Problem 1: In class, I made the claim that not every non-regular language can be shown to be non-regular using the pumping lemma. Consider the language \(L = \{a^i b^j c^k : i, j, k \geq 0 \text{ and if } i = 1 \text{ then } j = k \} \).

(a) Show that the pumping lemma cannot be used to prove that \(L \) is not regular.

(b) Read about the Myhill-Nerode theorem, which is exercise 1.52 of your book. Note that the solution to the exercise appears at the end of the chapter. Use the Myhill-Nerode theorem to prove that \(L \) is not regular.

Problem 2: Prove that the languages recognized by NFAs are closed under complement.

Problem 3: The Myhill-Nerode theorem implies that for any regular language \(L \), any DFA recognizing \(L \) has to have at least \(i \) states, where \(i \) is the index of \(L \). In fact, there is a DFA of size \(i \) that accepts \(L \). This is a minimal DFA recognizing \(L \).

(a) Propose an algorithm for DFA minimization.

(b) Prove that your algorithm is correct.

(c) Use your algorithm to minimize the following DFA.

![DFA Diagram](image)

Problem 4: In class we studied finite-state automata that operate on strings of finite length. How about finite-state automata that operate on strings of infinite length? Define an *Infinite Input Finite Automaton* (IIFA) to be a tuple \((Q, \Sigma, T, Q_0, F)\) where:

- \(Q \) is a finite set of states.
- \(\Sigma \) is the alphabet.
- \(\delta : \Sigma \times Q \to \mathcal{P}(Q) \) is the transition function.
• \(Q_0 \subseteq Q \) is a set of initial states.
• \(F \subseteq Q \) is a set of accepting states.

Given an infinite string \(s = s_0s_1 \ldots \) over \(\Sigma \), a run \(r \) of IIFA \(A \) on \(s \) is an infinite sequence of states \(r = r_0, r_1, \ldots \) where \(r_0 \in Q_0 \) and \(r_{i+1} \in \delta(r_i, s_i) \) for all \(i \geq 0 \). There is no final state, so we need a different notion of acceptance than we had with NFAs. Let \(\text{lim}(r) = \{ q : q = r_i \text{ for infinitely many } i \text{'s} \} \). That is, \(\text{lim}(r) \) is the set of states that appear infinitely often in run \(r \). Run \(r \) is accepting if \(\text{lim}(r) \cap F \neq \emptyset \), i.e., some accepting state is visited infinitely often. Automaton \(A \) accepts string \(s \) if there is an accepting run \(r \) of \(A \) on \(s \). The language of \(A \), denoted \(L(A) \), is the set of infinite strings accepted by \(A \).

(a) Show that if \(A \) and \(B \) are IIFAs, then there is an IIFA \(C \) such that \(L(C) = L(A) \cup L(B) \).
(b) Show that if \(A \) and \(B \) are IIFAs, then there is an IIFA \(C \) such that \(L(C) = L(A) \cap L(B) \).
(c) Are nondeterministic IIFAs more expressive than deterministic IIFAs? Provide a proof.