
Reasoning About Programs
Panagiotis Manolios

Northeastern University

April 2, 2016
Version: 95

Copyright c©2016 by Panagiotis Manolios

All rights reserved. We hereby grant permission for this publication to be used for personal or
classroom use. No part of this publication may be stored in a retrieval system or transmitted
in any form or by any means other personal or classroom use without the prior written
permission of the author. Please contact the author for details.

1

Introduction

These lecture notes were developed for Logic and Computation, a freshman-level class taught
at the College of Computer and Information Science of Northeastern University. Starting
in Spring 2008, this is a class that all students in the college are required to take.

The goals of the Logic and Computation course are to provide an introduction to for-
mal logic and its deep connections to computing. Logic is presented from a computational
perspective using the ACL2 Sedan theorem proving system. The goal of the course is to
introduce fundamental, foundational methods for modeling, designing and reasoning about
computation, including propositional logic, recursion, induction, equational reasoning, ter-
mination analysis, rewriting, and various proof techniques. We show how to use logic to
formalize the syntax and semantics of the core ACL2s language, a simple LISP-based lan-
guage with contracts. We then use the ACL2s language to formally reason about programs,
to model systems at various levels of abstraction, to design and specify interfaces between
systems and to reason about such composed systems. We also examine decision procedures
for fragments of first-order logic and how such decision procedures can be used to analyze
models of systems.

The students taking the Logic and Computation class have already taken a programming
class in the previous semester, using Racket. The course starts by reviewing some basic
programming concepts. The review is useful because at the freshman level students benefit
from seeing multiple presentations of key concepts; this helps them to internalize these
concepts. For example, in past semesters I have asked students to write very simple programs
(such as a program to append two lists together) during the first week of classes and a
surprisingly large number of them produce incorrect code.

We introduce the ACL2s language. This is the language we use throughout the semester.
Since ACL2s is very similar to Racket, this happens simultaneously with the programming
review. During lectures, I will often point out the similarities and differences between these
languages.

We introduce the semantics of the ACL2s language in a mathematical way. We show
the syntax and semantics of the core language. We provide enough information so that
students can determine what sequence of glyphs form a well-formed expression and how to
formally evaluate well-formed expressions potentially containing user-defined functions with
constants as arguments (this is always in a first-order setting). This is a pretty big jump
in rigor for students and is advanced material for freshmen students, but they already have
great intuitions about evaluation from their previous programming class. A key to helping
students understand the material is to motivate and explain it by connecting it to their
strong computational intuitions.

The lecture notes are sparse. It would be great to add more exercises, but I have not done
that yet. Over the course of many years, we have amassed a large collection of homework
problems, so students see lots of exercises, and working through these exercises is a great

2 CHAPTER 1. INTRODUCTION

way for them to absorb the material, but the exercises are not in the notes. You can think
of the lecture notes as condensed notes for the course that are appropriate for someone who
knows the material as a study guide. The notes can also be used as a starting point by
students, who should mark them up with clarifications as needed when they attend lectures.
I advise students to read the lecture notes before class. This way, during class they can focus
on the lecture instead of taking notes, they are better prepared to ask for clarifications and
they can better judge what notes they should take (if any).

