
Ordinal Arithmetic: Algorithms and Mechanization

Panagiotis Manolios (manolios@cc.gatech.edu)
College of Computing, CERCS Lab, Georgia Institute of Technology
801 Atlantic Drive, Atlanta, Georgia 30332-0280 U.S.A.
http://www.cc.gatech.edu/∼manolios

Daron Vroon (vroon@cc.gatech.edu)
College of Computing, CERCS Lab, Georgia Institute of Technology
801 Atlantic Drive, Atlanta, Georgia 30332-0280 U.S.A.
http://www.cc.gatech.edu/∼vroon

Abstract. Termination proofs are of critical importance for establishing the cor-
rect behavior of both transformational and reactive computing systems. A general
setting for establishing termination proofs involves the use of the ordinal numbers,
an extension of the natural numbers into the transfinite which were introduced by
Cantor in the nineteenth century and are at the core of modern set theory. We
present the first comprehensive treatment of ordinal arithmetic on compact ordinal
notations and give efficient algorithms for various operations, including addition,
subtraction, multiplication, and exponentiation.

Using the ACL2 theorem proving system, we implemented our ordinal arithmetic
algorithms, mechanically verified their correctness, and developed a library of theo-
rems that can be used to significantly automate reasoning involving the ordinals. To
enable users of the ACL2 system to fully utilize our work required that we modify
ACL2, e.g., we replaced the underlying representation of the ordinals and added a
large library of definitions and theorems. Our modifications are available starting
with ACL2 version 2.8.

1. Introduction

Termination proofs are of critical importance for mechanically estab-
lishing that computing systems behave correctly. In the case of trans-
formational systems, termination proofs allow us to go from partial
correctness to total correctness [1]. Termination proofs are important
even in the context of reactive systems, non-terminating systems that
are engaged in on-going interaction with an environment (e.g., net-
work protocols, operating systems, distributed databases, pipelined
machines, etc.): they are used to prove liveness properties i.e., to show
that some desirable behavior is not postponed forever. Proving ter-
mination amounts to showing that a relation is well-founded [2]. Any
well-founded relation can be extended to a total order, giving rise to
a well-ordered relation. From a basic theorem of set theory, we have
that every well-ordered relation is isomorphic to an ordinal; thus, the

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

ordinals.tex; 16/03/2005; 12:41; p.1

2

ordinal numbers provide a general setting for establishing termination
proofs.

1.1. Previous Work

The ordinal numbers were introduced by Cantor over 100 years ago and
are at the core of modern set theory [10, 11, 12]. They are an extension
of the natural numbers into the transfinite and are an important tool in
logic, e.g., after Gentzen’s proof of the consistency of Peano arithmetic
using the ordinal number ε0 [21], proof theorists routinely use ordinals
and ordinal notations to establish the consistency of logical theories [57,
62]. To obtain constructive proofs, constructive ordinals notations are
employed. The general theory of ordinal notations was initiated by
Church and Kleene [13] and is recounted in Chapter 11 of Roger’s
book on computability [50].

An early use of the ordinals for proving program termination is due
to Alan M. Turing, who in 1949 wrote the following [64, 42].

The checker has to verify that the process comes to an end. Here
again he should be assisted by the programmer giving a further
definite assertion to be verified. This may take the form of a quan-
tity which is asserted to decrease continually and vanish when the
machine stops. To the pure mathematician it is natural to give an
ordinal number. In this problem the ordinal might be (n − r)ω2 +
(r − s)ω + k.1

The automated reasoning community has studied the problem of
formalizing the ordinals (as opposed to ordinal notations), focusing on
proving known results. Dennis and Smaill studied higher-order heuristic
extensions of rippling. They used ordinal arithmetic as a case study,
which was implemented in λClam, a higher order proof planning sys-
tem for induction. They were able to successfully plan standard un-
dergraduate textbook problems using their system [14]. Paulson and
Grabczewski have mechanized a good deal of set theory, including the
proof that for any infinite cardinal, κ, we have κ ⊗ κ = κ, most of the
first chapter of Kunen’s excellent book on set theory [30], and the equiv-
alence of eight forms of the well-ordering theorem [49]. More recently,
Paulson has mechanized the proof of the relative consistency of the
axiom of choice and has proved the reflection theorem [48, 47]. Paulson
and Grabczewski’s efforts required reasoning about the ordinals and

1 Readers familiar with the ordinals may suspect that Turing’s measure function
is not quite right, as (i)ωj = ωj when i and j are positive integers. This seems to be
purely a notational issue, e.g., Turing uses the same convention in a paper on logics
based on ordinals [63]. Using modern conventions, the measure function is written
ω2(n − r) + ω(r − s) + k.

ordinals.tex; 16/03/2005; 12:41; p.2

Ordinal Arithmetic: Algorithms and Mechanization 3

were carried out with the Isabelle/ZF system [44, 46]. A version of
the reflection theorem was also proved by Bancerek, using Mizar [3].
Another line of work is by Belinfante, who has used Otter to prove
elementary theorems of ordinal number theory [4, 5, 6]. There is much
more work that can be mentioned, but we end by listing some of the
theorem proving systems for which there exists support for the ordinals:
Nqthm [8], ACL2 [26], Coq [7], PVS [43], HOL [22], Isabelle [45], and
Mizar [51].

Ordinal notations are used in the context of automated reasoning
to prove termination. For example, the ordinals up to ε0 are the basis
for termination proofs in the ACL2 theorem proving system [26, 27],
which has been used on some impressive industrial-scale problems by
companies such as AMD, Rockwell Collins, Motorola, and IBM. ACL2
was used to prove that the floating-point operations performed by AMD
microprocessors are IEEE-754 compliant [41, 54], to analyze bit and
cycle accurate models of the Motorola CAP, a digital signal processor
[9], and to analyze a model of the JEM1, the world’s first silicon JVM
(Java Virtual Machine) [24]. Termination proofs have played a key role
in various projects that use ACL2 to verify reactive systems. For exam-
ple, in [32], we develop a theory of refinement for reactive systems that
has been used to mechanically verify protocols, pipelined machines,
and distributed systems [35, 31, 60]. Ordinals have also played a key
role in projects to implement polynomial orderings [39] and multiset
relations [52]. The relationship between proof theoretic ordinals and
term rewriting is explored in [15, 20].

1.2. The Ordinal Arithmetic Problem

Despite the fact that ordinals have been studied and used extensively by
various communities for over 100 years, we have not been able to find a
comprehensive treatment of arithmetic on ordinal notations. The ordi-
nal arithmetic problem for a notational system denoting the ordinals up
to some ordinal δ, is as follows: given α and β, expressions in the system
denoting ordinals < δ, is γ the expression corresponding to α?β, where
? can be any of +,−, ·, exponentiation? Solving this problem amounts
to defining algorithms for ordinal arithmetic on the notation system in
question. The practical implications of a solution to the ordinal arith-
metic problem is that it allows users of theorem proving systems such
as ACL2 to think and reason about ordinals algebraically. Algebraic
reasoning is more convenient and powerful than the previously available
options, which required users to use the underlying representation of
ordinals to both define measure functions and to reason about them.

ordinals.tex; 16/03/2005; 12:41; p.3

4

In this paper, we present a solution to the ordinal arithmetic problem
for a notational system denoting the ordinals up to ε0. Partial solutions
to this problem appear in various books and papers [57, 16, 20, 40,
58, 62], e.g., it is easy to find a definition of < for various ordinal
notations, but we have not found any statement of the problem nor
any comprehensive solution in previous work. One notable exception
is the dissertation work of John Doner [19, 18]. Doner and Tarski (his
adviser) study hierarchies of ordinal arithmetic operations. They give a
transfinite recursive definition for binary operations Oγ for any ordinal
γ. The operation O0 corresponds to addition, O1 corresponds to mul-
tiplication, O2 corresponds to exponentiation (for the most part), and
so on. Using this hierarchy of operations, Doner and Tarski define a
generalization of the Cantor normal form. However, Doner and Tarski
stop short of defining an ordinal notation. They give pseudo-algorithms
for O1, O2, and O3, but it is not immediately clear how to apply these to
an ordinal notation to obtain algorithms. This was not within the scope
of their work, as they were studying operations on the set-theoretic
ordinals, not on ordinal notations.

We use a notational system that is exponentially more succinct than
the one used in ACL2 before version 2.8 and we give efficient algorithms,
whose complexity we analyze. A preliminary conference version of the
results appeared in [36]. Here, we give a more comprehensive treatment
and provide full complexity and correctness proofs.

Using the ACL2 theorem proving system, we implemented our or-
dinal arithmetic operations and mechanically verified the correctness
of the implementations. In addition, we modified ACL2 by replacing
its then current ordinal representation (in ACL2, version 2.7) with the
exponentially more succinct representation we present in Section 2 [38].
(Both representations are based on the Cantor normal form.) We show
that our changes do not affect the soundness of the ACL2 logic by
exhibiting a bijection between our ordinal representation and the pre-
vious ACL2 representation, using ACL2 version 2.7. The modifications
appear in ACL2 starting with version 2.8, which also includes a library
of definitions and theorems that we engineered to significantly auto-
mate reasoning involving the ordinals. Previously, none of the ordinal
arithmetic operations were defined in ACL2 and proving termination
required defining functions to explicitly construct ordinals. With our
library, users can ignore representational issues and can work in an
algebraic setting. An example application is due to Sustik, who used a
previous version of our library [37] to give a constructive proof of Dick-
son’s lemma [61]. This is a key lemma in the proof of the termination
of Buchberger’s algorith for finding Gröbner bases, and Sustik made
essential use of the ordinals and our library. With the version of the

ordinals.tex; 16/03/2005; 12:41; p.4

Ordinal Arithmetic: Algorithms and Mechanization 5

library described in this paper all the proof obligations involving the
ordinals are discharged automatically.

There are many issues in developing such a library [38] and we
discuss a number of them in this paper. As an example, note that
the definitions of the ordinal arithmetic operations serve two purposes.
They are used to reason about expressions in the ground (variable-free)
case, by computation, and they are used to develop the various rewrite
rules appearing in the library. For computation we prefer efficient al-
gorithms, whereas for reasoning we prefer simple definitions. To satisfy
these mutually exclusive requirements, we use ACL2’s defexec mech-
anism, which allows us to compute efficiently in the ground case and
to reason effectively in the general case, while guaranteeing soundness
(see page 29). As a simple example of the kind of reasoning that can
our library can perform, the following equation

7 < m < ω ∧ 0 < n < ω ⇒ 5(ωω) + α < [ωn + w · 3](ω
m

·2+ω5
·5)ω

+ β

gets (correctly) reduced to α < β.

