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Context: Transaction Level Models

most precise

fastest

TLM

RTL

Early simulation of 
the embedded 
software

Golden model for 
RTL validation

System-on-a-Chip 
(SoC) synthesis
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Context: SystemC, a C++ Library
...
unsigned x;
sc_event e;
SC_HAS_PROCESS(top);
top(sc_module_name name):
      sc_module(name) {
  SC_THREAD(P);
  SC_THREAD(Q);
}
void top::P() {
  wait(e);
  ...

Elaboration phase, non-premptive scheduling, 
simulated time.

BUS

P Q
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Example of Scheduling 
Dependencies

  void top::P() {
    wait(e);
    wait(20);
    if (x) cout << "Ok\n";
    else cout << "Ko\n";}

  void top::Q() {
    e.notify();
    x = 0;
    wait(20);
    x = 1;}

3 possible schedulings:  (TE=Time Elapse)

P1;Q1;P2;[TE];Q2;P3: Ok      
default OSCI scheduler choice, if P declared before Q and if ...

P1;Q1;P2;[TE];P3;Q2: Ko

Q1;P1;[TE];Q2: “dead-lock”

P1
P2

P3

Q1

Q2
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The Coverage Problem

Even if data is fixed

The SystemC LRM allows many schedulings

Some implementations are not deterministic

For the validation of SoC models:

1 execution => very poor coverage

Random schedulings  => uncertain coverage, 
lots of useless executions

Test with all possible schedulings => unrealistic

Our goal: test only executions that may lead 
to different final states
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Outline

TLM, SystemC and the Coverage Problem

Principle of the Technique Applied

Implementation and Results

Conclusion



7

Principle of the Approach

Data is fixed; we generate schedulings

MULTI-THREAD
SYSTEM

DATA

Scheduling

Use of Dynamic Partial Order Reductions
(presented by C.Flanagan, P.Godefroid
                  at POPL'05)
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Cyclic Generation

Checker

Program.exe
+data

Execution
trace

(0..n)

Test
directives
for new

executions

Checked trace (~ partial order)
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Checker: Observing Traces

Goal:
Guess if transitions are dependent by

observation of their behavior

q: e.notify()p: wait(e)

p =?
q

exists ?

p q
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Checker: Action Dependencies

Independent <=> order is irrelevant

Dependency cases for SystemC:

Variables (or memory locations):

Two write (T[12]=1 and T[12]=2)

One write and one read (x=1 and f(x))

Events:

One notify and one wait

In some cases: two notify            
(consequences on the computed partial order)



11

Checker:
Dynamic Dependency Graph

e x
p1 p2 p3

q1 q2

e

t=20t=0

time

P

Q

Execution Trace:

Green arrows: dependent but not permutable
Red arrows: dependent and permutable

p1: wait(e) q1: notify(e), modify(x) p2: enabled by q1

[Time Elapse] q2: modify(x) p3: read(x)

Dynamic Dependency Graph:
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Checker:
Scheduling Constraint

Generation of 1 new test directive
for each red arrows

e x

p1 p2 p3

q1 q2

e

t=20t=0

time

P

Q

P1<Q1 Q2<P3

pi<qj: i-th execution of process p before
           j-th execution of process q
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Cyclic Generation with 
Scheduling Constraints

P1
Q1
P2

P3
Q2

{Q1 > P1,
P3 > Q2}

Checker

Program.exe

TRACE
Transition|Actions

wait(e)

modify(x)

notify(e), modify(x)

read(x)

{Q1 > P1}

TE
enabled by Q1

One new
constraint set

Set of inherited constraints
(from previous checking)

{Q1 > P1}
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Property Guaranteed
by this Method

A: Set of all possible executions (for one data)

G: Set of generated executions (for the same data)

Property: For all a in A, there exists g in G 
that differs only by the order of independent 
transitions.

Consequences on coverage:

Full code accessibility for each process

All Dead-locks found
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Proof Hint: Constraint Trees

Define a function f from A to G

a and f(a) differ only by the order of 
independent transitions.

p1<q2

q2<p1

q3<r1

r1<q3

r1<q3

q3<r1

q1p1q2q3r1

p1q1r1q2q3

q1q2r1p1q3
q1q2p1q3r1

leafs = simulated schedulings

a=r1qq2q3p1∈A

=f(a)

root
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Outline

TLM, SystemC and the Coverage Problem

Principle of the Technique Applied

Implementation and Results

Conclusion & Demo
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The Tool Chain

kernel
checker

patched
SystemC

new

GS

constraints

trace
checked

raw trace
model

analyzer
Pinapa

SystemC

model
intrumented
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Industrial Case Study: LCMPEG

Part of a Set-Top Box, from STM

5 components, runs of 150 transitions, with 
long sections of sequential code (~50klines)    
 

32 generated schedulings (=card(G)), 13 sec

9.5 sec for the 32 simulations / 3.5 sec of 
overhead (time spent in checker)

At least 2^40 possible schedulings (=card(A))
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Extension:
Validation of SoC models in the 

presence of loose timings

New instruction: lwait(42±12) for 
representing unprecise timings

basic implementation: random in [30,54]

better: DPOR + Linear Programming

Results : LCMPEG with delays ± 20% => 
3584 simulations, 35 min 11 sec.

Presented at FMICS'06
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Conclusion

Already works on medium-sized industrial case 
studies

Should work on larger case studies with some 
improvements

Well adapted to abstract TLM models which are 
asynchronous

Light tool: no explicit extraction of an abstract 
formal model, no state comparison, ...
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Further Works

Validation of SoC models in the presence of 
loose timings (presented at FMICS'06)

Possible optimizations:

higher level synchronization mechanisms 
(persistent events)

remove useless branches of constraint trees

parallelization of the prototype

Parallelization of the SystemC engine (based 
on dependency analysis too)
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Thank you for your attention.
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Persistent Events

Process A: v = 1; e.notify();

Process B: if (!v) wait(e); v = 0;

Consequence: useless simulations

Solution: 

new class pevent with methods wait, notify 
and reset

extending dependency analysis

Result: from 128 to 32 generated 
schedulings for the LCMPEG


