
Reasoning About Programs
Panagiotis Manolios

Northeastern University

January 15, 2013
Version: 80

Copyright c©2012 by Panagiotis Manolios

All rights reserved. We hereby grant permission for this publication to be used for personal or
classroom use. No part of this publication may be stored in a retrieval system or transmitted
in any form or by any means other personal or classroom use without the prior written
permission of the author. Please contact the author for details.

1

A Simple Functional Programming Language

In this chapter we introduce a simple functional programming language that forms the core
of ACL2s. The language is a dialect of the Lisp programming language and is based on
ACL2. In order to reason about programs, we first have to understand the syntax and
semantics of the language we are using. The syntax of the language tells us what sequence
of glyphs constitute well-formed expressions. The semantics of the language tells us what
well-formed expressions (just expressions from now on) mean, i.e., how to evaluate them.
Our focus is on reasoning about programs, so the programming language we are going to
use is designed to be simple, minimal, expressive, and easy to reason about.

What makes ACL2s particularly easy to reason about is the fact that it is a functional
programming language. What this means is that every built-in function and in fact any
ACL2s function a user can define satisfies the rule of Leibniz:

If x1 = y1 and x2 = y2 and · · · and xn = yn, then (f x1 x2 · · ·xn) = (f y1 y2 · · · yn)

Almost no other language satisfies this very strict condition, e.g., in Java you can define a
function foo of one argument that on input 0 can return 0, or 1, or any integer because it
returns the number of times it was called. This is true for Scheme, LISP, C, C++, C#,
OCaml, etc. The rule of Leibniz, as we will see later, is what allows us to reason about
ACL2s in a way that mimics algebraic reasoning.

You interact with ACL2s via a Read-Eval-Print-Loop (REPL). For example, ACL2s
presents you with a prompt indicating that it is ready to accept input.

ACL2S BB !>

You can now type in an expression, say

ACL2S BB !>12

ACL2s reads and evaluates the expression and prints the result

12

It then presents the prompt again, indicating that it is ready for another REPL interaction

ACL2S BB !>

We recommend that as you read these notes, you also have ACL2s installed and follow along
in the “Bare Bones” mode. The “BB” in the prompt indicates that ACL2s is in the “Bare
Bones” mode.

The ACL2s programming language allows us to design programs that manipulate objects
in the ACL2s universe. The set of all objects in the universe will be denoted by All. All
includes:

� Rationals: For example, 11,−7, 3/2,−14/15.

4 Reasoning About Programs

� Symbols: For example, x, var, lst, t, nil.

� Booleans: There are two Booleans, t, denoting true and nil, denoting false.

� Conses: For example, (1), (1 2 3), (cons 1 ()), (1 (1 2) 3).

The Rationals, Symbols, and Conses are disjoint. The Booleans nil and t are Symbols.
Conses are Lists, but there is exactly one list, the empty list, which is not a cons. We will
use () to denote the empty list, but this is really an abbreviation for the symbol nil.

The ACL2s language includes a basic core of built-in functions, which we will use to
define new functions.

It turns out that expressions are just a subset of the ACL2s universe. Every expression is
an object in the ACL2s universe, but not conversely. As we introduce the syntax of ACL2s,
we will both identify what constitutes an expression and what these expressions mean as
follows. If expr is an expression, then

JexprK
will denote the semantics of expr , or what expr evaluates to when submitted to ACL2s

at the REPL.
We will introduce the ACL2s programming language by first introducing the syntax and

semantics of constants, then Booleans, then numbers, and then conses and lists.

1.1 Constants

All constants are expressions. The ACL2s Boolean constant denoting true is the symbol t
and the constant denoting false is the symbol nil. These two constants are different and
they evaluate to themselves.

JtK = t

JnilK = nil

nil 6= t

The numeric constants include the natural numbers:

0, 1, 2, . . .

The negative integers:

−1,−2,−3, . . .

All integers evaluate to themselves, e.g.,

J3K = 3

J−12K = −12

And the rationals:

1/2, −1/2, 1/3, −1/3, 3/2, −3/2, 2/3, −2/3, . . .

We will describe the evaluation of rationals in Section 1.3.

A Simple Functional Language 5

1.2 Booleans

There are two built-in functions, if and equal.
When we introduce functions, we specify their signature. The signature of if is:

if : Boolean× All× All → All

The signature of if tells us that if takes three arguments, where the first argument is
a Boolean and the rest of the arguments are anything at all. It returns anything. So, the
signature specifies not only the arity of the function (how many arguments it takes) but
also its input and output contracts.

Examples of if expressions include the following.

(if t nil t)

(if nil 3 4)

All function applications in ACL2s are written in prefix form as shown above. For
example, instead of 3 + 4, in ACL2s we write (+ 3 4). The if expressions above are
elements of the ACL2s universe, e.g., the first if expression is a list consisting of the
symbols t, nil, and t, in that order.

