# Decidability and Undecidability 

2/17/2016<br>Pete Manolios<br>Theory of Computation

## Models of Computation



- Regular: finite state machine
- CF: + stack
- Turing machine: + infinite tape
- Decidable (recursive): yes/no
- Recognizable (r.e.): yes


## Decidability

- We will use Church-Turing thesis
- What that means is we'll describe and think about algorithms just like you did in algorithms class
- Because using TMs is really tedious and painful
- Because we "know" that TMs = pseudo code


## Decidability



- $D$ is a DFA that accepts w
- $N$ is an NFA that accepts w
- $D$ is a DFA that accepts a non-empty language
- $A, B$ are DFAs and $L(A)=L(B)$
- $C$ is a CFL that accepts w
- C is a CFL that accepts a non-empty language
- But, $A, B$ are CFLs and $L(A)=L(B)$ not decidable
- When the model of comp increases in power
- Your ability to analyze it decreases


## Undecidability

- Limits of what can be done with a computer
- Of broad intellectual, philosophical interest
- Can humans solve problems TMs can't?
- Turing test: can machines behave like humans?
- Can machines have consciousness?


BEFORE THIS GOES ANY FURTHER, I THINK WE SHOULD GOGET TESTED. YOUKNOW, TOGETHER.
(YOU DON' TRUST ME? I JUST WANT TO BE 4
SURE.

http://imgs.xkcd.com/comics/suspicion.png

## Counting Infinities

- $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is injective or one-to-one if it $\mathrm{a} \neq \mathrm{b} \Rightarrow \mathrm{f}(\mathrm{a}) \neq \mathrm{f}(\mathrm{b})$
- $f: A \rightarrow B$ is surjective or onto if it $u_{a \in A}\{f(a)\}=B$
- $f$ is bijective or a correspondence if it is both injective and surjective
- If $f: A \rightarrow B$ is bijective then each element of $A$ maps to a unique element of $B$ and conversely
- Given $A, B$ if $\exists$ a bijection $f: A \rightarrow B$ then $|A|=|B|$ : they have the same size
- This makes intuitive sense for finite sets, but has non-intuitive consequences for infinite sets
- $|\{a, b, c, d\}|=|\{1,21,3,2\}|=|\{d, a, f, b, d, a\}|=4$
- $|\mathbb{N}|=?|\mathbb{N} \backslash\{0,1,2\}|$
- $|\mathbb{N}|=\mid\{n \in \mathbb{N}: n$ is even $\}|=|\mathbb{Z}|=|\mathbb{Q}|=\omega$

| N | $: 0,1,2,3,4, \ldots$ |
| :--- | :--- |
| $\mathrm{~N} \backslash\{0,1,2\}$ | $: 3,4,5,6,7, \ldots$ |
| $\mathbb{Z}$ | $: 0,1,-1,2,-2, \ldots$ |

- If $|\mathrm{A}| \leq \omega$ it is countable. $\omega$ is the first infinite ordinal number.


## Theorem: $|\mathbb{Q}|=\omega$

Have to enumerate the rationals. Here's how:

Note: no duplicates


Theorem: A countable union of countable sets is countable!

## 

- $\mathbb{R}$ is uncountable: infinite and no bijection between $\mathbb{R}$ and $\omega$
- Clearly $|\mathbb{R}| \geq \omega$. We show $|\mathbb{R}| \neq \omega$.
- The proof is by contradiction.
- Suppose that there is a bijection, say:
- We derive a contradiction by showing that it can't include every real number
- Select $r_{i}$ to differ from digit i of $f(i)$
- Don't use 0, 9 (because 0.9999... $=1.0000 \ldots$ )
- We showed $|\mathbb{R}|>\omega$ and that $|A|>\omega$ for $A$ is any non-empty interval of reals
- This technique is called diagonalization and is due to Cantor (1873)


## 

- There exist languages that are not Turing-recognizable (R.E.)
- So they are also not Turing-decidable (R.) either
- And it turns out that most languages are not Turing-recognizable!
- Observe: If $|\Sigma| \leq \omega$ then the set of all strings, $\Sigma^{\star}$, is countable
- Observe: The set of all TMs is countable (each is described by a finite string of symbols over a finite alphabet)
- Observe: $B=\{0,1\}^{\omega}$ is uncountable (binary representation of reals in [0..1])
- Observe: There is a bijection between $\mathscr{L}$, the set of languages, and B. Use the characteristic function: given $\mathrm{L} \in \mathscr{L}, f(\mathrm{~L})=<\mathrm{S}_{1} \in \mathrm{~L}, \mathrm{~S}_{2} \in \mathrm{~L}, \mathrm{~S}_{3} \in \mathrm{~L}, \ldots>$
- So, $|\mathscr{L}|>\omega$ and most languages are not Turing-recognizable


