CS 2800 Section 1 — Exam 2 — Spring 2012

Name:

Student Id (last 4 digits):

e You must take the exam in the section
you are registered for.

e Write down the answers in the space
provided.

e Please write clearly. If we can’t read
what you write, we can’t give you
credit for it.

e You may use anything we covered in
class or in the class notes. Everything
else needs to be defined. If you have
any questions, please ask!

Good luck!

Question | Points | out of
1 240

2 420

3 540
Total 1200




Question 1. (240 = 50 + 190 points)

(a) Given the formula ¢ and the substitution o below, determine ¢|,, i.e.
the result of applying o to ¢.

¢ = (equal (+ (len alpha) (len beta) (len gamma))
(len (cons ’alpha (beta gamma))))
o = ((alpha ’(0 1)) (beta ’(2)) (gamma ’(3 4)))
¢le =

(b) Among the following three expressions fi, fa, f3, identify all pairs (f;, f;)
such that i # j and there exists a substitution o such that f;|, = f;.
For each pair, if o exists, specify it. Otherwise, write “none”.

fir (b (cons a y) (list y ’(2 3)) (/ (abs (fib x )) r))
for (b (cons ’a z) (list z ’(2 3)) (/ (abs (fib r )) x))
f3: (b (cons ’a y) (list y (2 3)) (/ (abs (fib x)) x))

e o such that fi|, = fa

o such that fo|, = fi:

o such that fi|, = fs:

o such that f3|, = fi:

o such that fo|, = fs:

o such that f3|, = fo:



Question 2. (420 = 140 + 280 points)

(a) Albert is considering the following function:

(defunc wicked (a b c)
:input-contract (and (integerp a) (posp b) (integerp c))
routput-contract (integerp (wicked a b c))
(cond ((>= a b) a)

((>=Db c) b)
(( ¢ 0) (wicked (+ a b) b c))
(t (wicked a b (+ a b)))))

He claims that this function will be admitted by ACL2s since its body is
a legal expression satisfying all body contracts, and the output contract
is trivially satisfied as well. But he forgot something! Show that the
function does not (always) terminate, by giving an input in the form
of concrete values a, b, ¢ that satisfies the input contract but causes
an infinite execution.

(b) Albert admits there were several typos in his definition. His new
proposal is (read carefully!):

(defunc wicked (a b c)
:input-contract (and (posp a) (posp b) (integerp c))
routput-contract (integerp (wicked a b c))
(cond ((>= a b) a)
((< ¢ 0) (wicked (+ a b) b c))
(t (wicked a b (- a b)))))

Prove that this function terminates, by defining a measure function in
the template below.

Hint: First run function wicked on a few well-chosen test cases (ex-
ercising all clauses of the cond) and see what happens. How long can
chains of recursive calls to this function actually be?



(defunc m (a b ¢)
:input-contract ...
:output-contract ...

Be sure that m would be admitted by ACL2s. Then prove that, on every
recursive call of wicked, the value of m decreases, under the conditions
of that recursive call.



Question 3. (540 = 60 + 160 + 320 points)

Consider the following recursive definitions of natural-number addition and
multiplication, and the following four theorems.

(defunc plus (a b)
:input-contract (and (natp a) (natp b))
routput-contract (natp (plus a b))
(if (equal b 0)
a
(+ (plus a (- b 1)) 1)))

(defunc times (a b)
:input-contract (and (natp a) (natp b))
routput-contract (natp (times a b))
(if (equal b 0)
0
(plus (times a (- b 1)) a)))

(defthm plus-commutative
(implies (and (natp a) (matp b))
(equal (plus a b)
(plus b a))))

(defthm plus-associative
(implies (and (natp a) (natp b) (natp c))
(equal (plus a (plus b c))
(plus (plus a b) c))))

(defthm plus-greater (defthm plus-minus-1
(implies (and (natp a) (implies (and (natp a)
(natp b) (natp b)
(> a 0)) (> a 0))
(> (plus a b) 0))) (equal (- (plus a b) 1)

(plus (- a 1) b))

You may assume that the functions are admitted by ACL2s, and that the
theorems have been proved. You may use the theorems in your proof below.
If you do, quote the theorem you are using, and specify the substitution that
you used to obtain an instance of the theorem. You may not apply any
facts of natural arithmetic to plus and times, as we have neither proved,
nor stated as a theorem, that these implement addition and multiplication.



The following conjecture comes up as part of an inductive proof that multi-
plication distributes over addition:

(implies (and (natp a)
(natp b)
(natp ¢)
(> b 0)
(implies (natp (- b 1))
(equal (times a (plus (- b 1) <))
(plus (times a (- b 1)) (times a c)))))
(equal (times a (plus b c¢)) (plus (times a b) (times a c))))

(a) Extract the context from the conjecture.

(b) Determine the derived context. You should also add the following fact
to your context: (> (plus b c¢) 0). How do you justify it?



(c¢) Prove the conjecture by equational reasoning. To help you, the num-
ber of steps it may take and some intermediate results are provided
(although your proof strategy may differ; these are just meant as guide-
lines). If you are stuck, look at the theorems in your arsenal, and at
the (derived) context.

Proof:

(times a (plus b c))

(plus (plus (times a (- b 1)) (times a c)) a)

{ plus-commutative }

{ plus-associative }

{ plus-commutative }

(plus (plus (times a (- b 1)) a) (times a c))

(plus (times a b) (times a c))