1.3. Overview of the Paper

The paper consists of two main parts. The first part presents the theory
of ordinal arithmetic on ordinal notations and absolutely no know-
ledge of ACL2 is assumed, as only the algorithms and their complexity
are discussed. In the second section we discuss our implementation in
the ACL2 theorem proving system, but we have tried to make the
discussion as self-contained as possible.

The first part of the paper consists of six sections. We start in Sec-
tion 2 by giving an overview of the set-theoretic ordinals and ordinal
notations. In Section 3 we explain the model of computation we use
for our complexity results and what theorems we prove to establish the
correctness of our algorithms. The next four sections are concerned with
algorithms, including correctness and complexity proofs, for comparing
and recognizing ordinals, addition and subtraction, multiplication, and
exponentiation, respectively.

The second part of the paper consists of Section 8, where we de-
scribe the implementations, in ACL2, of the algorithms presented in the
first part of the paper. We mechanically verified the implementations,
meaning that we proved that the ACL2 definitions terminate, that they
satisfy the various algebraic properties satisfied by the corresponding
set-theoretic analogues, that our new representation is isomorphic to
the previous ACL2 representation, and so on. What we did not do is to
mechanically prove the theorems in the first part of the paper, meaning

ordinals.tex; 16/03/2005; 12:41; p.5

6

that we did not prove that the implementations correspond to the set-
theoretic ordinals—this would require that we embed set theory into
ACL2—and we did not mechanically prove the complexity results. Our
goal was to provide a library that partially automate reasoning about
the ordinals, not to mechanically verify the theorems in part one of our
paper. Nonetheless, some of reasoning about the ordinal arithmetic
algorithms in ACL2 benefited from our analysis in the first part of the
paper. We give an overview of the library of theorems we created and
review the modifications we made to ACL2 version 2.8 to allow it to
use our new representation and library. We conclude with Section 9,
where we also outline future work.

2. Ordinals

2.1. Set Theoretic Ordinals

We review the theory of ordinals [17, 30, 57]. A relation ≺ is well-
founded if every decreasing sequence is finite. A woset is a pair 〈X,≺〉,
where X is a set, and ≺ is a well-ordering, a total, well-founded relation,
over X. Given a woset, 〈X,≺〉, and an element a ∈ X, Xa is defined to
be {x ∈ X|x ≺ a}. An ordinal is a woset 〈X,≺〉 such that for all a ∈ X,
a = Xa. It follows that if 〈X,≺〉 is an ordinal and a ∈ X, then a is an
ordinal and that ≺ is equivalent to ∈. In the sequel, we use lower case
Greek letters to denote ordinals and < or ∈ to denote the ordering.

Given two wosets, 〈X,≺〉 and 〈X ′, ≺′〉, a function f : X → X ′ is
said to be an isomorphism if it is a bijection and for all x, y ∈ X, x ≺ y

iff f.x ≺′ f.y. Two wosets are said to be isomorphic if there exists
an isomorphism between them. A basic result of set theory states that
every woset is isomorphic to a unique ordinal. Given a woset 〈X,≺〉,
we denote the ordinal to which it is isomorphic as Ord(X,≺). Since
every well-founded relation can be extended to a woset, we see that,
as a setting for proving termination, the theory of the ordinals is as
general as possible.

Given an ordinal, α, we define its successor, denoted α′ to be α∪{α}.
There is clearly a minimal ordinal, ∅. It is commonly denoted by 0.
The next smallest ordinal is 0′ = {0} and is denoted by 1. The next is
1′ = {0, 1} and is denoted by 2. Continuing in this manner, we obtain
all the natural numbers. A limit ordinal is an ordinal > 0 that is not a
successor. The set of natural numbers, denoted ω, is the smallest limit
ordinal.

ordinals.tex; 16/03/2005; 12:41; p.6

Ordinal Arithmetic: Algorithms and Mechanization 7

2.2. Ordinal Arithmetic

In this section we define addition, subtraction, multiplication, and ex-
ponentiation for the ordinals. After each definition, we list various
properties; proofs can be found in texts on set theory [17, 30, 57].

Definition 1 α + β = Ord(A, <A) where A = ({0} × α) ∪ ({1} × β)
and <A is the lexicographic ordering on A.

Ordinal addition satisfies the following properties.

α + 1 = α′

(α + β) + γ = α + (β + γ) (associativity)
β < γ ⇒ α + β < α + γ (strict right monotonicity)
β < γ ⇒ β + α ≤ γ + α (weak left monotonicity)

Note that addition is not commutative, e.g., 1 + ω = ω < ω + 1.

Definition 2 α − β is defined to be 0 if α ≤ β, otherwise, it is the
unique ordinal, ξ such that β + ξ = α.

Definition 3 α · β = Ord(A, <A) where A = β × α and <A is the
lexicographic ordering on A.

Ordinal multiplication satisfies the following properties.

0 < n < ω ⇒ n · ω = ω

(α · β) · γ = α · (β · γ) (associativity)
(0 < α ∧ β < γ) ⇒ α · β < α · γ (strict right monotonicity)
β < γ ⇒ β · α ≤ γ · α (weak left monotonicity)
α · (β + γ) = (α · β) + (α · γ) (left distributivity)

Note that commutativity and right distributivity do not hold for
multiplication, e.g., 2·ω = ω < ω·2, and (ω+1)·ω = ω·ω < ω·ω+ω.

Definition 4 Given any ordinal, α, we define exponentiation using
transfinite recursion: α0 = 1, αβ+1 = αβ · α, and for β a limit ordinal,
αβ =

⋃

0<ξ<β αξ.

Ordinal exponentiation satisfies the following properties, where an
additive principal ordinal is an ordinal, β such that ∀α < β, α + β = β
(such ordinals always have the form ωγ for some ordinal, γ > 0).

1 < p < ω ⇒ pω = ω

αβ · αγ = αβ+γ

(αβ)γ = αβ·γ

α < ωβ ⇒ α + ωβ = ωβ (additive principal property)
α, β < ωγ ⇒ α + β < ωγ (closure of additive principal ordinals)
1 < α ∧ β < γ ⇒ αβ < αγ (strict right monotonicity)
β < γ ⇒ βα ≤ γα (weak left monotonicity)

ordinals.tex; 16/03/2005; 12:41; p.7

8

Using the ordinal operations, we can construct a hierarchy of ordi-
nals: 0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω · 2, ω · 2 + 1, . . . , ω2, . . . , ω3, . . . ,

ωω, . . . , and so on. The ordinal ωωω...

is called ε0, and it is the smallest
ordinal, α, for which ωα = α; such ordinals are called ε-ordinals. Our
representation deals with the ordinals less than ε0. It is based upon the
Cantor Normal Form for ordinals [57], which we now define.

Theorem 1 For every ordinal α 6= 0, there are unique α1 ≥ α2 ≥
· · · ≥ αn(n ≥ 1) such that α = ωα1 + · · · + ωαn .

For every α ∈ ε0, we have that α < ωα, as ε0 is the smallest ε-
ordinal. Thus, we can add the restriction that α > α1 for these ordinals.
This is essentially the representation of ordinals used in ACL2 [26, 27].
However, as ωα · k + ωα = ωα · (k + 1) and n ∈ ω, we can collect like
terms and rewrite the normal form as follows.

Corollary 1 (Cantor Normal Form) For every ordinal α ∈ ε0, there
are unique n, p ∈ ω, α1 > · · · > αn > 0, and x1, . . . , xn ∈ ω\{0} such
that α > α1 and α = ωα1x1 + · · · + ωαnxn + p.

By the size of an ordinal under a representation, we mean the
number of bits needed to denote the ordinal in that representation.

Lemma 1 The ordinal representation in Corollary 1 is exponentially
more succinct than the representation in Theorem 1.

Proof Consider ω · k: it requires O(k) bits with the representation in
Theorem 1 and O(log k) bits with the representation in Corollary 1. �

2.3. Representation

We use nested triples to represent our ordinals. These triples are de-
noted by square brackets, with commas delimiting the elements in
the triple. Thus the triple containing a, b, and c appears as [a, b,
c]. CNF(α) denotes our representation of the ordinal α. If α ∈ ω,
then CNF(α) = α. Otherwise, α has a unique decomposition, α =
∑n

i=1 ωαixi + p. When this is the case,

CNF(α) = [CNF(α1), x1, CNF(
n

∑

i=2

ωαixi + p)]

We now define several basic functions for manipulating ordinals in our
notation. Some of our functions are partial, i.e., they are not specified
for all inputs. In such cases, we never use them outside of their intended
domain. finp returns true if a is a natural number, and false if it

ordinals.tex; 16/03/2005; 12:41; p.8

Ordinal Arithmetic: Algorithms and Mechanization 9

is an infinite ordinal. fe, fco, and rst return the first exponent, first
coefficient, and rest of an ordinal, respectively. If finp(a), fe(a) = 0,
fco(a) = a, and rst is not used on a. For an infinite ordinal of the form
[a, b, c], fe([a, b, c]) = a, fco([a, b, c]) = b, and rst([a, b, c]) = c.

3. Correctness and Complexity Concerns

In the following sections, we define algorithms for ordinal arithmetic
and analyze their correctness and complexity. In this section, we provide
a high-level overview and explain what exactly is entailed and what
assumptions we make.

Taken together, the correctness proofs establish that the structure
consisting of the set-theoretic ordinals up to ε0 with the usual arith-
metic operations, is isomorphic to the structure consisting of E0, the
set of expressions corresponding to ordinals in our representation, along
with the corresponding arithmetic operations (for which we provide
algorithms). The set-theoretic structure is 〈ε0, cmp, +,−, ·, exp〉, where
exp is ordinal exponentiation and cmp is a function that orders or-
dinals: given ordinals α and β, it returns lt if α < β, gt if α > β

and eq if α = β. The other structure is 〈E0, cmpo, +o,−o, ·o, expo〉,
where the intended meaning of the functions should be clear. Show-
ing that the two structures are isomorphic involves first exhibiting a
bijection between ε0 and E0; a trivial consequence of results in the
previous section is that CNF is such a bijection. Secondly, the proof
requires showing that the corresponding functions are equivalent. To
this end, we show that: cmp(α, β) = cmpo(CNF(α), CNF(β)), CNF(α?

β) = CNF(α) ?o CNF(β), where ? ranges over {+,−, ·}, and, lastly,
CNF(exp(α, β)) = expo(CNF(α), CNF(β)).

Note that these proofs are not mechanically verified. To do so would
require using a theorem prover that can reason both about ACL2 and
set theory. But, we implement the algorithms in ACL2 and reason about
the implementations. For example, we prove that the implementations
terminate and that they satisfy the numerous properties that their set-
theoretic counterparts satisfy. We also develop a powerful library for
reasoning about the ordinals. The details are in Section 8.