When I started teaching the class, I used the ACL2 book, Computer-Aided Reasoning, An
Approach by Kaufmann, Manolios and Moore. However, over the years I became convinced
that using an untyped first-order logic was not the optimal way of introducing logic and
computation to students because they come in with a typed view of the world. That’s
not to say they have seen type theory; they have not. But, they are surprised when a
programming language allows them to subtract a string from a rational number. Therefore,
with the help of my Ph.D. student Harsh Chamarthi, I have focused on adding type-like
capabilities to ACL2s. Most notably, we added a new data definition framework to ACL2s
that supports enumeration, union, product, record, map, (mutually) recursive and custom
types, as well as limited forms of parametric polymorphism. We also introduced the defunc
macro, which allows us to formally specify input and output contract for functions. These
contracts are very general, e.g., we can specify that / is given two rationals as input, and
that the second rational is not 0, we can specify that zip is given two lists of the same
length as input and returns a list of the same length as output and so on. Contracts are
also checked statically, so ACL2s will not accept a function definition unless it can prove
that the function satisfies its contracts and that for every legal input and every possible
computation, it is not possible during the evaluation of the function being defined to be in a
state where some other function is poised to be evaluated on a value that violates its input
contract. I have found that a significant fraction of erroneous programs written by students
have contract violations in them, and one of the key things I emphasize is that when writing
code, one needs to think carefully about the contracts of the functions used and why the
arguments to every function call satisfy the function’s contract. Contracts are the first step
towards learning how to specify interfaces between systems. With the move to contracts,
the ACL2 book became less and less appropriate, which led me to write these notes.

I have distributed these notes to the students in Logic and Computation for several
years and they have found lots of typos and have made many suggestions for improvement.
Thanks and keep the comments coming!

8

Abstract Data Types and Observational

Equivalence

8.1 Abstract Data Types

Let’s just jump right in and consider a simple example: stacks.
Think about how you interact with trays in a cafeteria. You can take the top tray (a

“pop” operation) and you can add a tray (a “push” operation).
Think about how you respond to interruptions. If you are working on your homework

and someone calls, you suspend your work and pick up the phone (push). If someone then
knocks on the door, you stop talking and open the door (push). When you finish talking,
you continue with the phone (pop), and when you finish that (pop), you go back to your
homework.

Think about tracing a recursive function, say the factorial function.

(defunc ! (n)

:input-contract (natp n)

:output-contract (posp (! n))

(if (equal n 0)

1

(* n (! (- n 1)))))

Consider the call (! 3). It involves a call to (! 2) (push) which involves a call to (! 1)

(push) which involves a call to (! 0) 0 (push) which returns 1 (pop), which is multiplied
by 1 to return 1 (pop) which is multiplied by 2 to return 2 (pop) which is multiplied by 3
to return 6 (pop). If you trace !, and evaluate (! 3), ACL2s will show you the stack.

(trace* !)

(! 3)

So the idea of a stack is that it is a data type that allows several operations, including:

� stack-push :add an element to the stack; return the new stack

� stack-head: return the top element of a non-empty stack

� stack-pop: remove the head of a non-empty stack; return the new stack

We are going to think about stacks in an implementation-independent way. There are
two good reasons for doing this. First, a user of our stacks does not have to worry about how
stacks are implemented; everything they need to know is provided via a set of operations we
provide. Second, we can change the implementation if there is a good reason to do so and,
as long as we maintain the guarantees we promised, our changes cannot affect the behavior
of the code others have written using our stack library.

116 Reasoning About Programs

If you think about what operations a user might need, you will see that also the following
operations are needed.

� new-stack: a constructor that creates an empty stack; without this operation, how
does a user get their hands on a stack?

� stackp: a recognizer for stacks

The above description is still vague, so let’s formalize it in ACL2s with an implementa-
tion.

We start by defining what elements a stack can hold.

(defdata element all)

; Data definition of a stack: a list of elements

(defdata stack (listof element))

; A stack is empty iff it is equal to nil

(defunc stack-emptyp (s)

:input-contract (stackp s)

:output-contract (booleanp (stack-emptyp s))

(equal s nil))

; Stack creation: returns an empty stack

(defunc new-stack ()

:input-contract t

:output-contract (and (stackp (new-stack))

(stack-emptyp (new-stack)))

nil)

; The push operation inserts e on the top of the stack s

(defunc stack-push (e s)

:input-contract (and (elementp e) (stackp s))

:output-contract (and (stackp (stack-push e s))

(not (stack-emptyp (stack-push e s))))

(cons e s))

; The pop operation removes the top element of a non-empty stack

(defunc stack-pop (s)

:input-contract (and (stackp s) (not (stack-emptyp s)))

:output-contract (stackp (stack-pop s))

(rest s))

; The head of a non-empty stack

(defunc stack-head (s)

:input-contract (and (stackp s) (not (stack-emptyp s)))

:output-contract (elementp (stack-head s))

(first s))

While we now have an implementation, we do not have an implementation-independent
characterization of stacks. In fact, we will see two such characterizations.

