈ Type ::= Types

B Base types
| (-> (τ...) τ) Functions
| (Pi ((x γ)...) τ) Dependent products
| (Arr ι τ) Arrays

ι ∈ Idx ::= Type indices
x Index variable

| n Natural number
| (Shp ι...) Shape
| (+ ι...) Adding naturals
| (++ ι...) Appending shapes

γ ∈ Sort ::= Index sorts
Dim Dimension: one natural
Shape Shape: sequence of naturals

Figure 1. Remora’s concrete syntax is s-expression based.

shapes and appending the cells’ atomic elements. However,
we can also have code of the form (frame (2) e1 e2), for
general expressions e1 and e2, without yet knowing what
values the two subexpressions will eventually produce—as
long as the type system guarantees us they have identical
shape. Once evaluation has proceeded far enough to reduce
them to concrete values, we have something like

(frame (2) (array (2 3) 1 2 3
4 5 6)

(array (2 3) 7 8 9
0 1 2))

This frame of array literals in turn becomes
(array (2 2 3) 1 2 3 4 5 6 7 8 9 0 1 2)

Type indices are separated into sorts: Dim for an individual
dimension and Shape for a (possibly empty) sequence of
dimensions. Individual dimensions can be added together,
and shapes can be appended to one another.
Remora also includes a bit of syntactic sugar for array

notation. In the surface syntax, a bare atom a appearing in
expression position means (array () a), the scalar array
whose sole element is a. A bracketed list [e1 . . . en] means
(frame (n) e1 . . . en). A frame form containing only values
collapses to an array literal containing those values’ atoms.
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Putting these rules together, a bracketed list of atoms [a...]
is a vector containing those atoms, and we can write a 2 × 3
literal matrix as

[[1 0 1]
[0 -1 1]]

Remora’s core control-flow mechanism is implicit rank
polymorphism. The semantics of function application con-
sider what input types are expected and how those types
must grow to match the actual arguments without asking
the programmer to write out calls to map and replicate
functions. The type system includes enough detail about
array shapes to ensure statically that arguments in a func-
tion application are compatible. The matrix above is typed
as (Arr (Shp 2 3) Int), where Arr is a type constructor
consuming a shape and an atom type (in this case, (Shp 2
3) and Int, respectively).
If we add this matrix to a vector of type (Arr (Shp 2)

Int), function application will automatically expand the
vector into a (Arr (Shp 2 3) Int) matrix by replicating
each scalar cell into a 3-vector. In this instance, replication
is performed on scalar cells because + is fundamentally a
scalar operator—its input type for each argument is (Arr
(Shp) Int). The arguments are compatible because the
smaller frame (Shp 2) is a prefix of the larger frame (Shp 2
3), which we denote as (Shp 2) ⊑ (Shp 2 3). However, if
we try to add this matrix to a vector of type (Arr (Shp 3)
Int), the program is rejected as ill-typed: neither (Shp 3) ⊑

(Shp 2 3) nor (Shp 2 3) ⊑ (Shp 3) holds, and expanding
the scalar cells to vectors will not produce a 2 × 3 matrix.
In the previous example, operating on scalar cells means

that an argument’s entire shape is used as its frame shape.
For the general case, where cells may not be scalars, we deter-
mine the arguments’ frame shapes by breaking off their cell
shapes from the right-hand side. That is, every argument’s
shape s is made up of f , the frame portion, appended to c ,
the cell portion: s = f ++ c . A 3-vector dot product function
can be written as

(define 3dot
(λ ((x (Arr (Shp 3) Int))

(y (Arr (Shp 3) Int)))
(reduce + (* x y))))

If we apply this 3dot function to our 2 × 3 matrix and
a 3-vector, then those arguments are compatible. While +
uses scalar cells, leaving us with incompatible argument
frames (Shp 2 3) and (Shp 3), 3dot uses vector cells, so
the argument frames are (Shp 2) and (Shp), with (Shp) ⊑

(Shp 2).
As another example, applying 3dot to a 5×4×3 array and

a 5 × 4 × 6 × 3 array will produce a 5 × 4 × 6 result array (re-
call: 3dot produces scalar output cells). This application will
apply the body of 3dot to corresponding pairs of argument
cells, but each cell in the first argument will be used 6 times

with different cells from the second argument since the left
frame must grow that much to match the right frame.