For our complexity analysis, we assume that integers require con-
stant space and that integer operations have constant running time.
One can later account for the integer operations by using the fastest
known algorithms. This approach allows us to focus on the interesting
aspects of our algorithms, namely the aspects pertaining to the ordinal
representations. To make explicit that arithmetic operations are be-

ordinals.tex; 16/03/2005; 12:41; p.9

10

|a| {the length of a}
finp(a) : 0

true : 1 + |rst(a)|

#a {the size of a}
finp(a) : 1

true : #fe(a) + #rst(a)

Figure 1.: The length and size functions used for complexity analysis.

ing applied to integers, we refer to the usual arithmetic operations on
integers as <ω, +ω, −ω, ·ω, and expω.

The complexity of the ordinal arithmetic algorithms is given in
terms of the functions in Figure 1. In the figure, we use a sequence
of condition : result forms to define functions: the conditions should
be read from top to bottom until a condition that holds is found and
then the corresponding result is returned. Note that the true condition
always holds. We use this format for definitions throughout the paper.

4. Comparing and Recognizing Ordinals

In this section we present and analyze functions that recognize and
compare ordinals. The definitions are given in Figure 2.

In the sequel, the ordinals α and β have the following Cantor normal
form decompositions α =

∑n
i=1 ωαixi + p and β =

∑m
i=1 ωβiyi + q;

in addition, a, ai, b, and bj denote CNF(α), CNF(αi), CNF(β), and
CNF(βj), respectively, for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

We start with cmpo, the comparison function for ordinals corre-
sponding to cmp. In Figure 2 we also define <o, ≤o, and =o. These func-
tions are not needed and in fact, are not used in the implementation,
where for efficiency reasons we use cmpo exclusively. The definition of
−o (page 15) provides a nice example of where this is useful, as instead
of computing both fe(a) <o fe(b) and fe(a) >o fe(b), we only compute
cmpo(fe(a), fe(b)). The reason for including <o, ≤o, and =o is to make
the presentation clearer, and we also use >o and ≥o where we find them
useful.

Theorem 2 For all α, β ∈ ε0, cmpo(a, b) = cmp(α, β).

Proof The proof is by induction on the sizes of a and b. The base case,
where finp(a) or finp(b) holds, is straightforward.

ordinals.tex; 16/03/2005; 12:41; p.10

Ordinal Arithmetic: Algorithms and Mechanization 11

cmpω(p,q) {ordering on naturals}
p <ω q : lt

q <ω p : gt

true : eq

cmpo(a,b) {ordering on ordinals}
finp(a) ∧ finp(b) : cmpω(a,b)

finp(a) : lt

finp(b) : gt

cmpo(fe(a),fe(b)) 6= eq : cmpo(fe(a),fe(b))

cmpω(fco(a),fco(b)) 6= eq : cmpω(fco(a),fco(b))

true : cmpo(rst(a),rst(b))

a <o b {< for ordinals}
cmpo(a,b) = lt : true

true : false

op(a) {ordinal recognizer}
finp(a) : a ∈ ω

true : ¬finp(first(a))

∧ fco(a) ∈ ω

∧ 0 <ω fco(a)

∧ op(fe(a))

∧ op(rst(a))

∧ fe(rst(a)) <o fe(a)

a ≤o b {≤ for ordinals}
cmpo(a,b) = gt : false

true : true

a =o b {= for ordinals}
cmpo(a,b) = eq : true

true : false

Figure 2.: The ordinal ordering and recognizer algorithms.

For the induction step, we have that #a, #b > 1 and for all γ, δ if
#CNF(γ) < #a and #CNF(δ) < #b, then cmpo(CNF(γ), CNF(δ))
= cmp(γ, δ). There are 3 cases.

In the first, cmpo(a1, b1) 6= eq. If cmpo(a1, b1) = lt, then by the in-
duction hypothesis, α1 < β1. Thus ωα1 < ωβ1 . Thus, since

∑n
i=2 ωαixi <

ωα1 , α < ωβ1 ≤ β by the closure of additive principal ordinals under ad-
dition. Therefore, cmp(α,β) = lt = cmpo(a, b). By a similar argument,
cmpo(a1, b1) = gt ≡ cmp(α,β) = cmpo(a,b) = gt.

In the next case, we have that cmpo(a1, b1) = eq ∧ cmpω(x1, y1) 6=
eq. By induction hypothesis, α1 = β1. Suppose that cmpω(x1, y1) = lt.

ordinals.tex; 16/03/2005; 12:41; p.11

12

Again, we note that
∑n

i=2 ωαixi < ωα1 . Thus α < ωα1x1 + ωα1 , by the
strict right monotonicity of ordinal addition. But then we have

ωα1x1 + ωα1 = ωα1(x1 + 1) = ωβ1(x1 + 1) ≤ ωβ1y1

Hence, α < β, so cmpo(a1, b1) = lt = cmp(α, β). A similar argument
establishes the case where cmpω(x1, y1) = gt.

In the final case, we have that cmpo(a1, b1) = eq ∧ cmpω(x1, y1) =
eq. By the induction hypothesis, this means α1 = β1. If cmpo(rst(a),
rst(b)) = eq, then by the induction hypothesis,

∑n
i=2 ωαixi + p =

∑n
i=2 ωβiyi + q and we have cmp(α, β) = eq = cmpo(a1, b1).
If cmpo(rst(a), rst(b)) = lt, then by the induction hypothesis,

∑n
i=2 ωαixi + p <

∑n
i=2 ωβiyi + q; hence we have α < β. Therefore,

cmp(α, β) = lt = cmpo(a1, b1). A similar argument establishes the
case where cmpo(rst(a), rst(b)) = gt. �

Theorem 3 cmpo(a, b) runs in time O(min(#a, #b)).

Proof In the worst case we simultaneously recur down a and b. In more
detail, the complexity of this function is bounded by the recurrence
relation

T (a, b) =

{

c, if finp(a) or finp(b)
T (a1, b1) + T (rst(a), rst(b)) + c, otherwise

for some constant value, c. It now follows by induction on the size
of a and b that T (a, b) ≤ k · min(#a, #b) − t for any constants, k, t,
such that t ≥ c and k ≥ c + t. �

We now analyze the complexity of op. At first glance it seems
that the complexity is quadratic as op recurs both down the rest
of a (op(rst(a))) and into the exponent (op(a1)). However, a closer
examination reveals the following.

Theorem 4 op(a) runs in time O(#a(log #a)).

Proof The running time is bounded by the (non-linear) recurrence
relation

T (a) =

{

c, if finp(a)
T (a1) + T (rst(a)) + min(#a1, #rst(a)) + c, otherwise

for some constant, c, by Theorem 3. We show by induction on #a, that
T (a) ≤ k(#a)(log #a) + t where k, t are constants such that t ≥ c and
k ≥ 3t. In the base case, we have T (a) = c ≤ t. For the induction
step, let x = min(#a1, #rst(a)) and y = max(#a1, #rst(a)). Note

ordinals.tex; 16/03/2005; 12:41; p.12

Ordinal Arithmetic: Algorithms and Mechanization 13

a +o b {ordinal addition}
finp(a) ∧ finp(b) : a +ω b

fe(a) <o fe(b) : b

fe(a) =o fe(b) : [fe(a), fco(a) +ω fco(b), rst(b)]

true : [fe(a), fco(a), rst(a) +o b]

Figure 3.: The ordinal addition algorithm.

that x + y = #a. We have:

T (a)
= {Definition of T } T (a1) + T (rst(a)) + x + c

≤ { Induction Hypothesis } kx log x + t + ky log y + t + x + c

≤ { kx ≥ 2t + x as k ≥ 3t } k(x log x + y log y + x) + c

= {Log } k log(xxyy2x) + c

≤ { 〈∀z ∈ ω :: 2z ≤
(

2z

z

)

〉 } k log(xxyy
(

2x

x

)

) + c

≤ {x ≤ y } k log(xxyy
(

x+y

x

)

) + c

≤ {Binomial Theorem } k log(x + y)x+y + c

= { t ≥ c, x + y = #a } k(#a) log(#a) + t �

5. Ordinal Addition and Subtraction

The algorithm for ordinal addition is given in Figure 3. The main idea
of the algorithm is to traverse b until an exponent is found that is ≤
the first exponent of a. We now prove the correctness of the algorithm
and analyze its complexity.

Theorem 5 For all α, β ∈ ε0 CNF(α + β) = a +o b.

Proof The proof is by induction on α. The key insight here (as it was
for the proof of Theorem 2) is that

∑n
i=2 ωαixi < ωα1 .

If α, β ∈ ω, then CNF(α + β) = a +o b. Now suppose that β > ω

and either α ∈ ω or α1 < β1. Then:

α + β

= {Definition of β, arithmetic } α + ωβ1(1 + y1 − 1) +
∑m

i=2 ωβiyi + q

= { left distributivity } α + ωβ1 + ωβ1(y1 − 1) +
∑m

i=2 ωβiyi + q

= {Additive principal property } ωβ1 + ωβ1(y1 − 1) +
∑m

i=2 ωβiyi + q

= {Definition of β } β

Next, suppose that α, β > ω and α1 = β1. Then:

ordinals.tex; 16/03/2005; 12:41; p.13

14

α + β

= {Definition of α } ωα1x1 +
∑n

i=2 ωαixi + p + β

= {Additive principal property } ωα1x1 + β

= {Definition of β, distributivity } ωα1(x1 + y1) +
∑m

i=2 ωβiyi + q

Note that CNF(ωα1(x1+y1)+
∑m

i=2 ωβiyi+q) = [a1, x1+oy1, rst(b)],
which matches the definition of +o.

In the final case, we have that a1 <o b1 and ¬finp(a). Now, α+β =
ωα1x1 + δ, where δ =

∑n
i=2 ωαixi + p + β. Since

∑n
i=2 ωαixi + p < ωα1

and β < ωα1 , δ < ωα1 . Letting
∑k

i=1 ωδizi + r be the Cantor normal
form decomposition of δ, we see that CNF(α + β) = CNF(ωα1x1 +
∑k

i=1 ωδizi+r), which by the induction hypothesis is [a1, x1, rst(a)+ob].
�

Theorem 6 a +o b runs in time O(min(#a, |a| · #b1)).

