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Introduction

These lecture notes were developed for Logic and Computation, a freshman-level class taught
at the College of Computer and Information Science of Northeastern University. Starting
in Spring 2008, this is a class that all students in the college are required to take.

The goals of the Logic and Computation course are to provide an introduction to for-
mal logic and its deep connections to computing. Logic is presented from a computational
perspective using the ACL2 Sedan theorem proving system. The goal of the course is to
introduce fundamental, foundational methods for modeling, designing and reasoning about
computation, including propositional logic, recursion, induction, equational reasoning, ter-
mination analysis, rewriting, and various proof techniques. We show how to use logic to
formalize the syntax and semantics of the core ACL2s language, a simple LISP-based lan-
guage with contracts. We then use the ACL2s language to formally reason about programs,
to model systems at various levels of abstraction, to design and specify interfaces between
systems and to reason about such composed systems. We also examine decision procedures
for fragments of first-order logic and how such decision procedures can be used to analyze
models of systems.

The students taking the Logic and Computation class have already taken a programming
class in the previous semester, using Racket. The course starts by reviewing some basic
programming concepts. The review is useful because at the freshman level students benefit
from seeing multiple presentations of key concepts; this helps them to internalize these
concepts. For example, in past semesters I have asked students to write very simple programs
(such as a program to append two lists together) during the first week of classes and a
surprisingly large number of them produce incorrect code.

We introduce the ACL2s language. This is the language we use throughout the semester.
Since ACL2s is very similar to Racket, this happens simultaneously with the programming
review. During lectures, I will often point out the similarities and differences between these
languages.

We introduce the semantics of the ACL2s language in a mathematical way. We show
the syntax and semantics of the core language. We provide enough information so that
students can determine what sequence of glyphs form a well-formed expression and how to
formally evaluate well-formed expressions potentially containing user-defined functions with
constants as arguments (this is always in a first-order setting). This is a pretty big jump
in rigor for students and is advanced material for freshmen students, but they already have
great intuitions about evaluation from their previous programming class. A key to helping
students understand the material is to motivate and explain it by connecting it to their
strong computational intuitions.

The lecture notes are sparse. It would be great to add more exercises, but I have not done
that yet. Over the course of many years, we have amassed a large collection of homework
problems, so students see lots of exercises, and working through these exercises is a great
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way for them to absorb the material, but the exercises are not in the notes. You can think
of the lecture notes as condensed notes for the course that are appropriate for someone who
knows the material as a study guide. The notes can also be used as a starting point by
students, who should mark them up with clarifications as needed when they attend lectures.
I advise students to read the lecture notes before class. This way, during class they can focus
on the lecture instead of taking notes, they are better prepared to ask for clarifications and
they can better judge what notes they should take (if any).

When I started teaching the class, I used the ACL2 book, Computer-Aided Reasoning, An
Approach by Kaufmann, Manolios and Moore. However, over the years I became convinced
that using an untyped first-order logic was not the optimal way of introducing logic and
computation to students because they come in with a typed view of the world. That’s
not to say they have seen type theory; they have not. But, they are surprised when a
programming language allows them to subtract a string from a rational number. Therefore,
with the help of my Ph.D. student Harsh Chamarthi, I have focused on adding type-like
capabilities to ACL2s. Most notably, we added a new data definition framework to ACL2s
that supports enumeration, union, product, record, map, (mutually) recursive and custom
types, as well as limited forms of parametric polymorphism. We also introduced the defunc
macro, which allows us to formally specify input and output contract for functions. These
contracts are very general, e.g., we can specify that / is given two rationals as input, and
that the second rational is not 0, we can specify that zip is given two lists of the same
length as input and returns a list of the same length as output and so on. Contracts are
also checked statically, so ACL2s will not accept a function definition unless it can prove
that the function satisfies its contracts and that for every legal input and every possible
computation, it is not possible during the evaluation of the function being defined to be in a
state where some other function is poised to be evaluated on a value that violates its input
contract. I have found that a significant fraction of erroneous programs written by students
have contract violations in them, and one of the key things I emphasize is that when writing
code, one needs to think carefully about the contracts of the functions used and why the
arguments to every function call satisfy the function’s contract. Contracts are the first step
towards learning how to specify interfaces between systems. With the move to contracts,
the ACL2 book became less and less appropriate, which led me to write these notes.