Not every list starting with the symbol if is an expression, e.g., the following are not
expressions.

(if t nil)

(if 1 3 4)

The first list above does not satisfy the signature of if, which tells us that the function
has an arity of three. The second list also does not satisfy the signature of if, which tells
us that the input contract requires that the first argument is a Boolean. In general, a list is
an expression if it satisfies the signature of a built-in or previously defined function.

The semantics of (if test then else) is as follows.

J(if test then else)K = JthenK, when JtestK = t

J(if test then else)K = JelseK, when JtestK = nil

For all ACL2s functions we consider, we specify the semantics of the functions only in
the case that the signature of the function is satisfied, i.e., only for expressions. If the input
contract is violated, then we say that a contract violation has occurred and the function
does not evaluate to anything; hence, it does not return a result. For example, as we have
seen (if 1 3 4) is not an expression. If you try to evaluate it you will get an error message
indicating that a contract violation has occurred.

Our first function, if, is an important and special function. In contrast to every other
function, if is evaluated in a lazy way by ACL2s. Here is how evaluation works. To evaluate

J(if test then else)K
ACL2s performs the following steps.

1. First, ACL2s evaluates test , i.e., it computes JtestK.

6 Reasoning About Programs

2. If JtestK = t, then ACL2s returns JthenK.
3. Otherwise, it returns JelseK.

Notice that test is always evaluated, but only one of then or else is evaluated. In contrast,
for all other functions we define, ACL2s will evaluate them in a strict way by evaluating all
of the arguments to the function and then applying the function to the evaluated results.

Examples of the evaluation of if expressions include the following:

J(if t nil t)K = nil

J(if nil 3 4)K = 4

Here is a more complex if expression.

(if (if t nil t) 1 2)

This may be confusing because it seems that the test of the if is a List, not a Boolean.
However, notice that to evaluate an if, we evaluate the test first, i.e.:

J(if t nil t)K = nil

Therefore,
J(if (if t nil t) 1 2)K = J2K = 2

The next function we consider is equal.

equal : All× All → Boolean

J(equal x y)K is t if JxK = JyK and nil otherwise.
Notice that equal always evaluates to t or nil.
Here are some examples.

J(equal 3 nil)K = nil

J(equal 0 0)K = t

J(equal (if t nil t) nil)K = t

That’s it for the built-in Booleans constants and functions.
Let us now define some utility functions.
We start with booleanp, whose signature is as follows.

All → Boolean

The name is the concatenation of the word “boolean” with the symbol “p.” The “p”
indicates that the function is a predicate, a function that returns t or nil. We will use this
naming convention in ACL2s (most of the time). Other Lisp dialects indicate predicates
using other symbols, e.g., Scheme uses “?” (pronounced “huh”) instead of “p.”

Here is how we define functions with contracts in ACL2s.

(defunc booleanp (x)

:input-contract ...

:output-contract ...

A Simple Functional Language 7

(if (equal x t)

t

(equal x nil)))

The contracts were deliberately elided. We will add them shortly, but first we discuss
how to evaluate expressions involving booleanp.

How do we evaluate (booleanp 3)?
J(booleanp 3)K

= { Semantics of booleanp }
J(if (equal 3 t) t (equal 3 nil))K

= { Semantics of equal, J(equal 3 t)K= nil, Semantics of if }
J(equal 3 nil)K

= { Semantics of equal, J(equal 3 nil)K= nil }
nil

Above we have a sequence of expressions each of which is equivalent to the next expression
in the sequence for the reason given in the hint enclosed in curly braces. For example the
first equality holds because we expanded the definition of booleanp, replacing the formal
parameter x with the actual argument 3.

The next thing is: what is the input contract for booleanp?
It is t because there are no constraints on the input to the function. All recognizers will

have an input contract of t. A recognizer is a function that given any element of the ACL2s
universe recognizes whether it belongs to a particular subset. In the case of booleanp, the
subset being recognized is the set of Booleans {t, nil}.

What about the output contract? Since booleanp is a recognizer it returns a Boolean!
We express this as follows:

(booleanp (booleanp x))

So, all together we have:

(defunc booleanp (x)

:input-contract t

:output-contract (booleanp (booleanp x))

(if (equal x t)

t

(equal x nil)))

What does the contract mean? Well, let us consider the general case. Say that function
f with parameters x1, . . . , xn has the input contract ic and the output contract oc, then
what the contract means is that for any assignment of values from the ACL2s universe to
the variables x1, . . . , xn, the following formula is always true.

ic Implies oc

Hence, the contract for booleanp means that for any element of the ACL2s universe, x,

t Implies (booleanp (booleanp x))

If we wanted to make the universal quantification and the implication explicit, we would
write the following, where the domain of x is implicitly understood to be All.