Proof The running time of a +o b is given by the recurrence relation

T (a, b) =

{

c, if finp(a)
T (rst(a), b) + k1 min(#a1, #b1) + c, otherwise

for some constants c and k1, using Theorem 3. We use induction to show
that T (a, b) ≤ k ·min(#a, |a| ·#b1)+c, where k is a constant such that
k ≥ k1 + c. In the base case, T (a, b) = c = k · min(#a, |a| · #b1) + c,
since |a| = 0. Otherwise, using the induction hypothesis, we have:

T (a, b)
= {Definition of T }
T (rst(a), b) + k1 min(#a1, #b1) + c

≤ { Inductive Hypothesis }
k · min(#rst(a), |rst(a)| · #b1) + c + k1 min(#a1, #b1) + c

≤ {Arithmetic, k ≥ k1 + c }
k · min(#a1 + #rst(a), |rst(a)| · #b1 + #b1) + c

= {Definition of # }
k · min(#a, |a| · #b1) + c �

We now turn our attention to ordinal subtraction; our algorithm is
given in Figure 4. Recall that α − β is defined to be 0 if α < β and
otherwise to be the unique ordinal, ξ such that β + ξ = α. One must
be careful to avoid silly mistakes when subtraction involves infinite
ordinals, e.g., note that (ω + 1) − 1 6= ω.

Theorem 7 For all α, β ∈ ε0, CNF(α − β) = a−o b.

Proof It is easy to prove, using induction, that if α < β, then a−o b =
0.

When α ≥ β, the proof amounts to showing that b +o (a−o b) = a

and a−o b is in proper CNF form, and is by induction on #a and #b.

ordinals.tex; 16/03/2005; 12:41; p.14

Ordinal Arithmetic: Algorithms and Mechanization 15

a −o b {ordinal subtraction}
finp(a) ∧ finp(b) ∧ a ≤ω b : 0

finp(a) ∧ finp(b) : a −ω b

fe(a) <o fe(b) : 0

fe(a) >o fe(b) : a

fco(a) <ω fco(b) : 0

fco(a) >ω fco(b) : [fe(a), fco(a) −ω fco(b), rst(a)]

true : rst(a) −o rst(b)

Figure 4.: The ordinal subtraction algorithm.

If β = α this is trivial, since b +o (a −o b) = a. We now focus on the
case where β < α.

If finp(a) and finp(b), then b +o (a −o b) = a. If b1 < a1, then
b +o (a−o b) = b +o a = a. If b1 = a1 and y1 < x1, we have:

b +o (a−o b)
= {Definition of −o } b +o [a1, x1 − y1, rst(a)]
= {Definition of +o } [a1, x1 − y1 + y1, rst(a)]
= {Arithmetic } [a1, x1, rst(a)]
= {Definition of a } a

Also, note that op(a−o b) since op(a) and x1 > y1; hence, x1−y1 >

0.
Finally, suppose b1 = a1 and y1 = x1; then rst(b) < rst(a). We now

have:

b +o (a−o b)
= {Definition of −o, +o } [b1, y1, rst(b) +o (rst(a) −o rst(b))]
= { Ind. hypothesis, x1 = y1, a1 = b1 } a �

Theorem 8 a −o b runs in time O(min(#a, #b)).

The recursion relation for the complexity of this function is

T (a, b) =

{

c, if finp(a) or finp(b)
k1 · min(#a1, #b1) + T (rst(a), rst(b)) + c, otherwise

for some constants, k1, c. The proof that T (a, b) ≤ k · min(#a, #b) is
almost identical to that of Theorem 3. �

6. Ordinal Multiplication

A first attempt at defining multiplication is given in Figure 5. Later
in this section we derive a more efficient (and more complicated) algo-

ordinals.tex; 16/03/2005; 12:41; p.15

16

a ∗o b {ordinal multiplication}
a = 0 ∨ b = 0 : 0

finp(a) ∧ finp(b) : a ·ω b

finp(b) : [fe(a), fco(a) ·ω b, rst(a)]

true : [fe(a) +o fe(b), fco(b), a ∗o rst(b)]

Figure 5.: Ordinal multiplication, take one.

rithm, but its correctness depends on the correctness of ∗o, which we
now consider.

Lemma 2 For all α, β ∈ ε0, x, y ∈ ω such that β, x > 0, ωαx · ωβy =
ωα+βy.

Proof ωαx · ωβy = ωα(x · ωβ)y = ωα · ωβy = ωα+βy �

Theorem 9 For all α, β ∈ ε0, CNF(α · β) = a ∗o b.

Proof The proof is by (transfinite) induction on β. The cases where
α = 0, β = 0, or α, β ∈ ω are obvious. The remainder of the proof
consists of two cases: β < ω holds or it does not.

If β < ω, then β > 0 and α > ω. The base case, where β = 1 is
straightforward. For the induction step we have:

CNF(α · β)
= {Subtraction, distributivity } CNF(α + (α · (β − 1)))
= {Theorem 5, induction hypothesis } a +o (a ∗o CNF(β − 1))
= {Definition of ∗o, β < ω } a +o [a1, x1 ·ω (β −ω 1), rst(a)]
= {Definition of +o } [a1, x1 + (x1 ·ω (β − 1)), rst(a)]
= {Distributivity of ·ω } [a1, x1 ·ω β, rst(a)]
= {Definition of ∗o } a ∗o b

For the final case we have that β ≥ ω and α > 0. First, we note that
α · ωβ1y1 = ωα1+β1y1:

α · ωβ1y1

≤ {Weak left monotonicity of multiplication } ωα1(x1 + 1) · ωβ1y1

= {Lemma 2 } ωα1+β1y1

= {Lemma 2 } ωα1x1 · ω
β1y1

≤ {Weak left monotonicity of multiplication } α · ωβ1y1

ordinals.tex; 16/03/2005; 12:41; p.16

Ordinal Arithmetic: Algorithms and Mechanization 17

We now have:

CNF(α · β)

= {Distributivity } CNF(ωα1+β1y1 + (α ·
∑m

i=2 ωβiyi))

= {Theorem 5 } CNF(ωα1+β1y1) +o CNF(α ·
∑m

i=2 ωβiyi)

= {Def. of CNF, ind. hyp. } [CNF(α1 + β1), y1, 0] +o a ∗o CNF(
∑m

i=2 ωβiyi)
= {Def. of rst, Theorem 5 } [a1 +o b1, y1, 0] +o a ∗o rst(b)
= { fe(a ∗o rst(b)) <o a1 + b1 } [a1 +o b1, y1, a ∗o rst(b)]
= {Definition of ∗o } a ∗o b �

The problem with this definition is its running time. Note that
this algorithm walks down b, adding a1 to each exponent of b. This
is equivalent to adding some ordinal, c to a decreasing sequence of
ordinals (d1, d2, . . . , dn). Using the addition algorithm, we find that
for each di, fe(di) is compared to each exponent of c until the first
exponent of c such that fe(di) is ≥ this exponent is found. But since
the di’s are decreasing, we know that fe(di) ≥ fe(di+1). Therefore, if
the jth exponent of c is > fe(di), we know that it is > fe(di+1). This
means that simply adding each element of the decreasing sequence to
c is inefficient. If we can keep track of how many exponents of c we
went through before adding di, we can just skip over those when we
add di+1. These observations lead to the definitions in Figure 6, which
provide a quicker way to compute multiplication.

Lemma 3 d <o b ⇒ c1(a, b) ≤ c1(a, d).

Proof The proof is by induction on c1(a,b). If c1(a, b) = 0, then this is
trivially true since c1 always returns a natural number. In the induction
step, we have that c1(a, b) > 0 and d <o b. Thus, fe(d) ≤o b1 <o a1

by the definitions of <o and c1. Finally, by the induction hypothesis,
c1(a, b) = 1 + c1(rst(a), b) ≤ 1 + c1(rst(a), d) = c1(a, d). �

Lemma 4 n ≤ c1(a, b) ⇒ c1(a, b) = c2(a, b, n).

Lemma 5 padd(a, b, c1(a, b)) = a +o b.

Proof The proof is by induction on c1(a,b). If c1(a, b) = 0, b1 ≤o a1,
so the lemma is clearly true. In the induction step, c1(a, b) > 0, so
b1 <o a1 by the definition of c1. Hence, c1(rst(a), b) < c1(a, b). By
the induction hypothesis, we know that padd(d, b, c1(d, b)) = d +o b

for all d <o a. Thus

a +o b

= {Definition of +o } [a1, x1, rst(a) +o b]
= { Induction Hypothesis } [a1, x1,padd(rst(a), b, c1(rst(a), b))]
= {Definition of c1 } [a1, x1,padd(rst(a), b, c1(a, b) − 1)]
= {Definition of padd } padd(a, b, c1(a, b)) �

ordinals.tex; 16/03/2005; 12:41; p.17

18

restn(a,n) {n is a natural number}
n = 0 : a

true : restn(rst(a),n-1)

c1(a,b) {finds the index of the first exponent of a that is ≤ b1}
fe(a) >o fe(b) : 1 +ω c1(rst(a),b)

true : 0

c2(a,b,n) {skips over the first n elements of a and then calls c1}
true : n + c1(restn(a,n),b)

padd(a, b, n) {skips over the first n elements of a and adds the rest to b}
n = 0 : a +o b

true : [fe(a), fco(a), padd(rst(a),b,n - 1)]

pmult(a,b,n) {pseudo-multiplication}
a = 0 ∨ b = 0 : 0

finp(a) ∧ finp(b) : a ·ω b

finp(b) : [fe(a), fco(a) ·ω b, rst(a)]

true : [padd(fe(a),fe(b),m),

fco(b),

pmult(a,rst(b),m)]

where m = c2(fe(a),fe(b),n)

a ·o b {quicker ordinal multiplication}
true : pmult(a,b,0)

Figure 6.: An efficient algorithm for ordinal multiplication.

Theorem 10 n ≤ c1(a1, b1) ⇒ pmult(a, b, n) = a ∗o b.

Proof The proof is by induction on |b|. If finp(b), then this is clearly
true. For the induction step, we know ¬(finp(b)). The induction hy-
pothesis tells us that for all d such that |d| < |b|, n ≤ c1(fe(d), b1) ⇒
pmult(d, b, n) = d ∗o b. Suppose n ≤ c1(a1, b1). Then if we let m =
c2(a1, b1, n), we have that m = c1(a1, b1) by Lemma 4. Therefore,
we also know that m ≤ c1(a1, fe(rst(b))) by Lemma 3. Thus, by the
Induction Hypothesis we have the following.

pmult(a, b, n)
= {Definition of pmult } [padd(a1, b1, m), y1,pmult(a, rst(b), m)]
= {Lemma 5 } [a1 +o b1, y1,pmult(a, rst(b), m)]
= { Induction hypothesis } [a1 +o b1, y1, a ∗o rst(b)]
= {Definition of ∗o } a ∗o b �

Corollary 2 For all α, β ∈ ε0, CNF(α · β) = a ·o b.

ordinals.tex; 16/03/2005; 12:41; p.18

Ordinal Arithmetic: Algorithms and Mechanization 19

Proof Follows directly from Theorems 9 and 10. �

We now turn our attention to complexity issues. For the next lemmas
and theorem, let a1 = [d1, z1, [d2, z2, . . . [dk, zk, r] . . .]].

