A_{TM} is Undecidable

• A_{TM} = \{<M,w>: M is a TM that accepts w\}

• Theorem: A_{TM} is Undecidable

• Proof: Suppose there exists a TM H that decides A_{TM}. Then, for any input <M,w>, H accepts if M accepts w and rejects otherwise.

• Derive contradiction using diagonalization
Diagonalization!

Table

<table>
<thead>
<tr>
<th>H</th>
<th><M1></th>
<th><M2></th>
<th><M3></th>
<th><M4></th>
<th><M5></th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>acc</td>
<td>rej</td>
<td>acc</td>
<td>acc</td>
<td>rej</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>acc</td>
<td>acc</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
<td>rej</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>rej</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
<td>acc</td>
<td>acc</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

H accepts \{<M, <M>> : M accepts <M>\}
Diagonalization!

<table>
<thead>
<tr>
<th></th>
<th><M1></th>
<th><M2></th>
<th><M3></th>
<th><M4></th>
<th><M5></th>
<th></th>
<th><D></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>acc</td>
<td>rej</td>
<td>acc</td>
<td>acc</td>
<td>rej</td>
<td></td>
<td>rej</td>
</tr>
<tr>
<td>M2</td>
<td>acc</td>
<td>acc</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
<td></td>
<td>rej</td>
</tr>
<tr>
<td>M3</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
<td>rej</td>
<td></td>
<td>rej</td>
</tr>
<tr>
<td>M4</td>
<td>rej</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
<td></td>
<td>rej</td>
</tr>
<tr>
<td>M5</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
<td>acc</td>
<td>acc</td>
<td></td>
<td>acc</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>rej</td>
<td>rej</td>
<td>acc</td>
<td>acc</td>
<td>rej</td>
<td></td>
<td>???</td>
</tr>
</tbody>
</table>

H accepts \{<M, <M>> : M accepts <M>\}
Diagonalization: Let \(D\) be a TM that negates diagonal
\(D\) is a TM: Call \(H\) on <M, <M>> and negate, so on list
But \(D\) is different, by construction, from all \(M_i\). ↳
Theorem: A_{TM} is Undecidable. ($A_{TM} = \{<M,w>: M \text{ is a TM that accepts } w\}$)

Proof: Suppose there exists a TM H that decides A_{TM}. Then, for any input $<M,w>$, H accepts if M accepts w and rejects otherwise.

Consider a TM D that takes an input $<M>$, the description of M, and takes the following steps.

- Run H on $<M,<M>$
- If H accepts, reject
- If H rejects, accept

Since H is a decider, D is also a decider.

D on $<D> = \text{accept}$

iff \(\text{def. } D \) \(H <D, <D>> = \text{reject}\)

iff \(\text{def. } H \) \(D \text{ on } <D> = \text{reject}\) (Go both directions!) \(\forall\)
Reducibility

- We showed the undecidability of HALT_TM by reducing A_{TM} to HALT_TM
- We write $A_{\text{TM}} \leq_{\text{M}} \text{HALT}_\text{TM}$
- This is read as “A_{TM} is mapping reducible to HALT_TM”
- If $A \leq_{\text{M}} B$ that means there is a *computable* function $f: \Sigma^* \rightarrow \Sigma^*$ s.t. for all w
 - $w \in A$ iff $f(w) \in B$
 - f is a *reduction* from A to B
- A function is computable if some TM, on every input w halts with $f(w)$ on tape
Reducibility

- Theorem: If $A \leq_m B$ and B is decidable, then A is decidable
 - Proof: Let M be a decider for B and f the reduction from A to B. Here is a decider, N, for A
 - Given w, compute $f(w)$
 - Run M on $f(w)$, returning same output
 - Why doesn’t the other direction work?
- Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable. Proof?
 - Our proof of undecidability of HALT_{TM} was essentially based on this corollary.
- Mapping reducibility version: f is defined by TM F: On input $<M,w>$
 - Construct M': Given x: Run M on x. If M accepts, accept else loop
 - Output $<M',w>$
 - Note: $<M, w> \in A_{TM}$ iff $f(<M,w>) (= <M',w>) \in \text{HALT}_{TM}$
- Theorem: If $A \leq_m B$ and B is R.E., then A is R.E. (Same proof as above)
- Corollary: If $A \leq_m B$ and A is not R.E., then B is not R.E.
Rice’s Theorem

- P is undecidable if it is a language consisting of TM descriptions s.t.
 - P is nontrivial: \(P \neq \emptyset \) & P does not include all TM descriptions
 - If \(L(M_1) = L(M_2) \) then \(<M_1> \in P \iff <M_2> \in P\)
- Proof: By a reduction from \(A_{TM} \), i.e., we show \(A_{TM} \leq_M P \)
- Let \(E \) be a TM s.t. \(L(E) = \emptyset \). Assume \(<E> \notin P \) (\(A_{TM} \leq_M \neg P \) works also)
- Note: there exists TM \(T \) s.t. \(<T> \in P\)
- \(f(<M, w>) = TM \ M_w \): On input \(x \), simulate \(M \) on \(w \). If \(M \) accepts, simulate \(T \) on \(x \).
- \(f \) is a mapping reduction
 - \(<M, w> \in A_{TM} \Rightarrow L(<M_w>) = L(T) \Rightarrow <M_w> \in P\)
 - \(<M, w> \notin A_{TM} \Rightarrow L(<M_w>) = L(E) \Rightarrow <M_w> \notin P\)
- \{\(<M>: M \text{ always halts}\}, \{\(<M>: L(M) = \Sigma^*\}, \ldots \text{ all undecidable by Rice’s Theorem}\)
Halting Problem

• $\text{HALT}_{TM} = \{<M, w>: M \text{ halts on } w\}$

• Theorem: HALT_{TM} is undecidable.

