
1

Automatic Generation of Schedulings
for Improving the Test Coverage of

Systems-on-a-Chip

Claude Helmstetter
and Florence Maraninchi

and Laurent Maillet-Contoz
and Matthieu Moy

Verimag &
ST Microelectronics

FMCAD'06

2

Context: Transaction Level Models

most precise

fastest

TLM

RTL

Early simulation of
the embedded
software

Golden model for
RTL validation

System-on-a-Chip
(SoC) synthesis

3

Context: SystemC, a C++ Library
...
unsigned x;
sc_event e;
SC_HAS_PROCESS(top);
top(sc_module_name name):
 sc_module(name) {
 SC_THREAD(P);
 SC_THREAD(Q);
}
void top::P() {
 wait(e);
 ...

Elaboration phase, non-premptive scheduling,
simulated time.

BUS

P Q

4

Example of Scheduling
Dependencies

 void top::P() {
 wait(e);
 wait(20);
 if (x) cout << "Ok\n";
 else cout << "Ko\n";}

 void top::Q() {
 e.notify();
 x = 0;
 wait(20);
 x = 1;}

3 possible schedulings: (TE=Time Elapse)

P1;Q1;P2;[TE];Q2;P3: Ok
default OSCI scheduler choice, if P declared before Q and if ...

P1;Q1;P2;[TE];P3;Q2: Ko

Q1;P1;[TE];Q2: “dead-lock”

P1
P2

P3

Q1

Q2

5

The Coverage Problem

Even if data is fixed

The SystemC LRM allows many schedulings

Some implementations are not deterministic

For the validation of SoC models:

1 execution => very poor coverage

Random schedulings => uncertain coverage,
lots of useless executions

Test with all possible schedulings => unrealistic

Our goal: test only executions that may lead
to different final states

6

Outline

TLM, SystemC and the Coverage Problem

Principle of the Technique Applied

Implementation and Results

Conclusion

7

Principle of the Approach

Data is fixed; we generate schedulings

MULTI-THREAD
SYSTEM

DATA

Scheduling

Use of Dynamic Partial Order Reductions
(presented by C.Flanagan, P.Godefroid
 at POPL'05)

8

Cyclic Generation

Checker

Program.exe
+data

Execution
trace

(0..n)

Test
directives
for new

executions

Checked trace (~ partial order)

9

Checker: Observing Traces

Goal:
Guess if transitions are dependent by

observation of their behavior

q: e.notify()p: wait(e)

p =?
q

exists ?

p q

10

Checker: Action Dependencies

Independent <=> order is irrelevant

Dependency cases for SystemC:

Variables (or memory locations):

Two write (T[12]=1 and T[12]=2)

One write and one read (x=1 and f(x))

Events:

One notify and one wait

In some cases: two notify
(consequences on the computed partial order)

11

Checker:
Dynamic Dependency Graph

e x
p1 p2 p3

q1 q2

e

t=20t=0

time

P

Q

Execution Trace:

Green arrows: dependent but not permutable
Red arrows: dependent and permutable

p1: wait(e) q1: notify(e), modify(x) p2: enabled by q1

[Time Elapse] q2: modify(x) p3: read(x)

Dynamic Dependency Graph:

12

Checker:
Scheduling Constraint

Generation of 1 new test directive
for each red arrows

e x

p1 p2 p3

q1 q2

e

t=20t=0

time

P

Q

P1<Q1 Q2<P3

pi<qj: i-th execution of process p before
 j-th execution of process q

13

Cyclic Generation with
Scheduling Constraints

P1
Q1
P2

P3
Q2

{Q1 > P1,
P3 > Q2}

Checker

Program.exe

TRACE
Transition|Actions

wait(e)

modify(x)

notify(e), modify(x)

read(x)

{Q1 > P1}

TE
enabled by Q1

One new
constraint set

Set of inherited constraints
(from previous checking)

{Q1 > P1}

14

Property Guaranteed
by this Method

A: Set of all possible executions (for one data)

G: Set of generated executions (for the same data)

Property: For all a in A, there exists g in G
that differs only by the order of independent
transitions.

Consequences on coverage:

Full code accessibility for each process

All Dead-locks found

15

Proof Hint: Constraint Trees

Define a function f from A to G

a and f(a) differ only by the order of
independent transitions.

p1<q2

q2<p1

q3<r1

r1<q3

r1<q3

q3<r1

q1p1q2q3r1

p1q1r1q2q3

q1q2r1p1q3
q1q2p1q3r1

leafs = simulated schedulings

a=r1qq2q3p1∈A

=f(a)

root

16

Outline

TLM, SystemC and the Coverage Problem

Principle of the Technique Applied

Implementation and Results

Conclusion & Demo

17

The Tool Chain

kernel
checker

patched
SystemC

new

GS

constraints

trace
checked

raw trace
model

analyzer
Pinapa

SystemC

model
intrumented

18

Industrial Case Study: LCMPEG

Part of a Set-Top Box, from STM

5 components, runs of 150 transitions, with
long sections of sequential code (~50klines)

32 generated schedulings (=card(G)), 13 sec

9.5 sec for the 32 simulations / 3.5 sec of
overhead (time spent in checker)

At least 2^40 possible schedulings (=card(A))

19

Extension:
Validation of SoC models in the

presence of loose timings

New instruction: lwait(42±12) for
representing unprecise timings

basic implementation: random in [30,54]

better: DPOR + Linear Programming

Results : LCMPEG with delays ± 20% =>
3584 simulations, 35 min 11 sec.

Presented at FMICS'06

20

Conclusion

Already works on medium-sized industrial case
studies

Should work on larger case studies with some
improvements

Well adapted to abstract TLM models which are
asynchronous

Light tool: no explicit extraction of an abstract
formal model, no state comparison, ...

21

Further Works

Validation of SoC models in the presence of
loose timings (presented at FMICS'06)

Possible optimizations:

higher level synchronization mechanisms
(persistent events)

remove useless branches of constraint trees

parallelization of the prototype

Parallelization of the SystemC engine (based
on dependency analysis too)

22

Thank you for your attention.

23

Persistent Events

Process A: v = 1; e.notify();

Process B: if (!v) wait(e); v = 0;

Consequence: useless simulations

Solution:

new class pevent with methods wait, notify
and reset

extending dependency analysis

Result: from 128 to 32 generated
schedulings for the LCMPEG