I have distributed these notes to the students in Logic and Computation for several
years and they have found lots of typos and have made many suggestions for improvement.
Thanks and keep the comments coming!
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5.1 The Definitional Principle

We've already seen that when you define a function, say
(defunc f(x)

:input-contract ic

:output-contract oc

body)

then ACL2s adds the definitional axiom

ic = (£ x) = body

and the contract theorem

ic = oc

‘We now more carefully examine what happens when you define functions.
First, let’s see why we have to examine anything at all.
In most languages, one is allowed to write functions such as the following:

(defunc f(x)
:input-contract (natp x)
routput-contract (natp (f x))
+1 (£ )

This is a nonterminating recursive function.

There has been no reason for you to write nonterminating functions in your previous
classes or in this class, but you had the ability to do it.

Suppose we add the axiom

(natp x) = (£ x) =1 (£ %)) (5.1)

Then, using the axiom, ACL2s can prove the contract theorem

(natp x) = (natp (f x)) (5.2)

This is unfortunate because we now get a contradiction, i.e., we can prove nil in ACL2s,
all because we added the definitional axiom for £ (5.1).

Here is how to derive a contradiction. First, notice that the following is an obvious
arithmetic fact.
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(natp x) = x#x+1 (5.3)
ACL2s can prove this directly.
(thm (implies (matp x) (not (equal x (+ 1 x)))))

If we instantiate (5.3), we get

(natp (f x)) = (£ x) # (+ 1 (£ x)) (5.4)
Together with (5.2), we have

(natp x) = (£ x) # &+ 1 (f x)) (5.5)
Putting (5.1) and (5.5) gives us:

(natp x) = nil (5.6)

But, now instantiating (5.6) with ((x 1)) gives us:
t

={ (5.6) }
(natp 1) = nil
= { Evaluation }
nil
As we have seen, once we have nil, we can prove anything. Therefore, this nontermi-
nating recursive equation introduced unsoundness. The point of the definitional principle
in ACL2s is to make sure that new function definitions do not render the logic unsound.
For this reason, ACL2s does not allow you to define nonterminating functions.
Presumably, any reasonable language will prevent you from writing non-terminating
functions. However, no widely used language provides this capability, because checking
termination is undecidable: no algorithm can always correctly determine whether a function
definition will terminate on all inputs that satisfy the input contract.
Question: does every non-terminating recursive equation introduce unsoundness?
Consider:

(defunc £ (x)
:input-contract t
:output-contract t

(f %))

This leads to the definitional axiom:

(f x) =( %)

This cannot possibly lead to unsoundness since it follows from the reflexivity of equality.
Question: can terminating recursive equations introduce unsoundness?
Consider:

(defunc f (x)
:input-contract t
:output-contract t
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y)

This leads to the definitional axiom:

(f x) =y (5.7)

Which causes problems, e.g.,
t

= { Instantiation of (5.7) with ((y t) (x 0)) }
(f 0)

= { Instantiation of (5.7) with ((y nil) (x 0)) }
nil

We got into trouble because we allowed a “global” variable. It will turn out that we can
rule out bad terminating equations with some simple checks.

So, modulo some checks we are going to get to soon, terminating recursive equations do
not introduce unsoundness, because we can prove that if a recursive equation can be shown
to terminate then there exists a function satisfying the equation.

The above discussion should convince you that we need a mechanism for making sure
that when users add axioms to ACL2s by defining functions, then the logic stays sound.

That’s what the definitional principle does.

Definitional Principle for ACL2s
The definition

(defunc f (%1 ... x,)
:input-contract ic
:output-contract oc
body)

is admissible provided:

1. f is a new function symbol, i.e., there are no other axioms about it. Functions are
admitted in the context of a history, a record of all the built-in and defined functions
in a session of ACL2s.

Why do we need this condition? Well, what if we already defined app? Then we
would have two definitions. What about redefining functions? That is not a good
idea because we may already have theorems proven about app. We would then have
to throw them out and any other theorems that depended on the definition of app.
ACL2s allows you to undo, but not redefine.

2. The x; are distinct variable symbols.
Why do we need this condition? If the variables are the same, say (defunc f (x x)
...), then what is the value of x when we expand(f 1 2)7

3. body is a term, possibly using f recursively as a function symbol, mentioning no
variables freely other than the x;;
Why? Well, we already saw that global variables can lead to unsoundness. When we

say that body is a term, we mean that it is a legal expression in the current history.

4. The function is terminating. As we saw, nontermination can lead to unsoundness.
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There are also two other conditions that I state separately.

5. ic = oc is a theorem.

6. The body contracts hold under the assumption that ic holds.
If admissible, the logical effect of the definition is to:

1. Add the Definitional Axziom for £: ic = [(f x; ... x,) = body].

2. Add the Contract Theorem for f: ic = oc.

But, how do we prove termination?