## Atm is R.E.

- $A_{T M}=\{<M, w>: M$ is a TM that accepts $w\}$
- Theorem: Атм is R.E. (Turing recognizable)
- Proof: Consider TM U: On input <M, w> it runs M on $w$. If $M$ halts and accepts $w$, accept. If $M$ halts and rejects w, reject.
- Note: U is a universal Turing machine


## Атм is Undecidable

- Theorem: $A_{\text {TM }}$ is Undecidable. $\left(A_{T M}=\{<M, w>: M\right.$ is a TM that accepts $\left.w\}\right)$
- Proof: Suppose there exists a TM H that decides $A_{T M}$. Then, for any input $<M, w>, H$ accepts if M accepts w and rejects otherwise.
- Consider a TM D that takes an input <M>, the description of M , and takes the following steps.
- Run H on $<\mathrm{M},<\mathrm{M} \gg$
- If H accepts, reject
- If H rejects, accept
- Since H is a decider, D is also a decider.
- Consider D's output on <D>. If D accepts, then this implies that according to H, D rejects <D>. If D rejects, then this implies that according to $\mathrm{H}, \mathrm{D}$ accepts <D>. But this is a contradiction.


## Diagonalization?

- Another way to see this is that we have essentially proved that the language $\{<\mathrm{M}>: \mathrm{M}$ accepts $<\mathrm{M}>\}$ is undecidable. How did we do this?
- Number the machines $\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots$. Suppose the above language is decidable by a TM E.
- Define $D$ to be a machine that on input $<M>$, accepts if $E$ rejects $<M>$, and rejects if E accepts $<\mathrm{M}>$.
- This is precisely flipping the diagonal entries of the matrix in which the columns list the machines $\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots$, and the rows list the inputs $\left\langle M_{1}\right\rangle,\left\langle M_{2}\right\rangle, \ldots$.
- If $D$ is on this list, then we obtain a contradiction.


## $L$ and $\neg L$ are $R E$ then $L$ is $R$.

- $\neg \mathrm{L}$ is the complement of $\mathrm{L}: \Sigma^{*} \backslash \mathrm{~L}$
- Theorem: If $L$ and $\neg L$ are Turing-recognizable, then $L$ is decidable.
- Proof: Let $M_{1}$ and $M_{2}$ be TMs that recognize $L$ and $\neg L$. Given a string w, exactly one of the following happens
- $\mathrm{M}_{1}$ accepts w or $\mathrm{M}_{2}$ accepts w
- TM M for deciding $L$ simulates $M_{1}$ and $M_{2}$ in parallel, running one step of each on w.
- Within a finite number of steps, one of them will halt and accept.
- If $M_{1}$ accepts, then $M$ accepts. If $M_{2}$ accepts, then $M$ rejects.


## $\neg A_{\text {tm }}$ is not RE

- Corollary: $\neg А$ тм is unrecognizable (not RE)
- What is $\neg \mathrm{A}_{\text {тм }}$ ?
- $\{<M, w>: M$ is not a TM or $M$ does not accept $w\}$
- Proof: Atм is not decidable, so by previous theorem either Атм or $\neg$ Atм $_{\text {is }}$ not $R E$, but $A_{\text {тм }}$ is $R E$, so $\neg$ Атм $_{\text {т }}$ is not.


## -

- $\operatorname{HALT}_{T M}=\{<M, w\rangle$ : $M$ halts on $\left.w\right\}$
- Theorem: $\mathrm{HALT}_{\text {TM }}$ is undecidable.
- Proof: We show that if $\mathrm{HALT}_{T M}$ is decidable, then so is $A_{T M}$.
- Preview of reduction: We reduce from $\mathrm{A}_{T M}$ to $\operatorname{HALT}_{T M}\left(\mathrm{~A}_{T M} \leq \operatorname{HALT}_{T M}\right)$.
- Suppose $H$ is the decider for $\operatorname{HALT}_{T M}$. Then the decider $A$ for $A_{T M}$ is as follows. On input $\langle M, w\rangle$, $A$ calls $H$ on input $\langle M, w\rangle$. If $H$ accepts, then $A$ runs $M$ on $w$ and accepts if M accepts w , rejecting otherwise. If H rejects, then A rejects.
- Consider $<M, w>$ in $A_{T M}$. Since $M$ accepts $w, M$ halts on $w$. So $H$ accepts $<M, w>$. Since $M$ accepts and halts on $w$, $A$ 's call of $M$ on $w$ terminates in an accept state.
- Consider $\left\langle M, W>\right.$ not in $A_{T M}$. There are two cases. The first is when $M$ halts on $w$ and rejects $w$. So $H$ accepts $<M, w>$. A's call of $M$ on $w$ terminates in a reject state. The second case is when $M$ does not halt on $w$. So $H$ rejects $\langle M, w$, and so does $A$.