ADTs and Observational Equivalence 117

8.2 Algebraic Data Types

The first idea is to characterize stacks using only the algebraic properties they satisfy.
So, what the user of our library will be able to see is:

1. The data definition for element. In fact, almost everything we do below does not
depend on the definition of element. However, to use the implementation, a user must
know what elements they can push onto the stack. They do not need to see the data
definition of a stack, because how we represent stacks is implementation-dependent.

2. The contracts for all the operations given above.

3. The (algebraic) properties that stacks satisfy. These properties include the contract
theorems for the stack operations and the following properties:

(defthm pop-push

(implies (and (stackp s)

(elementp e))

(equal (stack-pop (stack-push e s))

s)))

(defthm stack-head-stack-push

(implies (and (stackp s)

(elementp e))

(equal (stack-head (stack-push e s))

e)))

(defthm push-pop

(implies (and (stackp s)

(not (stack-emptyp s)))

(equal (stack-push (stack-head s) (stack-pop s))

s)))

(defthm empty-stack-new-stack

(implies (and (stack-emptyp s)

(stackp s))

(equal (new-stack)

s)))

There are numerous interesting questions we can now ask. For example,

1. How did we determine what these properties should be?

2. Are these properties independent? We can characterize properties as either being
redundant, meaning that they can be derived from existing properties, or independent,
meaning that they are not provable from existing properties. How to show redundancy
is clear, but how does one show that a property is independent? The answer is to come
up with two implementations, one which satisfies the property and one which does not.
Since we already have an implementation that satisfies all the properties, to show that
some property above is independent of the rest, come up with an implementation that
satisfies the rest of the properties, but not the one in question.

118 Reasoning About Programs

3. Are there any other properties that are true of stacks, but that do not follow from the
above properties, i.e., are independent?

Exercise 8.1 Show that the above four properties are independent.

Exercise 8.2 Find a property that stacks should enjoy and that is independent of all the
properties we have considered so far. Prove that it is independent.

Exercise 8.3 Add a new operation stack-size. Define this in a way that is as simple
as possible. Modify the contracts and properties in your new implementation so that we
characterize the algebraic properties of stack-size.

Exercise 8.4 Change the representation of stacks so that the size is recorded in the stack.
Note that you will have to modify the definition of all the other operations that modify the
stack so that they correctly update the size. This will allow us to determine the size without
traversing the stack. Prove that this new representation satisfies all of the properties you
identified in Exercise 8.3.

Let’s say that this is our final design. Now, the user of our implementation can only
depend on the above properties. That also means that we have very clear criteria for how
we can go about changing our implementation. We can do so, as long as we still provide
exactly the same operations and they satisfy the same algebraic properties identified above.

Let’s try to do that with a new implementation. The new implementation is going to
represent a stack as a list, but now the head will be the last element of the list, not the first.
So, this is a silly implementation, but we want to focus on understanding algebraic data
types without getting bogged down in implementation details, so a simple example is best.
Once we understand that, then we can understand more complex implementations where
the focus is on efficiency. Remember: correctness first, then efficiency.

Try defining the new implementation and show that it satisfies the above properties.
Here is an answer.

