Decidability and Undecidability

2/17/2016
Pete Manolios
Theory of Computation
Models of Computation

- Regular: finite state machine
- CF: + stack
- Turing machine: + infinite tape
- Decidable (recursive): yes/no
- Recognizable (r.e.): yes
Decidability

• We will use Church-Turing thesis

• What that means is we’ll describe and think about algorithms just like you did in algorithms class

• Because using TMs is really tedious and painful

• Because we “know” that TMs ≡ pseudo code
Decidability

- D is a DFA that accepts w
- N is an NFA that accepts w
- D is a DFA that accepts a non-empty language
- A, B are DFAs and L(A) = L(B)
- C is a CFL that accepts w
- C is a CFL that accepts a non-empty language
- But, A, B are CFLs and L(A) = L(B) **not** decidable
- When the model of comp increases in power
- Your ability to analyze it decreases
Undecidability

- Limits of what can be done with a computer
- Of broad intellectual, philosophical interest
 - Can humans solve problems TMs can’t?
 - Turing test: can machines behave like humans?
 - Can machines have consciousness?

http://imgs.xkcd.com/comics/suspicion.png
Counting Infinities

• f: A → B is *injective* or *one-to-one* if it a≠b ⇒ f(a) ≠f(b)

• f: A → B is *surjective* or *onto* if it \(\cup_{a \in A} \{f(a)\} = B \)

• f is *bijective* or a *correspondence* if it is both injective and surjective

• If f: A → B is bijective then each element of A maps to a unique element of B and conversely

• Given A,B if \(\exists \) a bijection f: A → B then \(|A| = |B|\): they have the same size

• This makes intuitive sense for finite sets, but has non-intuitive consequences for infinite sets

• \(|\{a, b, c, d\}| = |\{1, 21, 3, 2\}| = |\{d, a, f, b, d, a\}| = 4\)

• \(|\mathbb{N}| =? |\mathbb{N} \setminus \{0, 1, 2\}|\)

• \(|\mathbb{N}| = |\{n \in \mathbb{N}: n \text{ is even}\}| = |\mathbb{Z}| = |\mathbb{Q}| = \omega\)

• If \(|A| \leq \omega\) it is *countable*. \(\omega\) is the first infinite *ordinal number*.

\(\mathbb{N} \setminus \{0, 1, 2\} : 3, 4, 5, 6, 7, \ldots\)

\(\mathbb{Z} : 0, 1, -1, 2, -2, \ldots\)
Theorem: \(\lvert \mathbb{Q} \rvert = \omega \)

Have to enumerate the rationals. Here’s how:

Note: no duplicates

Theorem: A countable union of countable sets is countable!
Theorem: $|\mathbb{R}| > \omega$

- \mathbb{R} is *uncountable*: infinite and no bijection between \mathbb{R} and ω

- Clearly $|\mathbb{R}| \geq \omega$. We show $|\mathbb{R}| \neq \omega$.

- The proof is by contradiction.

- Suppose that there is a bijection, say:

- We derive a contradiction by showing that it can’t include every real number

- Select r_i to differ from digit i of $f(i)$

- Don’t use 0, 9 (because 0.9999... = 1.0000...)

- We showed $|\mathbb{R}| > \omega$ and that $|A| > \omega$ for A is any non-empty interval of reals

- This technique is called *diagonalization* and is due to Cantor (1873)

Existence of the Undecidable

- There exist languages that are not Turing-recognizable (R.E.)
- So they are also not Turing-decidable (R.) either
- And it turns out that *most* languages are not Turing-recognizable!
- Observe: If $|\Sigma| \leq \omega$ then the set of all strings, Σ^*, is countable
- Observe: The set of all TMs is countable (each is described by a finite string of symbols over a finite alphabet)
- Observe: $B = \{0,1\}^\omega$ is uncountable (binary representation of reals in $[0..1]$)
- Observe: There is a bijection between \mathcal{L}, the set of languages, and B. Use the characteristic function: given $L \in \mathcal{L}$, $f(L)=<s_1 \in L, s_2 \in L, s_3 \in L, ...>$
- So, $|\mathcal{L}| > \omega$ and most languages are not Turing-recognizable
A_{TM} is R.E.

• $A_{TM} = \{ <M, w>: M \text{ is a TM that accepts } w \}$

• Theorem: A_{TM} is R.E. (Turing recognizable)

• Proof: Consider TM U: On input $<M, w>$ it runs M on w. If M halts and accepts w, accept. If M halts and rejects w, reject.