Lemma 6 c1(a, b) takes time O(
∑c1(a,b)+1

i=1 min(#ai, #b1)).

Proof In the worst case, we traverse a, comparing ai with b1. By

Theorem 3, this takes O(
∑c1(a,b)+1

i=1 min(#ai, #b1)) time. �

Lemma 7 c2(a, b, s) takes time O(s +
∑c1(a,b)+1

i=s+1 min(#ai, #b1)).

Lemma 8 padd(a, b, s) runs in time O(min(#fe(restn(a, s)), #b1) +
s) when s ≥ c1(a, b).

Proof Note that fe(restn(a, s)) ≤ b1 since the exponents of a are de-
creasing and s ≥ c1(a,b). Hence, restn(a, s)+o b requires one compar-
ison and creates an answer in constant time. Therefore, by Theorem 3,
padd takes O(min(#fe(restn(a, s)), #b1) + s) time. �

Theorem 11 pmult(a, b, s) runs in time O(|a1||b| + #restn(a1, s) +
#b) if s ≤ c1(a1, b1).

Proof Let m = c2(a1, b1, s); then m = c1(a1, b1) by Lemma 4. Thus,
using Lemmas 7 and 8, we can construct the following recurrence
relation to bound the running time of pmult:

T (a, b, s) =

d, if finp(b) ∨ a= 0

T (a, rst(b), m) + k1(s +
∑m+1

i=s+1 min(#di, #fe(b1)))
+k2(min(#fe(restn(a1, m)), #b1) + m) + d, otherwise

for some constants k1, k2, and d. We use induction on |b| to show that
T (a, b, s) ≤ k ·(|a1||b|+#restn(a1, s)+#b) where k ≥ k1+k2+d. This
is true in the base case, because #b = 1 and k ≥ d. For the induction
step, we first note the following.

k1[s +
∑m+1

i=s+1 min(#di, #fe(b1))] + k2[min(#fe(restn(a, m)), #fe(b1)) + m] + d

≤ {Arithmetic, m ≥ s }
k1(m +

∑m

i=s+1 #di + #fe(b1)) + (k2 + d)(#fe(b1) + m)
≤ { k ≥ k1 + k2 + d }
k(m +

∑m

i=s+1 #di + #fe(b1))

ordinals.tex; 16/03/2005; 12:41; p.19

20

exp1(k,a) {raising a positive integer to an infinite ordinal power}
fe(a) =o 1 : [fco(a), expω(k,rst(a)), 0]

finp(rst(a)) : [[fe(a) −o 1, fco(a), 0], expω(k,rst(a)), 0]

true : [[fe(a) −o 1, 1, fe(c)], fco(c), 0]

where c = exp1(k,rst(a))

Figure 7.: Ordinal exponentiation: raising a positive integer to an
infinite power.

Combining this with the recurrence relation and using the induction
hypothesis, we have:

T (a, b, s)
≤ {Definition of T , earlier reasoning }
T (a, rst(b), m) + k(m +

∑m

i=s+1 #di + #fe(b1))
≤ { Induction Hypothesis }
k(|a1||rst(b)| + #restn(a1, m) + #rst(b) + m +

∑m

i=s+1 #di + #fe(b1)) + d

≤ {Arithmetic, m ≤ |a1| }
k(|a1||b| + #restn(a1, m) +

∑m

i=s+1 #di + #rst(b) + #fe(b1)) + d

= {Definitions of #, restn }
k(|a1||b| + #restn(a1, s) + #rst(b) + #fe(b1)) + d

< {#fe(b1) < #b1 }
k(|a1||b| + #restn(a1, s) + #b) + d �

Corollary 3 a ·o b runs in time O(|a1||b| + #a1 + #b).

7. Ordinal Exponentiation

Ordinal exponentiation is more complex than ordinal multiplication,
and in an effort to increase clarity, we define exponentiation (expo)
using four helper functions: exp1, exp2, exp3, and exp4. We introduce
them one at a time, proving the correctness and complexity of each
before moving on to the next. The correctness and complexity of expo

come at the end and follow directly from the results proved for the
helper functions. Before reading further, the reader may want to try a
few examples; a particularly revealing class of examples is (ω +1)ωω+k,
where k ranges over the naturals.

The first helper function, exp1, is defined in Figure 7, and it is used
to raise a positive integer to an infinite ordinal power. We proceed by
proving that it is correct and analyzing its complexity.

Lemma 9 ∀k, x ∈ ω, α ∈ ε0 such that α > 0, x > 0, and k > 1,
kωαx = ωωα−1x

ordinals.tex; 16/03/2005; 12:41; p.20

Ordinal Arithmetic: Algorithms and Mechanization 21

Proof kωαx = kω1+α−1x = kω·ωα−1x = (kω)ωα−1x = ωωα−1x
�

Lemma 10 ∀k ∈ ω, α ∈ ε0 such that α > 0 and k > 1, kα =
(ω

∑n
i=1 ωαi−1xi)kp

Proof Recall that the Cantor normal form decomposition of α is
∑n

i=1 ωαixi + p. The proof follows from Lemma 9. �

Theorem 12 For all k ∈ ω, α ∈ ε0 such that α ≥ ω and k > 1,
CNF(kα) = exp1(k, a).

Proof The proof is by induction on α. If α1 = 1, then α = ω · x1 + p

for some x1, p ∈ ω. Thus, we have:

CNF(kα)
= {Definition of α } CNF(kω·x1+p)
= {Property of exponentiation } CNF(kω·x1 · kp)
= {Lemma 9 } CNF(ωx1 · kp)
= {Theorem 9 } CNF(ωx1) ·o kp

= {Definitions of CNF,expω } [x1, 1, 0] ·o expω(k, p)
= {Definition of ·o } [x1, expω(k, p), 0]
= {Definition of exp1 } exp1(k, a)

Likewise, if α1 > 1 and finp(rst(a)), then α = ωα1x1 + p for some
α1 ∈ ε0, x1, p ∈ ω. We now have:

CNF(kα)

= {Definition of α } CNF(kωα1x1+p)

= {Property of exponentiation } CNF(kωα1x1 · kp)

= {Lemma 9 } CNF(ωωα1−1x1 · kp)

= {Corollary 2 } CNF(ωωα1−1x1) ·o kp

= {Definitions of CNF,expω } [[a1 −o 1, x1, 0], 1, 0] ·o expω(k, p)
= {Definition of ·o } [[a1 −o 1, x1, 0], expω(k, p), 0]
= {Definition of exp1 } exp1(k, a)

In the final case ¬finp(rst(a)) holds and by the induction hypothesis
∀ξ < α, CNF(kξ) = exp1(k, CNF(ξ)). Now, letting c = exp1(k, rst(a)),
we have:

CNF(kα)

= {Lemma 10 } CNF((ω
∑m

i=1
ωαi−1xi)kp)

= {Ordinal arithmetic } CNF(ωωα1−1x1(ω
∑m

i=2
wαi−1xi)kp)

= {Lemma 10, ·o } CNF(ωωα1−1x1) ·o CNF(k
∑m

i=2
wαi xi+p)

= { Ind. hyp., CNF } [[a1 −o 1, x1, 0], 1, 0] ·o exp1(k, rst(a))
= { c= [fe(c), fco(c), 0] } [[a1 −o 1, x1, 0], 1, 0] ·o [fe(c), fco(c), 0]
= {Definition of ·o } [[a1 −o 1, x1, 0] +o fe(c), fco(c), 0]
= { a1 −o 1 > a2 −o 1 } [[a1 −o 1, x1, fe(c)], fco(c), 0]
= {Definition of exp1 } exp1(k, a) �

ordinals.tex; 16/03/2005; 12:41; p.21

22

exp2(a,k) {raising a limit ordinal to a positive integer}
true : [fe(a) ·o (k - 1), 1, 0] ·o a

natpart(a) {returns the natural part of an ordinal}
finp(a) : a

true : natpart(rst(a))

limitp(a) {returns true if a represents a limit ordinal}
true : op(a) ∧ ¬finp(a) ∧ natpart(a) = 0

limitpart(a) {returns the greatest ordinal, b, such that limitp(b) and b <o a}
finp(a) : 0

true : [fe(a), fco(a), limitpart(rst(a))]

Figure 8.: Ordinal exponentiation: raising a limit ordinal to a positive
integer.

Theorem 13 exp1 runs in time O(|a|).

Proof Note that by Theorem 8, computing a1−o1 takes constant time.
The proof is now straightforward. �

We now consider the second helper function, exp2, which is shown
in Figure 8 and is used to raise a limit ordinal to a positive integer.

Lemma 11 For all a, b such that op(a), op(b), natpart(b) = 0 and
¬finp(a), a ·o b = [a1, 1, 0] ·o b.

Proof The proof is by induction on |b|. If finp(b), then b = 0 and
a ·o b = 0 = [a1, 1, 0] ·o b. For the induction step we have:

a ·o b
= {Definition of ·o } [a1 + b1, y1, a ·o rst(b)]
= { Induction Hypothesis } [a1 + b1, y1, [a1, 1, 0] ·o rst(b)]
= {Definition of ·o } [a1, 1, 0] ·o b �

Theorem 14 For all α ∈ ε0, k ∈ ω such that α ≥ ω, limitp(a), and
k > 1, CNF(αk) = exp2(a, k).