(defdata element all)

; Data definition of a stack: a list of elements

(defdata stack (listof element))

; A stack is empty iff it is equal to nil

(defunc stack-emptyp (s)

:input-contract (stackp s)

:output-contract (booleanp (stack-emptyp s))

(equal s nil))

; Stack creation: returns an empty stack

(defunc new-stack ()

:input-contract t

:output-contract (and (stackp (new-stack))

(stack-emptyp (new-stack)))

nil)

; The push operation inserts e on the top of the stack s

ADTs and Observational Equivalence 119

(defunc stack-push (e s)

:input-contract (and (elementp e) (stackp s))

:output-contract (and (stackp (stack-push e s))

(not (stack-emptyp (stack-push e s))))

(app s (list e)))

; The pop operation removes the top element of a non-empty stack

(defunc stack-pop (s)

:input-contract (and (stackp s) (not (stack-emptyp s)))

:output-contract (stackp (stack-pop s))

(rev (rest (rev s))))

; The head of a non-empty stack

(defunc stack-head (s)

:input-contract (and (stackp s) (not (stack-emptyp s)))

:output-contract (elementp (stack-head s))

(first (rev s)))

Exercise 8.5 Provide the lemmas ACL2s needs to admit all of these definitions.

Exercise 8.6 Prove that the above implementation of stacks satisfies all of the stack theo-
rems.

8.3 Observational Equivalence

We now consider yet another way of characterizing stacks.
We will define the notion of an external observation. The idea is that we will define

what an external observer of our stack library can see. Such an observer cannot see the
implementation of the library, just how the stack library responds to stack operations for a
particular stack.

The observer can see what operations are being performed and for each operation what
is returned to the user. More specifically below is a list of operations and a description of
what the observer can see for each.

1. stack-emptyp: what is observable is the answer returned by the library, which is
either t or nil.

2. stack-push: what is observable is only the element that was pushed onto the stack
(which is the element the user specified).

3. stack-pop: If the operation is successful, then nothing is observable. If the operation
is not successful, i.e., if the stack is empty, then an error is observable.

4. stack-head: If the operation is successful, then the head of the stack is observable,
otherwise an error is observable.

If a stack operation leads to a contract violation, then the observer observes the error,
and then nothing else. That is, any subsequent operations on the stack reveal absolutely
nothing.

120 Reasoning About Programs

Our job now is to define the observer. Use the first definition of stacks we presented
above.

First, we start by defining the library operations. Note that they have different names
than the functions we defined to implement them.

(defdata operation (oneof ’empty? (list ’push element) ’pop ’head))

; An observation is a list containing either a boolean (for

; empty?), an element (for push and head), or nothing (for

; pop). An observation can also be the symbol ’error (pop,

; head).

(defdata observation (oneof (list boolean) (list element) nil ’error))

; We are now ready to define what is externally observable given a

; stack s and an operation.

(defunc external-observation (s o)

:input-contract (and (stackp s) (operationp o))

:output-contract (observationp (external-observation s o))

(cond ((equal o ’empty?)

(list (stack-emptyp s)))

((consp o) (list (cadr o)))

((equal o ’pop) (if (stack-emptyp s) ’error nil))

(t (if (stack-emptyp s) ’error (list (stack-head s))))))

; Here are some simple tests.

(check= (external-observation ’(1 2) ’(push 4))

’(4))

(check= (external-observation ’(1 2) ’pop)

’())

(check= (external-observation ’(1 2) ’head)

’(1))

(check= (external-observation ’(1 2) ’empty?)

’(nil))

But we can do better. It should be the case that our code satisfies the following prop-
erties. Notice that each property corresponds to an infinite number of tests. (test? . . .)
allows us to test a property. ACL2s can return one of three results.

1. ACL2s proves that the property is true. Note that test? does not use induction. In
this case, the test? event succeeds.

2. ACL2s falsifies the property. In this case, test? fails and ACL2s provides a concrete
counterexample.

3. ACL2s cannot determine whether the property is true or false. In this case all we know
is that ACL2s intelligently tested the property on a specified number of examples and
did not find a counterexample. The number of examples ACL2s tries can be specified.
A summary of the analysis is reported and the test? event succeeds.