It may help the reader to illustrate the mechanics in terms
of specific locations and regions in the arrays. The cell repre-
senting positions [0,0,0] through [0,0,2] in the first argument—
call it the [0,0] cell—will be paired with each of the [0,0,0]
through [0,0,5] cells from the second argument to compute
the [0,0,0] through [0,0,5] cells of the result. Then the first
argument’s [0,1] cell is used with the [0,1,0] through [0,1,5]
cells of the second argument and so on. Our original formal
semantics [18] illustrates this process by explicitly replicat-
ing cells to produce an application form where everything
has the same frame. However, for purposes of demonstrating
the type-checking and type-inference problems, the essential
bit is the rules which determine which shapes are compatible.
The frame-lifting mechanic applies to the function posi-

tion in the same way as to the argument positions, with the
rule that the cell shape for the function position is always
scalar. A curried function can be applied to some large frame
of argument cells, producing an array of functions which
may then be used in function position in another application
form. Suppose we have c+, a curried addition function:

(define c+
(λ ((x (Arr (Shp) Int)))

(λ ((y (Arr (Shp) Int)))
(+ x y))))

If we apply c+ to the vector [1 2 3], we get a vector of unary
functions, which we note here as [(c+ 1) (c+ 2) (c+ 3)].
Any application of this vector gives it a frame shape of (Shp
3) and a cell shape of (Shp). If we apply it to a 3-vector of
integers, as in

([(c+ 1) (c+ 2) (c+ 3)] [10 20 30])

we split the function array into cells (c+ 1), (c+ 2), and
(c+ 3) and the argument array into cells 10, 20, and 30. Our
next step in evaluation is pointwise application, producing
a vector of application forms [((c+ 1) 10) ((c+ 2) 20)
((c+ 3) 30)], then stepping to [(+ 1 10) (+ 2 20) (+
3 30)], and finally resulting in the vector [11 22 33]. We
could also apply it to a matrix as in

((c+ [1 2 3]) [[10 20]
[30 40]
[50 60]])

or equivalently
([(c+ 1) (c+ 2) (c+ 3)] [[10 20]

[30 40]
[50 60]])

This application form has (Shp 3 2) as its principal frame,
and each function cell is applied to everything in the corre-
sponding row of the matrix, giving a final result of

[[11 21]
[32 42]
[53 63]]
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Permitting arrays of functions to appear in function position,
treated as having scalar cells, allows first-class functions
to integrate cleanly into the language, with curried func-
tions giving the same final result (once fully applied) as their
uncurried counterparts.

Recall our earlier matrix-vector addition example, where
we added a 2 × 3 matrix and a 2-vector, effectively treating
the second argument as a column vector. These frame shapes
were compatible, since (Shp 2) ⊑ (Shp 2 3), but we could
not add the 2× 3 matrix to a 3-vector. We might want to add
that 3-vector though, treating it as a row vector. In order
to add it to each row of our matrix, we need a version of
the + function whose expected input type is (Arr (Shp 3)
Int), i.e., one which consumes rank-1 cells instead of rank-0
cells. That will give us argument frames (Shp) and (Shp 2),
which are compatible. We can make this “reranked” + by
η-expansion:

(λ ((x (Arr (Shp 3) Int))
(y (Arr (Shp 3) Int)))

(+ x y))

The function body uses the ordinary +, which operates point-
wise on the scalar cells within x and y, producing a 3-vector
result. (Computation over aggregates is managed by means
of this “reranking” device so frequently in rank-polymorphic
languages that Remora, like APL and J, provides a conve-
niently terse syntactic sugar for doing so.)
A more general-purpose vector addition function should

work on vectors of any length. To do this, we need a depen-
dent product type (roughly, a function parameterized over
type indices rather than just terms). A dependent product is
introduced by the Iλ form:

(Iλ ((len Dim))
(λ ((x (Arr (Shp len) Int))

(y (Arr (Shp len) Int)))
(+ x y)))

Even without concrete shapes for x and y when they appear
in the function body, the type checker can still prove that
they must be vectors of the same length, which means that
the scalar operator + can lift over them. So this function
(which itself is an atom) can be given the type

(Pi ((len Dim))
(Arr (Shp)

(-> ((Arr (Shp len) Int)
(Arr (Shp len) Int))
(Arr (Shp len) Int))))

This type says that for any dimension len, we have (a scalar
array whose sole element is) a function operating on two
vectors whose length is len; furthermore, it produces a vec-
tor of the same length. As a minor aside, an Iλ term requires
an (array-producing) expression for its body, while we have
written a λ form, which is an atom. Desugaring turns the λ
form into an array containing the function atom.