Proof The proof is by induction on k. If k = 2, then CNF(αk) =
CNF(α2) = CNF(α ·α) = a ·o a. Applying Lemma 11, we get [a1, 1, 0] ·o

ordinals.tex; 16/03/2005; 12:41; p.22

Ordinal Arithmetic: Algorithms and Mechanization 23

exp3h(a,p,n,k) {helper function for exp3}
k = 1 : (a ·o p) +o p

true : padd(exp2(a,k) ·o p, exp3h(a,p,n,k-1), n)

exp3(a,k) {raising an infinite ordinal to a positive integer power}
k = 1 : a

limitp(a) : exp2(a,k)

true : padd(exp2(c,k),

exp3h(c,natpart(a),n,k-1),

n)

where c = limitpart(a) and n = |a|

Figure 9.: Ordinal exponentiation: raising an infinite ordinal to a
positive integer power.

a = exp2(a, k). For the induction step we have:

CNF(αk)

= {Ordinal arithmetic, ·o } a ·o CNF(αk−1)
= { Induction hypothesis } a ·o exp2(a, k − 1)
= {Definition of exp2 } a ·o [a1 ·o (k − 2), 1, 0] ·o a
= {Definition of ·o } [a1 +o (a1 ·o (k − 2)), 1, 0] ·o a
= {Distr., Theorem 5, Corollary 2 } [a1 ·o (k − 1), 1, 0] ·o a
= {Definition of exp2 } exp2(a, k) �

Theorem 15 exp2(a, k) runs in time O(|a1||a| + #a)

Proof Note that a1 ·o (k − 1) takes constant time, since k − 1 is of
size 1. Also, note that #(a1 ·o (k − 1)) = #a1 and |a1 ·o (k − 1)| = |a1|.
So, by Corollary 3, we have that the running time is O(|a1||a|+#a). �

The third helper function, exp3, is defined in Figure 9. It is used to
raise an infinite ordinal to a positive integer power. The complexity
analysis of exp3 will reveal that the running time depends on the
positive integer power, i.e., it is exponential in the number of bits
needed to represent the integer. As a result, the complexity of our
algorithm for exponentiation is exponential. We will show at the end
of this section that we cannot do much better.

Lemma 12 For all a such that op(a) and α ≥ ω, exp3h(c, p, |a|, k) =

(
∑k−1

i=0 exp2(c, k − i) ·o p) +o p where c = limitpart(a) and p =
natpart(a) (the summation is with respect to +o).

Proof Let c = limitpart(a) = [a1, x1, [a2, x2, . . . [an, xn, 0] . . .]]. The
proof is by induction on k. Clearly, by the definition of ·o, the lemma

ordinals.tex; 16/03/2005; 12:41; p.23

24

holds when k = 1. For the induction step we have:

exp3h(c, p, n, k)
= {Definition of exp3h }
padd(exp2(c, k) ·o p, exp3h(a, p, n, k − 1), n)
= { Induction hypothesis, arithmetic }

padd(exp2(c, k) ·o p, (
∑k−1

i=1 exp2(c, k − i) ·o p) +o p, n)
= { See immediately below }

(
∑k−1

i=0 exp2(c, k − i) ·o p) +o p

We justify the last step of the above proof by noting that:

exp2(c, k) ·o p = [a1 ·o x+o a1, x1 · p, [a1 ·o x+o a2, x2, . . . [a1 ·o x+o an, xn, 0] . . .]]

where x = k − 1. That is, by the definition of exp3h, we have that
fe(exp3h(a, p, n, k − 1)) = (a1 ·o (k − 1)); thus, every exponent in
exp2(c, k) ·op is greater than the first exponent of exp3h(a, p, n, k−1).
�

Theorem 16 For all α ∈ ε0, k ∈ ω such that α ≥ ω and k > 0,
CNF(αk) = exp3(a, k).

Proof Recall that α =
∑n

i=1 ωαixi + p and let δ =
∑n

i=1 ωαixi. Note
that CNF(δ) = limitpart(a). The case where k = 1 or p = 0 follows
from Theorem 14. Otherwise, with the aid of Lemma 12, we can show
that exp3(a, k) = CNF(δk + (

∑k−1
j=1 δk−j)p + p) and what remains is

to show that αk = δk + (
∑k−1

j=1 δk−j)p + p for all k > 0. We do so by
induction on k; note that the base case has already been addressed. For
the induction step we have the following, where γ =

∑k−2
j=1 δk−1−j and

ξ = δk−1 + γp + p.

αk

= {Exponentiation } αk−1 · α
= { Induction hypothesis, def. of δ } ξ(δ + p)
= {Distributivity } ξδ + ξp

= {Lemma 11, def. ξ } δk−1δ + (δk−1 + γp + p)p

= { δk−1 > γp, additive principal property } δk + δk−1p + γp + p

= {Distributivity, def γ } δk + (
∑k−1

j=1 δk−j)p + p �

We now analyze the complexity of exp3.

Lemma 13 exp3h(a, p, n, k) runs in time O(k(|a1||a| + #a)) when
¬finp(a), limitp(a), p ∈ ω, n = |a|, and 0 < k < ω.

Proof Note that for any c, the following hold: c ·o p takes O(1) time
(by the definition of pmult); c+o p takes O(|c|) time (by Theorem 6);
|exp2(c, k) ·o p| = |c| (see Theorem 15); and #(exp2(c, k) ·o p) = #c

ordinals.tex; 16/03/2005; 12:41; p.24

Ordinal Arithmetic: Algorithms and Mechanization 25

exp4(a,b) {raising an infinite ordinal to an infinite power}
true : [fe(a) ·o limitpart(b), 1, 0] ·o exp3(a,natpart(b))

expo(a,b) {ordinal exponentiation (raises a to the b power)}
b = 0 ∨ a = 1 : 1

a = 0 : 0

finp(a) ∧ finp(b) : expω(a,b)

finp(a) : exp1(a,b)

finp(b) : exp3(a,b)

true : exp4(a,b)

Figure 10.: The ordinal exponentiation algorithm.

(again, see Theorem 15). Now, exp3h gets called O(k) times and each
call requires O(|a1||a|+ #a+ |a|) time. Therefore, by Theorem 15 and
the above observations, the total time is O(k(|a1||a| + #a)). �

Theorem 17 exp3(a, k) runs in time O(k · (|a1||a| + #a)).

Proof This is a straightforward consequence of Lemma 13 and Theo-
rem 15. �

The fourth and final helper function, exp4, and expo are defined in
Figure 10. We use exp4 to raise an infinite ordinal to an infinite power.
The exponentiation function, expo, is now simple to define, as all that
is required is to invoke the appropriate helper function. We start by
showing the correctness of exp4, after which the correctness of expo

is immediate. We end the section by analyzing the complexity of exp4

and expo, and we show that even though the complexity of expo is
exponential, it is of the same order as the size of the resulting ordinal.

Lemma 14 For all α, ξ, z ∈ ε0 such that a ≥ ω and ξ > 0, αωξz =

ωα1ωξz.

Proof αωξz ≤ (ωα1+1)ωξz = ω(α1+1)ωξz = ωα1ωξz = (ωα1)ωξz ≤ αωξz

�

Theorem 18 For all α, β ∈ ε0, such that α, β ≥ ω, CNF(αβ) =
exp4(a, b).

ordinals.tex; 16/03/2005; 12:41; p.25

26

Proof

CNF(αβ)

= {Def. of β } CNF(α
∑m

i=1
ωβi yi+q)

= {Ordinal arithmetic } CNF(
∏m

i=1α
ωβi yi · αq)

= {Lemma 14 } CNF(
∏m

i=1ω
α1·ω

βi yi · αq)

= {Property of exponentiation } CNF(ωα1·

∑m
i=1

ωβi yi · αq)
= {Theorem 16, Corollary 2 } [a1 ·o limitpart(b), 1, 0] ·o exp2(a, q)
= {Definition exp4 } exp4(a, b) �

Theorem 19 For all α, β ∈ ε0, CNF(αβ) = expo(a, b).

Proof The proof follows from Theorems 12, 16, and 18. �

Lemma 15 #(a +o b) ≤ #a + #b

Proof The proof is by induction on #a. �

Lemma 16 limitp(b) ⇒ |a ·o b| = |b|

Proof The proof is by induction on |b|. �

Lemma 17 limitp(b) ⇒ #(a ·o b) ≤ #a1|b| + #b

Proof The proof is by induction on the size of b. �

Theorem 20 exp4(a, b) runs in time O(natpart(b)[|a||b| + |a1||a| +
#a] + #fe(a1)|b| + #b).

Proof There are 3 operations that exp4 calls that take more than
constant time. The first is exp3(a,natpart(b)), which we showed runs
in time O(natpart(b) ·(|a1||a|+#a)). The second is a1 ·o limitpart(b),
which takes time O(|fe(a1)||b|+ #fe(a1) + #b). The final operation is
[a1 ·o limitpart(b), 1, 0] ·o exp3(a,natpart(b)). If we let c = [a1 ·o
limitpart(b), 1, 0] and d = exp3(a,natpart(b)), we obtain a time
bound of O(|fe(c)||d| + #fe(c) + #d). By Lemmas 16 and 17, among
others, we have that |fe(c)| = |b|, #fe(c) = #fe(a1)|b| + #b, |d| =
|a| · natpart(b), and #d = #a · natpart(b).

Hence, the complexity of this operation is O(|b|(|a|natpart(b)) +
#fe(a1)|b|+ #b+ #a ·natpart(b)), which gives an overall complexity
for the algorithm of

O(natpart(b) · (|a1||a| + #a)
+ |fe(a1)||b| + #fe(a1) + #b + |b|(|a|natpart(b))
+ #(fe(a1))|b| + #b + #a · natpart(b))

ordinals.tex; 16/03/2005; 12:41; p.26

Ordinal Arithmetic: Algorithms and Mechanization 27

By gathering like terms and noting that #(fe(a1))|b| > |fe(a1)||b|, we
obtain a time bound of O(natpart(b)[|a||b|+|a1||a|+#a]+#fe(a1)|b|+
#b). �

Theorem 21 expo(a, b) runs in time O(natpart(b)[|a||b| + |a1||a| +
#a] + #fe(a1)|b| + #b).

Proof This follows directly from Theorems 13, 17, and 20. �

An obvious question is whether we can improve the exponential
running time of expo. Given our representation of the ordinals, the
answer is no, as the following class of examples shows. Fix a to be [1,
1, 1], which corresponds to the ordinal ω + 1 and let bk be [[1, 1, 1],
1, k], which corresponds to the ordinal ωω + k. For this infinite class
of examples, #expo(a, bk) is exactly equal to the complexity of expo.
That is, simply constructing the ordinal corresponding to expo(a, bk)
takes as long as this function takes to run in the worst case. Therefore,
this algorithm is as efficient as can be expected.

8. Implementation

In this section, we describe the implementation of the ordinal arithmetic
algorithms in the ACL2 theorem proving system. There are several
facets to this work. In Section 8.1, we give a brief overview of ACL2
and describe the ACL2 implementation of the ordinal arithmetic al-
gorithms. In Section 8.2, we discuss the mechanical verification of the
implementations. The proof scripts are part of the ACL2 distribution
(as of version 2.8) and are described in greater detail elsewhere [37]. Our
main goal in formalizing ordinal arithmetic on ordinal notations was
to enable ACL2 to automatically prove complex theorems involving
the ordinals. In Section 8.3, we give an overview of the library we
engineered into a tool for reasoning about termination and the ordinals
in ACL2, and we give an example of their use. Our treatment of the
ordinals provides many advantages over the treatment in ACL2 v2.7;
thus, we decided to update the representations, definitions, theorems,
and documentation of the ordinals [38]. These modification are present
in ACL2 version 2.8 and include a more efficient ordinal representation
and a greatly extended ability to reason about ordinals. This aspect of
our work is described in Section 8.4.

ordinals.tex; 16/03/2005; 12:41; p.27

28

8.1. Implementation in ACL2

“ACL2” stands for “A Computational Logic for Applicative Common
Lisp.” It is the name of a programming language, a first-order mathe-
matical logic based on recursive functions, and a mechanical theorem
prover for that logic [26, 27, 25].