• Proof: We show that if HALT_{TM} is decidable, then so is A_{TM}.

• Preview of reduction: We reduce from A_{TM} to HALT_{TM} ($A_{TM} \leq_M \text{HALT}_{TM}$).

• Suppose H is the decider for HALT_{TM}. Then define a decider A for A_{TM} as follows. On input $<M, w>$, A calls H on input $<M, w>$. If H accepts, then A runs M on w and accepts if M accepts w, rejecting otherwise. If H rejects, then A rejects.

• Consider $<M,w>$ in A_{TM}. Since M accepts w, M halts on w. So H accepts $<M, w>$. A calls H, which accepts, and then runs M on w, which accepts, so A accepts.

• Consider $<M,w>$ not in A_{TM}. If M does not halt on w, H rejects $<M, w>$, and so does A. Otherwise, M halts on w and rejects w. So A calls H, which accepts $<M, w>$. A then calls M on w, which terminates in a reject state, so A rejects.
E_{TM} is undecidable

- $E_{TM} = \{ <M> | L(M) = \emptyset \}$ is undecidable
- Proof: Suppose it is decidable. Let R be a TM deciding it.
- Define S, a decider for A_{TM}: On input $<M,w>$
 - Construct Machine M_1: if input $\neq w$, reject else run M on w
 - Note: language of M_1 is either \emptyset or $\{w\}$
 - Runs R on $<M_1>$
 - If R accepts, reject; if R rejects, accept
- S is a decider for A_{TM}
- Note: S has to construct M_1: add extra states to check input $= w$
- Reduction: f takes $<M,w>$ and produces $<M_1>$. M accepts w iff $L(M_1) \neq \emptyset$, so we showed
 - $A_{TM} \leq_M \neg E_{TM}$
 - which implies E_{TM} is not decidable (decidability is not affected by complementation)
EQ\textsubscript{TM} is undecidable

- EQ\textsubscript{TM} = \{ <M, N> \mid L(M) = L(N) \} is undecidable

- Proof: E\textsubscript{TM} is just a special case where L(N) = \emptyset. So, show E\textsubscript{TM} \leq\textsubscript{M} EQ\textsubscript{TM}. Let R be a TM deciding EQ\textsubscript{TM}.

- Define S, a decider for E\textsubscript{TM}: On input <M>
 - Runs R on <M, N> where N is a TM that rejects all inputs
 - If R accepts, accept; if R rejects, reject

- S is a decider for A\textsubscript{TM}

- Reduction: f takes <M> and produces <M, N> where N is a TM that always rejects. L(M)=\emptyset iff L(M)=L(N) (where L(N) = \emptyset)
EQ_{TM} is not R.E.

- EQ_{TM} = \{ <M, N> | L(M) = L(N) \} is not R.E.

- Recall the corollary: If A \leq_M B and A is not R.E., then B is not R.E.

- But A \leq_M B iff \neg A \leq_M \neg B so to show B is not R.E. we can instead show A_{TM} \leq_M \neg B

- Plan: Show A_{TM} \leq_M \neg EQ_{TM}

- Proof: F = Given <M, w> (1) construct M_1: always reject and M_2: Run M on w (2) Output <M_1, M_2>

 - If M accepts w, M_2 accepts everything, so M_1, M_2 are not equivalent

 - If M doesn’t accept w, M_2 accepts nothing, so M_1, M_2 are equivalent
¬EQ_{TM} is not R.E.

• ¬EQ_{TM} = \{ <M, N> | L(M) \neq L(N) \} is not R.E.

• Plan: Show A_{TM} \leq_{M} EQ_{TM}

• Proof: G = Given <M, w> (1) construct M_1: always accept and M_2: Run M on w (2) Output <M_1, M_2>

 • If M accepts w, M_2 accepts everything, so M_1, M_2 are equivalent
 • If M doesn’t accept w, M_2 accepts nothing, so M_1, M_2 are not equivalent

• We showed that neither of EQ_{TM}, ¬EQ_{TM} are R.E. so EQ_{TM} is neither R.E. nor co-R.E.!
REGULAR\textsubscript{TM} is undecidable

- $\text{REGULAR}_{\text{TM}} = \{ <M> \mid L(M) \text{ is a regular language} \}$

- Plan: $A_{\text{TM}} \leq_{M} E\text{Q}_{\text{TM}}$

- Proof: Let R be a TM that decides $\text{REGULAR}_{\text{TM}}$ and construct S, which decides A_{TM} as follows

 - S: Given $<M,w>$
 - (1) Construct N: On input x: If $x \in 0^n1^n$, accept, otherwise run M on w
 - (2) Run R on $<N>$
 - (3) If R accepts, accept, else reject.

 - If M accepts w, N accepts everything, so N is regular
 - If M doesn’t accept w, N accepts $\{x \in 0^n1^n\}$ so N is not regular