A very simple first idea is to use what are called measure functions. These are functions
from the parameters of the function at hand into the natural numbers, so that we can prove
that on every recursive call the function terminates. Let’s try this with app. What is a
measure function for app?

How about the length of x? So, the measure function is (len x).

Measure Function Definition: m is a measure function for f if all of the following

hold.
1. m is an admissible function defined over the parameters of f;
2. m has the same input contract as f;
3. m has an output contract stating that it always returns a natural number; and

4. on every recursive call, m applied to the arguments to that recursive call decreases,
under the conditions that led to the recursive call.

Here then is a measure function for app:

(defunc m (x y)
:input-contract (and (listp x) (listp y))
:output-contract (natp (m x y))
(len x))

This is a non-recursive function, so it is easy to admit. Notice that we do not use the
second parameter. That is fine and it just means that the second parameter is not needed
for the termination argument.

Next, we have to prove that m decreases on all recursive calls of app, under the conditions
that led to the recursive call. Since there is one recursive call, we have to show:

(implies (and (listp x)
(listp y)
(not (endp x)))
(< (m (rest x) y) (@ x y)))

which is equivalent to:

(implies (and (listp x)
(listp y)
(not (endp x)))
(< (len (rest x)) (len x)))
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which is a true statement.
More examples:
(defunc rev (x)
:input-contract (listp x)
routput-contract (listp (rev x))
(if (endp x)
nil
(app (rev (rest x)) (list (first x)))))

Is this admissible? It depends if we defined app already. Suppose app is defined as above.
What is a measure function?

len.
What about:

(defunc drop-last (x)
:input-contract (listp x)
:output-contract (listp (drop-last x))
(if (equal (len x) 1)
nil
(cons (first x) (drop-last (rest x)))))

No. We cannot prove that it is non-terminating, e.g., when x is nil, what is (rest x)?
The real issue here is that we are analyzing a function that has body contract violations,

e.g., when x is nil, our function tries to evaluate (first x). We can fix that in several
ways. Here is one.

Exercise 5.1 Define drop-last using the design recipe.

(defunc drop-last (x)
:input-contract (listp x)
:output-contract (listp (drop-last x))
(cond ((endp x) nil)
((endp (rest x)) nil)
(t (cons (first x) (drop-last (rest x))))))

Exercise 5.2 What is a measure function for drop-last?

What about the following function?
(defunc prefixes (1)
:input-contract (listp 1)

:output-contract (listp (prefixes 1))
(cond ((endp 1) ’C OO ))

(t (cons 1 (prefixes (drop-last 1))))))
Is prefixes admissible?

Yes. It satisfies the conditions of the definitional principle; in particular, it terminates
because we are removing the last element from 1.

Exercise 5.3 What is a measure function for prefixes?
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Does the following satisfy the definitional principle?

(defunc £ (x)
:input-contract (integerp x)
routput-contract (integerp (f x))
(if (equal x 0)
1
+1 & x DN

No. It does not terminate.

What went wrong?
Maybe we got the input contract wrong. Maybe we really wanted natural numbers.

(defunc £ (x)
:input-contract (natp x)
routput-contract (integerp (f x))
(if (equal x 0)
1
+1 & x DN

Another way of thinking about this is: What is the largest type that is a subtype of
integer for which f terminates? Or, we could ask: What is the largest type for which f

terminates?
But, maybe we got the input contract right. Then we used the wrong design recipe:

(defunc £ (%)
:input-contract (integerp x)
:output-contract (integerp (f x))
(cond ((equal x 0) 1)
(Gx0) (+1 (& 1N
t 1 E +x1)N

Now £ computes the absolute value of x (in a very slow way).

The other thing that should jump out at you is that the output contract could be (natp
(f %)) for all versions of f above.

5.2 Admissibility of common recursion schemes

We examine several common recursion schemes and show that they lead to admissible func-
tion definitions.

The first recursion scheme involves recurring down a list.
(defunc f (x1 ... x3,)

:input-contract (and ... (listp x;) ...)

:output-contract ...