8 Reasoning About Programs

〈∀x :: t ⇒ (booleanp (booleanp x))〉
Notice that by the relationship between ⇒ (implication) and if, the above is equivalent

to

〈∀x :: (if t (booleanp (booleanp x)) t)〉
By the semantics of if, we can further simplify this to

〈∀x :: (booleanp (booleanp x))〉
So, for any ACL2s element x, booleanp returns a boolean.
Let us continue with more basic definitions.

and : Boolean× Boolean → Boolean

(defunc and (a b)

:input-contract (if (booleanp a) (booleanp b) nil)

:output-contract (booleanp (and a b))

(if a b nil))

implies : Boolean× Boolean → Boolean

(defunc implies (a b)

:input-contract (and (booleanp a) (booleanp b))

:output-contract (booleanp (implies a b))

(if a b t))

or : Boolean× Boolean → Boolean

(defunc or (a b)

:input-contract (and (booleanp a) (booleanp b))

:output-contract (booleanp (or a b))

(if a t b))

How do we evaluate the above? Simple:
J(or t nil)K

= { Definition of or }
J(if t t nil)K

= { Semantics of if }
If JtK = nil then JnilK else JtK

= { Constants evaluate to themselves }
If t = nil then nil else t

= { t is not nil }
t

A Simple Functional Language 9

Exercise 1.1 Define: not, iff, xor, and other Boolean functions.

not : Boolean → Boolean

(defunc not (a)

:input-contract (booleanp a)

:output-contract (booleanp (not a))

(if a nil t))

iff : Boolean× Boolean → Boolean

(defunc iff (a b)

:input-contract (and (booleanp a) (booleanp b))

:output-contract (booleanp (iff a b))

(if a b (not b)))

xor : Boolean× Boolean → Boolean

(defunc xor (a b)

:input-contract (and (booleanp a) (booleanp b))

:output-contract (booleanp (xor a b))

(if a (not b) b))

1.3 Numbers

We have the following built-in recognizers:

integerp : All → Boolean

rationalp : All → Boolean

Here is what they mean.
J(integerp x)K is t iff JxK is an integer.
J(rationalp x)K is t iff JxK is a rational.
Note that integers are rationals. This is just a statement of mathematical fact.
Notice also that ACL2s includes the real rationals and integers, not approximations or

bounded numbers, as you might find in most other languages, including C and Java.
We also have the following functions.

+ : Rational× Rational → Rational

* : Rational× Rational → Rational

< : Rational× Rational → Boolean

unary-- : Rational → Rational

unary-/ : Rational → Rational

10 Reasoning About Programs

Wait, what about (unary-/ 0)? The contract really is:

unary-/ : Rational \ {0} → Rational

How do we express this kind of thing?

(defunc unary-/ (a)

:input-contract (and (rationalp a) (not (equal a 0)))

...)

The semantics of the above functions should be clear (from elementary school). Here are
some examples.

J(+ 3/2 17/6)K = 13/3

J(* 3/2 17/6)K = 17/4

J(< 3/2 17/6)K = t

J(unary-- -2/8)K = 1/4

J(unary-/ -2/8)K = -4

Exercise 1.2 Define subtraction on rationals - and division on rationals /. Note that the
second argument to / cannot be 0.

Let’s define some more functions, starting with a recognizer for positive integers.

posp : All → Boolean

(defunc posp (a)

:input-contract t

:output-contract (booleanp (posp a))

(if (integerp a)

(< 0 a)

nil))

What if we tried to define posp as follows?

(defunc posp (a)

:input-contract t

:output-contract (booleanp (posp a))

(and (integerp a)

(< 0 a)))

Well, notice that the contract for < is that we give it two rationals. How do we know
that a is rational? What we would like to do is to test that a is an integer first, before
testing that (< 0 a), but the only way to do that is to use if. This is another reason why
if is special. When checking the contracts of the then branch of an if, we can assume
that the test is true; when checking the contracts of an else branch, we can assume that
the test is false. No other ACL2s function gives us this capability. If we want to collect
together assumptions in order to show that contracts are satisfied, we have to use if.

Exercise 1.3 Define natp, a recognizer for natural numbers.

A Simple Functional Language 11

We also have built-in

numerator : Rational → Integer

denominator : Rational → Pos

J(numerator a)K is the numerator of the number we get after simplifying JaK.
J(denominator a)K is the denominator of the number we get after simplifying JaK.
To simplify an integer x, we return x.
To simplify a number of the form x/y, where x is an integer and y a natural number,

we divide both x and y by the gcd(|x|, y) to obtain a/b. If b = 1, we return a; otherwise we
return a/b. Note that b (the denominator) is always positive.