ADTs and Observational Equivalence 121

(test? (implies (stackp s)

(equal (external-observation s (list ’push e))

(list e))))

(test? (implies (and (stackp s)

(not (stack-emptyp s)))

(equal (external-observation s ’pop)

nil)))

(test? (implies (and (stackp s)

(stack-emptyp s))

(equal (external-observation s ’pop)

’error)))

(test? (implies (and (stackp s)

(stack-emptyp s))

(equal (external-observation s ’head)

’error)))

(test? (implies (stackp s)

(equal (external-observation (stack-push e s) ’head)

(list e))))

(test? (implies (and (stackp s)

(not (stack-emptyp s)))

(equal (external-observation s ’empty?)

(list nil))))

(test? (implies (and (stackp s)

(stack-emptyp s))

(equal (external-observation s ’empty?)

(list t))))

; Now we want to define what is externally observable for a

; sequence of operations. First, let’s define a list of operations.

(defdata lop (listof operation))

; Next, let’s define a list of observations.

(defdata lob (listof observation))

; Now, let’s define what is externally visible given a stack s

; and a list of observations.

(defunc update-stack (s op)

:input-contract (and (stackp s) (operationp op))

:output-contract (stackp s)

(cond ((or (equal op ’empty?) (equal op ’head))

s)

((equal op ’pop) (if (stack-emptyp s) nil (stack-pop s)))

122 Reasoning About Programs

(t (stack-push (cadr op) s))))

(defunc external-observations (s l)

:input-contract (and (stackp s) (lopp l))

:output-contract (lobp (external-observations s l))

(if (endp l)

nil

(let* ((op (first l))

(ob (external-observation s op)))

(if (equal ob ’error)

’(error)

(cons ob (external-observations (update-stack s op) (rest l)))))))

; Here are some instructive tests.

(check= (external-observations

(new-stack)

’(head))

’(error))

(check= (external-observations

(new-stack)

’((push 1) pop (push 2) (push 3)

pop head empty? pop empty?))

’((1) () (2) (3) () (2) (nil) () (t)))

(check= (external-observations

(new-stack)

’((push 1) pop pop pop empty?))

’((1) () error))

(check= (external-observations

(new-stack)

’((push nil) (push error) (push pop) empty? head pop

empty? head pop empty? head pop empty? head pop))

’((nil) (error) (pop) (nil) (pop) () (nil) (error) ()

(nil) (nil) () (t) error))

Exercise 8.7 What happens when we use a different implementation of stacks?
Suppose that we use the second implementation of stacks we considered. Then, we would

like to prove that an external observer cannot distinguish it from our first implementation.
Prove this.

Exercise 8.8 Prove that the implementation of stacks from Exercise 8.4 is observationally
equivalent to the above implementation, as long as the observer cannot use stack-size.
This shows that users who do not use stack-size operation cannot distinguish the stack
implementation from Exercise 8.4 with our previous stack implementations.

Exercise 8.9 Prove that the implementation of stacks from Exercise 8.4 is observationally
equivalent to the implementation of stacks from Exercise 8.3. Extend the observations that
can be performed to account for stack-size.

ADTs and Observational Equivalence 123

8.4 Queues

We will now explore queues, another abstract data type.
Queues are related to stacks. Recall that in a stack we can push and pop elements.

Stacks work in a LIFO way (last in, first out): what is popped is what was most recently
pushed. Queues are like stacks, but they work in a FIFO way (first in, first out). A queue
then is like a line at the bank (or the grocery store, or an airline terminal, . . .): when you
enter the line, you enter at the end, and you get to the bank teller when everybody who
came before you is done.

Let’s start with an implementation of a queue, which is going to be similar to our
implementation of a stack.

; A queue is a true-list (like before, with stacks)

(defdata element all)

(defdata queue (listof element))

; A queue is empty iff it is nil

(defunc queue-emptyp (q)

:input-contract (queuep q)

:output-contract (booleanp (queue-emptyp q))

(equal q nil))

; A new queue is just the empty list

(defunc new-queue ()

:input-contract t

:output-contract (and (queuep (new-queue))

(queue-emptyp (new-queue)))

nil)

; The head of a queue. Let’s decide that the head of the queue

; will be the first.