(if (endp x;)

(.. (f ... (rest %) ...) ...)0))
-th

The above function has n parameters, where the ¢** parameter, x; is a list. The function
recurs down the list x;. The ...’s in the body indicate non-recursive, well-formed code, and
(rest x;) appears in the i** position.
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We can use (len x;) as the measure for any function conforming to the above scheme:

(defunc m (x; ... x3,)
:input-contract (and ... (listp x;) ...)
routput-contract (natp (m x; ... x,))
(len x;))

That m is a measure function is obvious. The non-trivial part is showing that
(listp x;) A (not (endp x;)) = (len (rest x;)) < (len x;)
which is easy to see.
So, this scheme is terminating. This is why all of the code you wrote in your beginning
programming class that was based on lists terminates.
We can generalize the above scheme, e.g., consider:
(defunc f (x; x2)
:input-contract (and (listp x;) (listp x32))
:output-contract (listp (f x; x2))
(cond ((endp x1) x2)
((endp x2) x1)
(t (list (f (rest x;1) (rest x»))
(f (rest x1) (f (rest x;) (cons x5 X2)))))))

We now have three recursive calls and two base cases. Nevertheless, the function termi-
nates for the same reason: len decreases.
(defunc m (x; X2)
:input-contract (and (listp x;) (listp x2))
routput-contract (natp (m x; x2))
(len x1))

All three recursive calls lead to the same proof obligation:
(listp x1) A (not (endp x3)) A (not (endp x2)) = (len (rest x3)) < (len x1)

Thinking in terms of recursion schemes and templates is good for beginners, but what
really matters is termination. That is why recursive definitions make sense.
Let’s look at one more interesting recursion scheme.
(defunc f (x1 ... x,)
:input-contract (and ... (natp x;) ...)
:output-contract ...
(if (equal x; 0)

oo (oo (Fx 1) 2o o0

The above is a function of n parameters, where the i** parameter, x; is a natural number.
The function recurs on the number x;. The ...’s in the body indicate non-recursive, well-
formed code, and (- x; 1) appears in the i*" position.

We can use x; as the measure for any function conforming to the above scheme:
(defunc m (x; ... x3,)

:input-contract (and ... (natp x;) ...)
routput-contract (natp (m x; ... x,))
Xi)
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That m is a measure function is obvious. The non-trivial part is showing that
(natp x;) A (not (equal x; 0)) = (- x; 1) < x;

which is easy to see.
So, this scheme is terminating. This is why all of the code you wrote in your beginning
programming class that was based on natural numbers terminates.

Exercise 5.4 We can similarly construct a recursion scheme for integers. Do it.

5.3 Exercises

For each function below, you have to check if its definition is admissible, i.e., it satisfies the
definitional principle.
If the function does satisfy the definitional principle then:

1. Provide a measure that can be used to show termination.
2. Explain in English why the contract theorem holds.

3. Explain in English why the body contracts hold.

If the function does not satisfy the definitional principle then identify each of the 6
conditions above that are violated. Also, if the function is terminating, provide a measure
function.

Exercise 5.5

(defunc f (x y)
:input-contract (and (true-listp x) (natp y))
routput-contract (true-listp (f x y))
(cond ((equal y 0) nil)
((endp x) (1list y))
(t (f (cons y x) (-y DM

Exercise 5.6 Dead code example

(defunc f (x y)
:input-contract (and (natp x) (natp y))
:output-contract (integerp (f x y))
(cond ((equal x 0) 1)
(< x0) (f -1-1))
t 1 ¢E CExD NN

Notice that the second case of the cond above will never happen.
Below are some generative recursion examples.

Exercise 5.7

(defunc f (x y)
:input-contract (and (integerp x) (natp y))
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routput-contract (integerp (f x y))
(cond ((equal x 0) 1)
((<x0) (£ +1y) xxx)N
t 1 E Ex1D NN

Exercise 5.8

(defunc f (x y)
:input-contract (and (true-listp x) (integerp y))
:output-contract (natp (f x y))
(cond ((endp x) y)
(t (£ (rest x) (+ 1 y)))))

Exercise 5.9

(defunc f (x y)
:input-contract (and (true-listp x) (integerp y))
:output-contract (natp (f x y))
(cond ((and (endp x) (equal y 0))
0)
((and (endp x) (< y 0))
1 ¢Ex 19N

((endp x)
+1 E x (y1))
(t

(+ 1 (£ (rest x) y)))N

5.4 Final Comments

As we already mentioned, checking for termination is undecidable; Turing showed that. So,
you can define functions that terminate, but that ACL2s can’t prove terminating automat-
ically. However, we expect that for the programs we ask you to write, ACL2s will be able
to prove termination automatically. If not, send email and we will help you.

Exercise 5.10 How would you write a program that checks if other programs terminate?

By the way, remember “big-Oh” notation? It is connected to termination. How?
Well if the running time for a function is O(n?), say, then that means that:

1. the function terminates; and

2. there is a constant ¢ s.t. the function terminates within ¢ - n? steps, where n is the
“size” of the input

The big-Oh analysis is just a refinement of termination, where we are not interested in
only whether a function terminates, but also we want an upper bound on how long it will
take.