Since rational numbers can be represented in many ways, ACL2s returns the simplest
representation, e.g.,

J2/4K = 1/2

J4/2K = 2

J132/765K = 44/255

1.4 Other Atoms

Symbols and numbers are atoms. The ACL2s universe includes other atoms, such as strings
and characters. We’ll introduce them later, as needed.

1.5 Lists

The only way to create non-atomic data is to use lists.
Our first built-in function is a recognizer for conses.

consp : All → Boolean

Conses are non-empty lists and are comprised of a first element and the rest of the list.
Here are the functions for accessing the first and rest of a cons.

first : Cons → All

rest : Cons → All

We now define listp, a recognizer for lists, as follows.

listp : All → Boolean

(defunc listp (l)

:input-contract t

:output-contract (booleanp (listp l))

(if (consp l)

(listp (rest l))

12 Reasoning About Programs

(equal l ())))

The last built-in function is:

cons : All× List → Cons

The semantics of the built-in functions is given by the following rules. Notice that the
second argument to cons can either be () or a cons.

J(cons x ())K = (JxK)
J(cons x y)K = (JxK ...) where JyK = (. . .)

J(consp x)K = t iff JxK is a cons.

Notice that since consp is a recognizer it returns a Boolean. So, if JxK is an atom, then
then J(consp x)K = nil.

Here are some examples.

J(consp 3)K = nil

J(consp (cons nil nil))K = t

J(consp nil)K = nil

The semantics of first and rest is given with the following rules.

J(first x)K = a,where JxK = (a . . .) for some a, . . .

J(rest x)K = (. . .),where JxK = (a . . .) for some a, . . .

Here are some examples.

J(first (cons (if t 3 4) (cons 1 ())))K = 3

J(first (rest (cons (if t 3 4) (cons 1 ()))))K = 1

J(rest (cons (if t 3 4) (cons 1 (if t nil t))))K = (cons 1 ())

If you try evaluating (rest (cons (if t 3 4) (cons 1 (if t () t)))) at the ACL2s
command prompt, here is what ACL2s reports.

(1)

Since lists are so prevalent, ACL2s includes a special way of constructing them. Here is an
example.

(list 1)

is just a shorthand for (cons 1 ()), e.g., notice that asking ACL2s to evaluate

(equal (LIST 1) (cons 1 ()))

results in t. What is list really? (By the way notice that symbols in ACL2s, such as list,
are case-insensitive.) It is not a function. Rather, it is a macro. There is a lot to say about
macros, but for our purposes, all we need to know is that a macro gives us abbreviation
power. In general

(list x1 x2 · · · xn)

abbreviates (or is shorthand for)

(cons x1 (cons x2 · · · (cons xn nil) · · ·))

A Simple Functional Language 13

1.6 Contract Violations

Consider

(unary-/ 0)

If you try evaluating this, you get an error because you violated the contract of unary-/.
When a function is called on arguments that violate the input contract, we say that the
function call resulted in an input contract violation. If such a contract violation occurs, then
the function does not return anything.

Contract checking is more subtle than this, e.g., consider the following definition.

(defunc foo (a)

:input-contract (integerp a)

:output-contract (booleanp (foo a))

(if (posp a)

(foo (- a 1))

(rest a)))

ACL2s will not admit this function unless it can prove that every function call in the
body of foo satisfies its contract, a process we call body contract checking and that foo

satisfies its contract, a process we call contract checking. This yields five body contract
conjectures and one contract conjecture.

Exercise 1.4 Identify all the body contract checks and contract checks that the definition
of foo gives rise to. Which (if any) of these conjectures is always true? Which (if any) of
these conjectures is sometimes false?

Notice that contract checking happens even before the function is admitted. This is called
“static” checking. Another option would have been to perform this check “dynamically.”
That is, all the contract checking above would be performed as the code is running.

1.7 Termination

All ACL2s function definitions have to terminate on all inputs that satisfy the input contract.
For example, consider the following “definition.”

(defunc listp (a)

:input-contract t

:output-contract (booleanp (listp a))

(if (consp a)

(listp a)

(equal a nil)))

ACL2s will not accept the above definition and will report that it could not prove
termination.

Let’s look at another example.
Define a function that given n, returns 0 + ...+ n.
Here are some possibilities:

;; sum-n: integer -> integer

14 Reasoning About Programs

;; Given integer n, return 0+1+2+...+n

(defunc sum-n (n)

:input-contract (integerp n)

:output-contract (integerp (sum-n n))

(if (equal n 0)

0

(+ n (sum-n (- n 1)))))

(check= (sum-n 5) (+ 1 2 3 4 5))

(check= (sum-n 0) 0)

(check= (sum-n 3) 6)

Exercise 1.5 The above function does not terminate. Why? Change only the input con-
tract so that it does terminate. Next, change the output contract so that it gives us more
information about the type of values sum-n returns.