Dependent products may also abstract over Shapes, such
as the append function whose type (when used on integer
arrays) is

(Pi ((l1 Dim)
(l2 Dim)
(c Shape))

(Arr (Shp)
(-> ((Arr (++ (Shp l1) c) Int)

(Arr (++ (Shp l2) c) Int))
(Arr (++ (Shp (+ l1 l2)) c) Int))))

This type says that we can stitch two arrays together along
their major axes as long as they agree as to the rest of their
shapes, and the length of the resulting major axis is as long
as the sum of the two arguments’ major axes.

3 Type Checking as Constraint Solving
Type checking a Remora program requires inspecting each
function call to ensure (1) that the function input type is
compatible with the arguments and (2) that the frame shapes
of the function and argument arrays are all prefixes of one
principal frame. The rule for compatibility between a formal
parameter’s cell shape and an actual argument’s shape is
that the parameter’s cell shape must be a suffix of the actual
shape. The rest of the actual shape is that argument’s frame.

As a simple case, consider
([+ -] [[10 20 30]

[40 50 60]]
2)

The [+ -] function array has type
(Arr (Shp 2)
(-> ((Arr (Shp) Int)

(Arr (Shp) Int))
(Arr (Shp) Int)))

and the arguments’ types are (Arr (Shp 2 3) Int) and
(Arr (Shp) Int). Since the function position in an appli-
cation form expects cells with scalar shape, it is clear that
condition 1 is satisfied. We have frame shapes (Shp 2),
(Shp 2 3), and (Shp). We resolve condition 2 by noting
that (Shp) ⊑ (Shp 2) ⊑ (Shp 2 3) So (Shp 2 3) is the
principal frame for this function application.
The inclusion of index variables, which may represent

shapes or individual dimensions, complicates type check-
ing. Even in a completely explicitly-typed language, where
abstraction over and application of types and indices are writ-
ten out in the program, we still have to determine shape com-
patibility and identify a principal frame for shapes that con-
tain variables. Fortunately, type checking rank-polymorphic
programs via shape-compatibility checking requires that two
shapes will be compatible regardless of what concrete shapes
and dimensions their variables might represent. Discovering
any opportunity for the expected shape to differ from actual
shape is grounds for rejecting the program as ill-typed.
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The formal theoretical underpinning of Remora’s type in-
dex language (i.e., the theory of lists of natural numbers built
up by concatenation) is the free monoid over N. A monoid
has an associative operation with an identity element. In
Remora, the shape-appending ++ serves as the operation,
with the scalar shape (Shp) as its identity. An algebraic
structure is called free if it has no equalities other than those
implied by its other axioms. The generators of an algebra are
the “primitive” elements from which every element can be
built using the algebra’s operations. For our purposes, natu-
ral numbers serve as generators, since no single dimension
can be decomposed into smaller non-scalar shapes. Remora’s
type system is built to leverage the existing corpus of work
on decision procedures for the theory of a free monoid.
The shape criteria for a function application can be ex-

pressed as a first-order formula in this theory. Given two
indices l and r , the prefix and suffix relations can be ex-
pressed by introducing a new existential variable c which
completes the prefix (or suffix) producing the larger index.
We write prefix(l , r ) as ∃c .l ++ c = r and a suffix(l , r ) as
∃c .c ++ l = r . Condition 1 is then a conjunction of suffix
assertions. For condition 2, we introduce another existential
variable p, representing the principal frame. We know that
it must be equal to one of the argument frames (a disjunc-
tion of equalities) and prefixed by all of them (a conjunction
of prefix assertions). All of these are wrapped in universal
quantifiers representing the index variables we have in the
environment when type checking this function application.