• Note: U is a universal Turing machine
A\textsubscript{TM} is Undecidable

• Theorem: A\textsubscript{TM} is Undecidable. (A\textsubscript{TM} = \{<M,w>: M is a TM that accepts w\})

• Proof: Suppose there exists a TM H that decides A\textsubscript{TM}. Then, for any input <M,w>, H accepts if M accepts w and rejects otherwise.

• Consider a TM D that takes an input <M>, the description of M, and takes the following steps.
 • Run H on <M,<M>>
 • If H accepts, reject
 • If H rejects, accept

• Since H is a decider, D is also a decider.

• Consider D's output on <D>. If D accepts, then this implies that according to H, D rejects <D>. If D rejects, then this implies that according to H, D accepts <D>. But this is a contradiction.
Diagonalization?

- Another way to see this is that we have essentially proved that the language \{\langle M \rangle : M \text{ accepts } \langle M \rangle \} is undecidable. How did we do this?

- Number the machines \(M_1, M_2, \ldots\). Suppose the above language is decidable by a TM \(E\).

- Define \(D\) to be a machine that on input \(\langle M \rangle\), accepts if \(E\) rejects \(\langle M \rangle\), and rejects if \(E\) accepts \(\langle M \rangle\).

- This is precisely flipping the diagonal entries of the matrix in which the columns list the machines \(M_1, M_2, \ldots\), and the rows list the inputs \(\langle M_1 \rangle, \langle M_2 \rangle, \ldots\).

- If \(D\) is on this list, then we obtain a contradiction.
L and \(\neg L \) are RE then \(L \) is R.

- \(\neg L \) is the complement of \(L \): \(\Sigma^* \setminus L \)

- Theorem: If \(L \) and \(\neg L \) are Turing-recognizable, then \(L \) is decidable.

- Proof: Let \(M_1 \) and \(M_2 \) be TMs that recognize \(L \) and \(\neg L \). Given a string \(w \), exactly one of the following happens
 - \(M_1 \) accepts \(w \) or \(M_2 \) accepts \(w \)
 - TM \(M \) for deciding \(L \) simulates \(M_1 \) and \(M_2 \) in parallel, running one step of each on \(w \).
 - Within a finite number of steps, one of them will halt and accept.
 - If \(M_1 \) accepts, then \(M \) accepts. If \(M_2 \) accepts, then \(M \) rejects.
¬A_{TM} is not RE

• Corollary: ¬A_{TM} is unrecognizable (not RE)

• What is ¬A_{TM}?

• \{<M, w>: M is not a TM or M does not accept w\}

• Proof: A_{TM} is not decidable, so by previous theorem either A_{TM} or ¬A_{TM} is not RE, but A_{TM} is RE, so ¬A_{TM} is not.
Halting Problem

- \(\text{HALT}_{TM} = \{<M, w>: M \text{ halts on } w\} \)

- Theorem: \(\text{HALT}_{TM} \) is undecidable.

- Proof: We show that if \(\text{HALT}_{TM} \) is decidable, then so is \(A_{TM} \).

- Preview of reduction: We reduce from \(A_{TM} \) to \(\text{HALT}_{TM} \) (\(A_{TM} \leq \text{HALT}_{TM} \)).

- Suppose \(H \) is the decider for \(\text{HALT}_{TM} \). Then the decider \(A \) for \(A_{TM} \) is as follows. On input \(<M, w> \), \(A \) calls \(H \) on input \(<M, w> \). If \(H \) accepts, then \(A \) runs \(M \) on \(w \) and accepts if \(M \) accepts \(w \), rejecting otherwise. If \(H \) rejects, then \(A \) rejects.

- Consider \(<M,w> \) in \(A_{TM} \). Since \(M \) accepts \(w \), \(M \) halts on \(w \). So \(H \) accepts \(<M, w> \). Since \(M \) accepts and halts on \(w \), \(A \)'s call of \(M \) on \(w \) terminates in an accept state.

- Consider \(<M,w> \) not in \(A_{TM} \). There are two cases. The first is when \(M \) halts on \(w \) and rejects \(w \). So \(H \) accepts \(<M, w> \). \(A \)'s call of \(M \) on \(w \) terminates in a reject state. The second case is when \(M \) does not halt on \(w \). So \(H \) rejects \(<M, w> \), and so does \(A \).