Theorem: For any language A, there exists a language B, s.t. $A \leq_T B$ and $B \not\leq_T A$

First, notice $A \leq_T A$, so finding B s.t. $B \not\leq_T A$ is the interesting part

$B \not\leq_T A$ means B is harder than A: even with an oracle for A, we can’t decide B

Special case: suppose A is decidable, then any undecidable language works, say A_{TM}

Generalize: $T_A = \{ M : M$ is a Turing machine with access to an A-oracle $\}$

$A_{TM}^A = \{ <M, w> : M \in T_A$ and M accepts $w \}$

Show $A \leq_T A_{TM}^A$ (easy: $w \in A$ iff $<N, w> \in A_{TM}^A$, where N is a TM for A)

and $A_{TM}^A \not\leq_T A$ (by diagonalization, just like we showed A_{TM} undecidable)
A^A_{TM} is Undecidable

- Theorem: A^A_{TM} is undecidable (relative to A).

- Recall: $A^A_{TM} = \{ \langle M, w \rangle : M \in T_A \text{ and } M \text{ accepts } w \}$

- Proof: Suppose there exists a TM H that decides A^A_{TM} relative to A. Then, for any input $<M, w>$, where $M \in T_A$, H accepts if M accepts w and rejects otherwise.

- Consider a TM D that takes an input $<M>$, the description of M, and takes the following steps.
 - Run H on $<M, <M>>$
 - If H accepts, reject
 - If H rejects, accept

- Since H is a decider, D is also a decider.

- D on $<D> = \text{accept}$

 iff {def. D} H $<D, <D>> = \text{reject}$

 iff {def. H} D on $<D> = \text{reject}$ (Go both directions!)