(defunc queue-head (q)

:input-contract (and (queuep q) (not (queue-emptyp q)))

:output-contract (elementp (queue-head q))

(first q))

; Dequeueing can be implemented with rest

(defunc queue-dequeue (q)

:input-contract (and (queuep q) (not (queue-emptyp q)))

:output-contract (queuep (queue-dequeue q))

(rest q))

; Enqueueing to a queue requires putting the element at the

; end of the list.

(defunc queue-enqueue (e q)

:input-contract (and (elementp e) (queuep q))

:output-contract (and (queuep (queue-enqueue e q))

(not (queue-emptyp (queue-enqueue e q))))

(app q (list e)))

124 Reasoning About Programs

We’re done with this implementation of queues.
Instead of trying to prove a collection of theorems that hold about queues, we are going

to define another implementation of queues and will show that the two implementations are
observationally equivalent.

We’ll see what that means in a minute, but first, let us define the second implementation
of queues. The difference is that now the head of the queue will be the first element of a
list. We will define a new version of all the previous queue-functions.

(defdata element2 all)

(defdata queue2 (listof element2))

; A queue2 is empty iff it satisfies endp

(defunc queue2-emptyp (q)

:input-contract (queue2p q)

:output-contract (booleanp (queue2-emptyp q))

(equal q nil))

; A new queue2 is just the empty list

(defunc new-queue2 ()

:input-contract t

:output-contract (and (queue2p (new-queue2))

(queue2-emptyp (new-queue2)))

nil)

; The head of a queue2 is now the last element of the list

; representing the queue2. What’s a simple way of getting our

; hands on this? Use rev.

(defunc rev (x)

:input-contract (listp x)

:output-contract (listp (rev x))

(if (endp x)

nil

(app (rev (rest x)) (list (first x)))))

; Here are the basic theorems about rev that we already

; established.

(defthm rev-app

(implies (and (listp x) (listp y))

(equal (rev (app x y))

(app (rev y) (rev x))))

:hints (("goal" :induct (listp x))))

(defthm rev-rev

(implies (listp x)

(equal (rev (rev x))

x)))

; The head of a queue2 is the last element in q

ADTs and Observational Equivalence 125

(defunc queue2-head (q)

:input-contract (and (queue2p q) (not (queue2-emptyp q)))

:output-contract (element2p (queue2-head q))

(first (rev q)))

; Dequeueing (removing) can be implemented as follows. Recall that

; in this implementation, the first element of a queue2 is the last

; element of the list. Also, we don’t care about efficiency at

; this point. We can make it more efficient later. We care about

; specification.

(defunc queue2-dequeue (q)

:input-contract (and (queue2p q) (not (queue2-emptyp q)))

:output-contract (queue2p (queue2-dequeue q))

(rev (rest (rev q))))

; Enqueueing (adding an element to a queue2) can be implemented

; with cons. Note that the last element of a queue2 is at the

; front of the list.

(defunc queue2-enqueue (e q)

:input-contract (and (element2p e) (queue2p q))

:output-contract (and (queue2p (queue2-enqueue e q))

(not (queue2-emptyp (queue2-enqueue e q))))

(cons e q))

Let’s see if we can prove that the two implementations are equivalent. To do that, we
are going to define what is observable for each implementation.

; We start with the definition of an operation.

; ’e? is the empty check, ’e is enqueue, ’h is head

; and ’d is dequeue

(defdata operation (oneof ’e? (list ’e element) ’h ’d))

; Next, we define a list of operations.

(defdata lop (listof operation))

; An observation is a list containing either a boolean (for

; e?), an element (for ’e and ’h), or nothing (for

; ’d). An observation can also be the symbol ’error (’h, ’d).