However, we can be a bit more clever about our use of deci-
sion procedures and limit actual queries to a form with only
universal quantifiers, for which the decision procedure is
trivial. The associativity of the free monoid operation allows
a canonical representation of shapes, provided we can deter-
mine equality for individual dimensions, which correspond
to the monoid’s generators. Of course, since the language
of individual dimensions is Presburger arithmetic, checking
whether an equality is valid is straightforward: ensure that
each variable has the same number of appearances on both
sides of the equality and that the constant component is also
the same on each side.

In addition to checking whether an equality is valid, com-
paring canonical representations also reveals the validity of
prefix and suffix assertions. The shape (++ c (Shp 4) d)
is definitely prefixed by (Shp), c, (++ c (Shp 4)), and (++
c (Shp 4) d), but the prefix assertion would be invalid for
any shape that does not share one of those canonical forms.
This makes it possible to separate the checks for the two
conditions. Check condition 1 on its own, and the completing
indices which witness the suffix relation are the function
and argument frame shapes. Then the witness for p, the prin-
cipal frame, can be constructed by a linear search through
the frames.

4 Type Inference as Constraint Solving
The decision problem becomes more complicated when we
set out to relieve the programmer of the task of writing out
index arguments. When we apply an index-polymorphic
function, we introduce a new existential variable for each
index argument we are trying to infer. These are in addition
to the universal variables corresponding to the contents of
the type-checking environment. We don’t have a way to turn
this into a series of queries in the easily decided universal
fragment of the theory of a free monoid. Instead, we present
here a way to construct solver queries by eliminating the
universal quantifiers. Doing so reduces the type inference
constraint problem to the existential fragment of the theory.
This fragment is decidable, though the complexity is greater
than that of the universal fragment.
The first step is to cast the task of selecting index argu-

ments which make a function’s input shapes ι... compatible
with known argument shapes κ... as a first-order logic for-
mula. Suppose we have a function onm index arguments
and n term arguments, whose type is of the form

(Pi ((e : γ) ...)
(-> ((Arr ι τ) ...)

τ ′))

andwe are applying it ton arguments whose respective types
are (Arr κ τ) .... This formula requires a conjunction of
the equalities (f ++ ι = κ) ..., each quantified with:

• An existential variable e for each index argument e of
the corresponding sort γ

• An existential variable f of sort Shape to represent
each argument’s term frame

• A universal variable a for each index variable already
bound at sort γ ′

The existential variables must be permitted to depend on the
universal variables. Then the shape compatibility formula is

∀a : γ ′... ∃e : γ..., f : Shape...
n∧
i=1

(fi ++ ιi = κi )

A solution for the existential variables e..., written in terms
of the universal variables a..., is the missing information
we need in order to elaborate a use of an index-polymorphic
function into a form with explicit index application.
We run into an interesting dilemma when a function is

polymorphic in cell rank, i.e., when a variable ranging over
Shape rather than Dim appears in the function’s argument
type. Such functions include reduce, append, and scan—an
array-oriented language without these functions is a non-
starter. In rank-polymorphic languages, such functions con-
ventionally operate along the major axis of each cell. Then
reranking the function to use smaller cells and lifting over
the resulting frame performs the operation along some other
axis. In Remora, these functions must take index arguments
which specify the cell shape. Using a constraint of the above
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form, we end up with multiple solutions. If we append two
matrices with the same shape (Shp 3 4), our frame and
cell shapes could be resolved as (Shp) and (Shp 3 4), or
as (Shp 3) and (Shp 4). The established convention can
be respected by assuming a scalar frame, i.e., including no
existential variable for the argument’s frame and treating it
as (Shp).
As a concrete example, consider a small function which

produces a matrix using arithmetic on some existing arrays
and then tacks on a padding row.