As a programming language, ACL2 can best be thought of as an
applicative—side-effect free or purely functional—subset of Lisp. ACL2
is executable: terms composed entirely of defined functions and con-
stants can be reduced to constants by Lisp calculation. This is very
important to many applications. For example, ACL2 models of com-
mercial floating-point designs have been executed on millions of test
cases to “validate” the models against industrial design simulation
tools, before subjecting the ACL2 models to proof [56]. ACL2 models of
microprocessors have been executed at 90% of the speed of comparable
C simulation models [23].

As a mathematical logic, ACL2 may be thought of as first-order
predicate calculus with equality, recursive function definitions, and
mathematical induction. The primitives of applicative Common Lisp
are axiomatized, as are the basic data types, including natural numbers,
integers, rationals, complex rationals, ordered pairs, symbols, charac-
ters, and strings. ACL2 includes a representation of the ordinals up
to ε0 and the principle of mathematical induction, in ACL2, is stated
as a rule of inference that allows induction up to ε0. A principle of
definition is also provided, by which the user can extend the axioms
by the addition of equations defining new function symbols. To admit
a new recursive definition, the principle requires the identification of
an ordinal measure function and a proof that the arguments to every
recursive call decrease according to this measure. Only terminating
recursive definitions can be so admitted under the definitional principle.
(However, “partial functions” can be axiomatized; see [33, 34].)

As a theorem prover, ACL2 is an industrial-strength version of the
Boyer-Moore theorem prover [8]. Of special note is its “industrial-
strength,” e.g., it has been used to prove some of the largest and most
complicated theorems ever proved about commercially designed digital
artifacts [41, 54, 53, 55, 56, 9, 24]. The theorem prover is an inte-
grated system of ad hoc proof techniques that include simplification,
generalization, induction, and many other techniques. Simplification is
the main technique and includes: (1) the use of evaluation (i.e., the
explicit computation of constants when, in the course of symbolic ma-
nipulation, certain variable-free expressions, like (expt 2 32), arise),
(2) conditional rewrite rules (derived from previously proved lemmas),
(3) definitions (including recursive definitions), (4) propositional calcu-

ordinals.tex; 16/03/2005; 12:41; p.28

Ordinal Arithmetic: Algorithms and Mechanization 29

lus (implemented both by the normalization of if-then-else expressions
and the use of BDDs), (5) a linear arithmetic decision procedure for
the rationals, (6) user-defined equivalence and congruence relations,
(7) user-defined and mechanically verified simplifiers (meta-reasoning),
(8) a user-extensible type system, (9) forward chaining, (10) an in-
teractive loop for entering proof commands, and (11) various means
to control and monitor these features including heuristics, interactive
features, and user-supplied functional programs. See [26, 25] or the
documentation, source code and examples at the URL [27] for details.

An example of ACL2 definitions appears in Figure 11, where we give
our definition of ordinal multiplication (ob*). Functions are defined
with the defun construct, e.g., consider the definition of count1. The
first argument, in this case, count1, is the name of the function. The
second argument is a list of its parameters. The last argument is the
body of the function. Once ACL2 admits the function, an axiom is
added stating that (count1 x y) is equal to the body of count1. The
body of count1 refers to several functions not defined in Figure 11,
e.g., finp is the predicate that recognizes if an ordinal is finite and
corresponds to finp from the first part of the paper. The functions fe,
fco (not used in count1), and rst correspond to the fe, fco, and rst

functions, respectively. The op function in the declaration corresponds
to op.

The declare statement in between the parameters and body of
count1 is an optional argument that does not affect the meaning of the
defun, but allows the user to inform ACL2 about various pragmatic
issues. In this case, we declare the expected type of the inputs, using a
guard declaration. Guards are used by the compiler to generate efficient
code. A guard can be any predicate over the function parameters; in
the case of count1, we require that both arguments are ordinals. When
verifying the guards of a function, ACL2 must demonstrate that when
the guards conditions for the function hold, the guard conditions for
all functions called within the body also hold. For example, we must
prove that whenever count2 calls count1, (lastn n x) and y are both
ordinals. If a top level expressions satisfies its guards, then we are
guaranteed that no guard violations can occur during execution, and
ACL2 is free to execute the efficient version of the definition.

Another notable feature of ACL2 is defexec, which the definition
of ob* takes advantage of. Using defexec the user can specify two
definitions of a function: the :logic definition and the :exec definition.
ACL2 is then required to prove that these two definitions are equivalent
when the guards hold, which allows ACL2 to use the simpler :logic

definition when performing symbolic manipulation, but to use the more
efficient :exec definition during execution. In our case, we use the

ordinals.tex; 16/03/2005; 12:41; p.29

30

(defun count1 (x y)

(declare (xargs :guard (and (op x) (op y))))

(cond ((finp x) 0)

((o< (fe y) (fe x))

(+ 1 (count1 (rst x) y)))

(t 0)))

(defun count2 (x y n)

(declare (xargs :guard (and (op x) (op y) (natp n))))

(+ n (count1 (lastn n x) y)))

(defun padd (x y n)

(declare (xargs :guard (and (op x) (natp n)

(op y) (<= n (count1 x y)))))

(if (or (finp x) (zp n))

(o+ x y)

(make-ord (fe x) (fco x) (padd (rst x) y (1- n)))))

(defun pmult (x y n)

(declare (xargs :guard (and (op x) (natp n)

(op y) (<= n (count1 (fe x)

(fe y))))))

(let* ((fe-x (fe x)) (fco-x (fco x))

(fe-y (fe y)) (fco-y (fco y))

(m (count2 fe-x fe-y n)))

(cond ((or (equal x 0) (equal y 0)) 0)

((and (finp x) (finp y)) (* x y))

((finp y) (make-ord fe-x (* fco-x fco-y) (rst x)))

(t (make-ord (padd fe-x fe-y m)

fco-y

(pmult x (rst y) m))))))

(defexec ob* (x y)

(declare (xargs :guard (and (op x) (op y))))

(mbe :logic (let ((fe-x (fe x)) (fco-x (fco x))

(fe-y (fe y)) (fco-y (fco y)))

(cond ((or (equal x 0) (equal y 0)) 0)

((and (finp x) (finp y)) (* x y))

((finp y) (make-ord fe-x

(* fco-x fco-y)

(rst x)))

(t (make-ord (o+ fe-x fe-y)

fco-y

(ob* x (rst y))))))

:exec (pmult x y 0)))

Figure 11.: ACL2 definitions of ordinal addition and multiplication.

ordinals.tex; 16/03/2005; 12:41; p.30

Ordinal Arithmetic: Algorithms and Mechanization 31

inefficient version of multiplication (given in Section 6) for the :logic

definition and the efficient version for the :exec definition. We also use
defexec to define ordinal exponentiation.

8.2. Mechanical Verification

The mechanical verification of the ordinal arithmetic algorithm imple-
mentations involved proving two different classes of theorems, beyond
the guard conjectures and termination proofs mentioned in the previous
section. The first class deals with the algebraic properties of the opera-
tions. We proved that each function has the same algebraic properties
as its corresponding set-theoretic operation. For example, we proved
that ob+, ob-, ob*, and ob^ have all the properties we listed for ordinal
addition, subtraction, multiplication, and exponentiation in Section 2.

The second class of theorems are about the notation and involve
helper functions, such as make-ord, fe, fco, and rst, and how they
interact with the algebraic functions. An example of this is the following
theorem.

(defthm o+-fe-1

(implies (o< (fe a)

(fe b))

(equal (fe (o+ a b))

(fe b))))

Recall that all of these theorems are part of the ACL2 distribution.
Also, note that these theorems deal with ordinal notations and the
implementations in ACL2 of the ordinal arithmetic algorithms. That is,
we do not mechanically establish any connection with the set-theoretic
definitions on which our algorithms are based, as our goal was not
to formalize set-theory in ACL2. Instead, we focused on using our
results about arithmetic on ordinal notations to extend ACL2’s ability
to reason about termination. However, many of the paper and pencil
proofs in the first part of this paper turned out to be quite useful, as
they provided the key insights required to complete the ACL2 proofs.

8.3. Library for Automatic Verification

Enabling ACL2 to effectively and automatically reason about the ordi-
nals and termination requires more than proving the correctness of the
implementations, the topic of the previous section. It requires carefully
constructing a library that makes effective and efficient use of the
various types of mechanisms that ACL2 provides to control the way
in which theorems are used. A complete description of the issues is
beyond the scope of this paper, but see [38]. Instead, we discuss a few
important considerations that went into engineering a useful library.

ordinals.tex; 16/03/2005; 12:41; p.31

32

The first consideration involves a concept in ACL2 known as “rule
classes.” When ACL2 proves a theorem, it gets entered into a database
so that it can be used in subsequent proof attempts. By default, theo-
rems are entered as rewrite rules. Rewrite rules can be conditional and
are triggered when a goal contains an expression matching the left hand
size of the rule’s consequent. When this happens, ACL2 attempts to
establish the antecedents of the rule via backchaining, and if successful,
it rewrites the expression, using the right hand side of the rewrite rule.
For example, consider the following rule.

(defthm |∼(a=0) /\ b>1 <=> a < ab|

(implies (and (op a)

(op b))

(equal (o< a (o* a b))

(and (not (equal a 0))

(not (equal b 0))

(not (equal b 1))))))

After proving this theorem, ACL2 enters it into the database of rules
as a rewrite rule. Subsequently, when ACL2 sees an expression of the
form (o< e1 (o* e1 e2)), where e1 and e2 are arbitrary ACL2 ex-
pressions, it will try to determine if e1 and e2 are ops. If so, ACL2
will rewrite (o< e1 (o* e1 e2)) to (and (not (equal e1 0)) (not

(equal e2 0)) (not (equal e2 1))). Notice that although (o< e1

(o* e1 e2)) is smaller in size than (and (not (equal e1 0)) (not

(equal e2 0)) (not (equal e2 1))), it contains o< and o*, which
are relatively complex functions. It is important to orient rewrite rules
so that they reduce expressions containing complex functions into ex-
pressions containing simpler functions. It is also important to take into
account how much effort will be expended trying to discharge the hy-
potheses, and rules should be written in a way that forces expressions
into “canonical” forms.