(defdata observation (oneof (list boolean) (list element) nil ’error))

; Finally, we define a list of observations.

(defdata lob (listof observation))

; Now we want to define what is externally observable given a

; sequence of operations and a queue. It turns out we need a

; lemma for ACL2s to admit queue-run. How we came up with the

; lemma is not important. (But in case it is useful, there was a

; problem proving the contract of queue-run, so I admitted it

; with the output-contract of t and then tried to prove the

126 Reasoning About Programs

; contract theorem and noticed (using the method) what the

; problem was).

(defthm queue-lemma

(implies (queuep q)

(queuep (app q (list x)))))

(defunc queue-run (l q)

:input-contract (and (lopp l) (queuep q))

:output-contract (lobp (queue-run l q))

(if (endp l)

nil

(let ((i (first l)))

(cond ((equal i ’d)

(if (queue-emptyp q)

(list ’error)

(cons nil (queue-run (rest l) (queue-dequeue q)))))

((equal i ’h)

(if (queue-emptyp q)

(list ’error)

(cons (list (queue-head q)) (queue-run (rest l) q))))

((equal i ’e?)

(cons (list (queue-emptyp q)) (queue-run (rest l) q)))

(t (cons (list (cadr i))

(queue-run (rest l) (queue-enqueue (cadr i) q))))))))

; Now we want to define what is externally observable given a

; sequence of operations and a queue2. We need a lemma, as

; before. (It was discovered using the same method).

(defthm queue2-lemma

(implies (queue2p q)

(queue2p (rev (rest (rev q))))))

(defunc queue2-run (l q)

:input-contract (and (lopp l) (queue2p q))

:output-contract (lobp (queue2-run l q))

(if (endp l)

nil

(let ((i (first l)))

(cond ((equal i ’d)

(if (queue2-emptyp q)

(list ’error)

(cons nil (queue2-run (rest l) (queue2-dequeue q)))))

((equal i ’h)

(if (queue2-emptyp q)

(list ’error)

(cons (list (queue2-head q)) (queue2-run (rest l) q))))

((equal i ’e?)

ADTs and Observational Equivalence 127

(cons (list (queue2-emptyp q)) (queue2-run (rest l) q)))

(t (cons (list (cadr i))

(queue2-run (rest l) (queue2-enqueue (cadr i) q))))))))

; Here is one test.

(check=

(queue-run ’(e? (e 0) (e 1) d h (e 2) h d h) (new-queue))

(queue2-run ’(e? (e 0) (e 1) d h (e 2) h d h) (new-queue2)))

But, how do we prove that these two implementations can never be distinguished? What
theorem would you prove?

(defthm observational-equivalence

(implies (lopp l)

(equal (queue2-run l (new-queue2))

(queue-run l (new-queue)))))

But, we can’t prove this directly. We have to generalize. We have to replace the constants
with variables. How do we do that?

First, note that we cannot replace (new-queue2) and (new-queue) with the same variable
because they are manipulated by different implementations. Another idea might be to use
two separate variables, but this does not work either because they have to represent the
same abstract queue. The way around this dilemma is to use two variables but to say that
they represent the same abstract queue. The first step is to write a function that given a
queue2 queue returns the corresponding queue.

(defunc queue2-to-queue (q)

:input-contract (queue2p q)

:output-contract (queuep (queue2-to-queue q))

(rev q))

; We need a lemma

(defthm queue2-queue-rev

(implies (queue2p x)

(queuep (rev x))))

; Here is the generalization.

(defthm observational-equivalence-generalization

(implies (and (lopp l)

(queue2p q2)

(equal q (queue2-to-queue q2)))

(equal (queue2-run l q2)

(queue-run l q))))

; Now, the main theorem is now a trivial corollary.

(defthm observational-equivalence

(implies (lopp l)

(equal (queue2-run l (new-queue2))

(queue-run l (new-queue)))))