(Iλ ((r Dim)
(c Dim))

(λ ((vec (Arr (Shp r) Int))
(mat (Arr (Shp r c) Int))
(pad (Arr (Shp c) Int)))

(append (+ vec mat) [pad])))

Shape compatibility for the + application is simple because
both of +’s input types are scalars. We query the validity of

∀ r : Dim, c : Dim ∃ f0 : Shape, f1 : Shape, f2 : Shape
(f0 ++ (Shp) = (Shp))

∧(f1 ++ (Shp) = (Shp r))

∧(f2 ++ (Shp) = (Shp r c))

This gives us a scalar frame in function position and argu-
ment frames (Shp r) and (Shp r c). Themaximum of these,
(Shp r c), is the principal frame, which we set around +’s
scalar Int output cells to derive the result type (Arr (Shp
r c) Int).
The array [pad] is a singleton vector whose sole item is

the vector pad, which makes its full shape (Shp 1 c). This is
the extra bit we will tack on to the matrix produced by +. We
must instantiate append’s index arguments m, n, and s; they
are respectively the lengths of the two arguments’ leading
axes and the shape of their elements when viewed as vectors.
If viewing them as vectors gives them elements of differing
shape, we cannot safely append them, and the program is
therefore ill-typed. Following the major-axis convention,
we do not need existentials for the argument frame shapes,
though we do still have an existential f0 for the function
frame (which will only be resolvable as (Shp)). Our shape-
compatibility constraint is

∀ r : Dim, c : Dim ∃ f0 : Shape, m : Dim, n : Dim, s : Shape
(f0 ++ (Shp) = (Shp))

∧((Shp m) ++ s = (Shp r c))

∧((Shp n) ++ s = (Shp 1 c))

The solution is f0 = (Shp), m = r, n = 1, and s = c. Elabo-
rating the function to use explicit index application gives

(Iλ ((r Dim)
(c Dim))

(λ ((vec (Arr (Shp r) Int))
(mat (Arr (Shp r c) Int))
(pad (Arr (Shp c) Int)))

((i-app append r 1 c)
(+ vec mat) [pad])))

Note that polymorphism over the frame rank is still implicit,
so the solution for the frame variables is not written out in
the elaborated code.

5 Decidability of Inference Constraints
Unfortunately, the full first-order theory of equality in a
free monoid is undecidable. Any endeavor to use decision
procedures for constraint solving in an undecidable theory
must first carve out a fragment of the theory that is large
enough to express useful constraints but small enough to
be decidable. In the free monoid theory, we are safe as long
as we use only one type of quantifier—both the ∀∗ and ∃∗

fragments of the theory are decidable, whereas the ∃∗∀∗ and
∀∗∃∗ fragments are not. Moreover, checking validity of an
equation in the ∀∗ fragment is much simpler than in the ∃∗

fragment. This is why we are careful in type checking to
use universal-only constraints and then build frame-shape
witnesses ourselves rather than the conceptually simpler
strategy of throwing the mixed-prefix formula over the wall
to a solver. This is enabled in part by separating the check
for argument-shape compatibility from the search for the
maximum frame. In the inference case, even if we don’t
existentially quantify frame shapes, we can’t avoid using
existential variables for the index arguments. Since there
must be existential quantifiers in our constraint, we work at
eliminating the universal quantifiers instead.

The general strategy for solving an existentially-quantified
equation involves considering which segments of the left-
hand side could correspond to which segments of the right-
hand side. For example, suppose we are trying to equate
these two shapes:

(++ c (Shp 5) d (Shp 5) d)
(++ d (Shp 5) (Shp 2) d e)

We might first try to make the (++ d (Shp 5)) from the
first shape cover the (++ (Shp 2) d) segment from the sec-
ond, or we might conjecture that the (++ c (Shp 5)) from
the first is contained within the leftmost d from the second.
Makanin’s decision procedure [12] constructs a “general-
ized equation” for each possible alignment of the boundaries
between components of the equated terms. A generalized
equation encodes alignment-based restrictions, which pares
down the solution space. A key feature of this algorithm
which we can leverage is that boundaries can only appear
inside an existential, not inside a generator. This is the same
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treatment we must give to universal variables in an equa-
tion when solving for its existential variables. If a universal
variable is only partially covered by existentials, then some
possible assignment for that universal makes the equation
false. So we plan to translate our ∀∗∃∗-quantified equation
into a formula with only existential quantifiers by treating
the universal variables as additional generators.
This plan of attack is applicable to type checking as well

as type inference, allowing shape compatibility and principal
frame to be checked in a single constraint query. However,
we avoid doing so for type checking because it invokes a
decision procedure that is much more expensive than nec-
essary. The decision problem for equality in the existential
fragment of the free monoid theory is NP-hard, since it is
trivial to embed Presburger arithmetic—N with addition is
the free monoid on one generator. By comparison, equality
in the universal fragment is decidable in linear time by col-
lapsing nested ++ terms according to associativity (though if
we have only one generator, the monoid is commutative, so
we must also count uses of each variable).

6 Related Work
The restricted form of dependent typing used in Remora
was developed by Xi in Dependent ML [20]. Xi’s work on
programming with arrays focused on bounds checking on
accesses to individual vector elements [21], with an index
language based on Presburger arithmetic and constraint gen-
eration that takes advantage of the decidability of formu-
las even with arbitrarily nested alternating quantifiers. The
rank-polymorphic programming model de-emphasizes op-
erations on single elements, calling for an index language
which describes whole array shapes rather than just individ-
ual dimensions.
Iverson designed the programming language APL [8],

which is the original rank-polymorphic programming lan-
guage. A series of design iterations, making the function-
lifting rules more and more general, led eventually to its
successor J [10]. In J, first-order functions may lift over two
arguments, as long as either one’s frame shape is a prefix
of the other. The emphasis on regular, parallelizable con-
trol structure offers great performance opportunities, but
these languages were implemented as sequential interpreters.
The missed opportunities have encouraged several projects
aimed at compiling APL code, such as that of Budd [2]. Ber-
necky’s thesis [1] describes a compiler targeting the SISAL
language [14] and motivates the effort with an analysis of
interpretive overhead in real-world APL code. Grelck and
Scholz [6] demonstrate the performance gains available from
translating partially rank-specialized versions of APL func-
tions into Single Assignment C [17]. Elsman and Dybdal [5]
devise an intermediate representation for array programs
which uses a type system to describe array shapes.

Several aspects of APL proper make static compilation
difficult but are not essential to the rank-polymorphic array
programming model. While compilation efforts have chosen
to work on particular subsets of APL, several other related
projects take a more clean-slate approach by building new
languages to compile, generally with some combination of
explicit function lifting and less detailed types. Jay’s FISh
[9] uses a static shape judgment to ensure that functions are
compatible with their arguments. A procedure’s behavior is
described using a procedure which operates on shapes; an
unacceptably-shaped argument must be detected by execut-
ing the shape procedure and determining that it returns an
error. Array computation on GPUs is the target of Acceler-
ate [3], a language embedded within Haskell, and Futhark
[7], a standalone language. Aiming specifically to preserve
implicit lifting, Thatte developed a system of type-directed
coercions in an ML-like language [19], which automatically
constructs the map and related calls to handle a subset of
Iverson’s lifting rules.
The satisfiability of equations in a free monoid was first

proven decidable by Makanin [12], and the complexity was
shown by Plandowski to be in PSPACE [16]. Karhumäki et al.
extended the decidability result to satisfiability of boolean
formulas over free monoid equations [11]. It has also been
proven that the ∀∗∃∗ fragment of the theory of a free monoid
is undecidable, with Durnev showing undecidability for even
∀1∃3 without negation [4]. Past work has typically treated
monoid generators as opaque objects, but integrating with
linear arithmetic on natural numbers might make use of
Nelson-Oppen combination [15] or Manolios and Papavasi-
leiou’s framework for ILP modulo theories [13].

7 Conclusion
Our overarching goal is to address the historic difficulty in
statically analyzing the shape-driven control structure of
rank-polymorphic programs. Introducing a type discipline
which is flexible enough to accommodate implicit lifting,
even in the presence of high arity and first-class functions,
was a first step. Since array processing functions may come
with detailed conditions on the input shapes they accept, the
rest of the analysis task is to find witnesses for arguments’
compliance with functions’ input requirements. Specifically,
we must find these witnesses without simply telling the
programmer to identify them. Removing the requirement
for map and replicate calls, serving as use-specific adapter
code, is a disappointing payoff if the cost turns out to be de-
tailed, hand-written instantiations of cell-shape components
for every call to a shape-polymorphic function.
Now the course is plotted. In order to statically identify

the control structure of rank-polymorphic code without re-
quiring the programmer to spell out all the ugly details, we
need mechanized processes for generating and then solving
constraints of the form described in Section 4. We are now
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confident that the constraints can be solved by reduction to a
decidable fragment of the theory of a free monoid. Feedback
from the community on this plan is welcome.
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