While rewrite rules are the most widely used rule class, there are
other types of rules, e.g., forward chaining rules are triggered when
all of the antecedents are known to be true. When this happens, the
consequent is added to the “context,” the collection of known facts.
When dealing with large libraries such as ours, the interaction between
rules of different classes can become quite complicated and the decisions
made about which rules to put in which classes therefore has a signifi-
cant impact on the effectiveness and efficiency of a library of theorems.
There are general guidelines as to which rule classes to use [27, 26], but
engineering an efficient library requires a good dose of experimentation
and profiling.

It is also important to distinguish between the theorems that one
wants to export versus the intermediate lemmas that are used to prove

ordinals.tex; 16/03/2005; 12:41; p.32

Ordinal Arithmetic: Algorithms and Mechanization 33

such theorems. For example, to prove the left distributive property of
multiplication over addition, we had to prove several lemmas which
correspond to special cases of the theorem. The distributive property
theorem should be exported (made visible when the library is loaded
into ACL2), but the supporting lemmas should not. This is accom-
plished with ACL2’s local form. Sometimes a lemma can also cause
problems within a library and in this case, one can use the encapsulate
form, which provides a way of hiding local theorems from the rest of
the library (and much more).

Another concern is deciding when to use macros and when to use
functions. In ACL2 macros are simply syntactic sugar and are expanded
away before theorem proving begins. Thus, ACL2 does not reason about
macros. In designing our library, we used macros in two ways. The first
was to simplify the class of theorems needed to reason about the ordi-
nals. For example, we made o<= a macro such that (o<= a b) expands
to (not (o< b a)). This greatly simplified our library, because we did
not need to develop rewrite rules to reason about expressions involving
o<=. The problem with this approach is that the output generated by
ACL2 is with respect to o<, so we altered ACL2 to print (o<= a b)

instead of (not (o< b a)). This leads to improved readability.
The second way we used macros was to create polyadic versions

of our binary functions. For example, o* is a macro and (o* x y z)

macro expands to (ob* x (ob* y z)). We also include similar macros
for addition and exponentiation. To improve readability, ACL2 can be
instructed to print ob* in terms of o* with the command (add-binop

o* ob*). Thus, users are under the illusion that they are reasoning
about polyadic functions, while all reasoning is really with respect to
the binary functions. In summary, macros provide not only syntactic
extensions, but also provide limited support for maintaining the illusion
that users can reason about these extensions, thereby simplifying the
interface between theorem prover and user.

The final consideration we address here is the structure of the library.
The library is divided into files of ACL2 theorems and definitions, called
“books.” Dividing the theorems properly between the books adds logi-
cal coherence and modularity to the library. This maximizes efficiency
through code reuse and makes the books easier to understand for users.
The structure of this library is illustrated in Figure 12, where the
rectangles represent books, and the arrows represent the dependencies
between books. For example, the arrow from ordinal-isomorphism

to e0-ordinal indicates that the results of e0-ordinal rely on the
results of ordinal-isomorphism. A short description of the contents
of the books can be found in Table I. The total size of the books is

ordinals.tex; 16/03/2005; 12:41; p.33

34

e0-ordinal

ordinal-exponentiation

lexicographic-ordering

ordinal-isomorphism

limits

ordinal-multiplication

natp-pospordinal-total-order

ordinals-without-arithmetic

proof-of-well-foundedness

ordinals

top-with-meta

ordinal-basic-theorems

ordinal-addition

ordinal-counter-examples

ordinal-definitions

Figure 12.: The Ordinal Library.

181K and they consist of about 5,455 lines of definitions, theorems,
and comments.

To use the ordinal library, the user loads either the ordinals or
the ordinals-without-arithmetic book, depending on whether she
wishes to include results about integer arithmetic. The integer arith-
metic book, top-with-meta, was essential for the creation of the li-
brary, but can sometimes interfere with other books.

The library has already been used extensively to perform termi-
nation proofs in ACL2. When using it, simple termination proofs go
through without any input from the user, and even relatively compli-
cated proofs usually require only the specification of a measure func-
tion. In addition, we have used the library to define new well-founded
relations for termination proofs. This is accomplished in ACL2 with the
set-well-founded-relation command, which requires proving that
a set and a relation over that set can be embedded in the ordinals
in an order-preserving way. In the lexicographic-ordering book we

ordinals.tex; 16/03/2005; 12:41; p.34

Ordinal Arithmetic: Algorithms and Mechanization 35

Book Description

top-with-meta A link to the arithmetic books
natp-posp Theorems about natp and posp
ordinal-definitions The function definitions
ordinal-total-order Theorems about the behavior of o<
ordinal-basic-thms Basic theorems about the helper functions
ordinal-addition Theorems about o+ and o-

ordinal-multiplication Theorems about o*

ordinal-exponentiation Theorems about o^

ordinal-isomorphism Proof of isomorphism of our ordinals & ACL2’s
e0-ordinal Exports major results of ordinal-isomorphism
limits Theorems about limit ordinals
ordinal-counter-examples Counter-examples, e.g., commutativity
ordinals-without-arithmetic Exports ordinal thms without integer arithmetic
ordinals Exports ordinal thms with integer arithmetic
proof-of-well-foundedness Part of proof of well-foundedness of our ordinals
lexicographic-ordering Proves well-foundedness of a lexicographic order

Table I.: The Ordinal Library.

illustrate how this is done by proving that the lexicographic ordering
over natural numbers is well-founded. The lexicographic order over the
natural numbers is much simpler to explain to students and is what we
now use when teaching ACL2.

Our library has also been used by Sustik to give a constructive proof
of Dickson’s Lemma in ACL2 [61]. Dickson’s Lemma states that for any
infinite sequence of monomials (over some fixed number of variables),
m0, m1, m2, . . ., there exists i, j ∈ N such that i < j and mi divides mj .
This is a key lemma in the proof of the termination of Buchberger’s
algorithm, which finds a Gröbner basis of a polynomial ideal. Sustik’s
argument involves mapping initial segments of the monomial sequence
into the ordinals such that if Dickson’s lemma fails, the ordinal se-
quence will be decreasing. Thus, the existence of an infinite sequence
of monomials such that no monomial divides a later monomial implies
the existence of an infinite decreasing sequence of ordinals, which is
not possible due to the well-foundedness of the ordinals. Sustik’s proof
relies heavily on ordinal addition and exponentiation and is an example
of the kind of termination proof that would be quite difficult to fully
automate. Nonetheless, his proof requires no theorems about ordinals
beyond those provided by our library.

8.4. Modifying ACL2

After creating the ordinal arithmetic library, we decided to modify
ACL2, replacing its ordinal representation by our own, so that it could
take full advantage of our work. The modifications included updating

ordinals.tex; 16/03/2005; 12:41; p.35

36

the documentation and modifying the ACL2 sources and consisted
of about 1,750 lines of code and documentation. We submitted the
changes to Kaufmann and Moore, the authors of ACL2, and they have
incorporated the changes into the ACL2 version 2.8 [27].

It is worth noting that our changes do not affect the soundness of
the ACL2 logic. In the ordinal-isomorphism book of our library, we
exhibit a bijection between our ordinal representation and the previous
ACL2 representation (see Corollary 1). This proof was carried out in
ACL2 version 2.7, thus guaranteeing that soundness is not affected.

We now discuss some of the issues we confronted in modifying ACL2.
First, the ordinals are needed in ACL2’s ground-zero theory, the initial
theory encountered when starting an ACL2 session. Proving theorems,
defining functions, including books, etc. all result in extensions to the
ground-zero theory, and we wanted to keep it as clean and simple as
possible. Therefore, we did not want to add our entire library of defi-
nitions and theorems to the ground-zero theory. Instead, we included
only the basic constructors and destructors (make-ord, fe, fco, rst),
the functions necessary for op and o< (natp, posp, infp, finp, o<, op),
and a few macros based on o< (o>, o<=, o>=). The arithmetic functions
and theorems remain in the library.

After replacing the old ordinals with our new representation, we
had to deal with legacy issues, including backward compatibility for
the books included with ACL2, as many of these books referenced the
old ordinal representation. The key to fixing these references was the
theorems proved in the ordinal-isomorphism and e0-ordinal books.
The main result in the books is a proof that there exists a bijection
between the new and old ordinal representations. This result allowed
us to switch the well-founded relation used by ACL2 to the version
2.7 relation (for the admission of the troublesome books only). That
fixed most of the problems, however, some books used the old ordinals
to prove more than just termination. Again, by using the bijection
proof, we were able to transfer results about the old ordinals to the
new ordinals, which resolved the remaining problems.

9. Conclusion

We presented efficient algorithms for ordinal addition, subtraction,
multiplication, and exponentiation on succinct ordinal representations,
proved their correctness, and analyzed their complexity. We imple-
mented the algorithms in the ACL2 system, mechanically verified the
correctness of the implementations, and developed a library of theorems
that can be used to significantly automate reasoning involving the ordi-

ordinals.tex; 16/03/2005; 12:41; p.36

Ordinal Arithmetic: Algorithms and Mechanization 37

nals. We modified ACL2 so that it directly supports our representation
of the ordinals and our libraries; the modifications are part of ACL2
version 2.8. While the theory of the ordinal numbers has been studied
by various research communities for over 100 years, we believe that
we are the first to give algorithms for ordinal arithmetic on ordinal
notations.

Our work can be extended by replacing ε0 with larger countable
ordinals. A simple counting argument shows that no ordinal notation
can represent all countable ordinals, but there are well known notations
that can represent ordinals up to Γ0 (which is needed to show termina-
tion of some term rewrite systems [15, 20]) and further into the Veblen
hierarchies [65] and further still [40, 58, 59]. Another possible extension
is to define additional operations on ordinals, e.g., division, taking logs,
etc. Finally, a promising direction for future work is to use our library
and ACL2 as a proof checker for termination tools that guess measure
functions in some heuristic fashion and to apply these tools to systems
written in common imperative languages such as C and Java.

Acknowledgments
We would like to thank Matt Kaufmann and J Strother Moore for
integrating our modifications into ACL2 version 2.8. We would also
like to thank Mátyás Sustik for using our library and making many
suggestions on how we can improve it.

References

1. K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent
Programs. Springer-Verlag, New York, 1991.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. G. Bancerek. The reflection theorem. Journal of Formalized Mathematics, 2,
1990. See URL http://megrez.mizar.org/mirror/JFM/Vol2/zf refle.html.

4. J. G. Belinfante. Computer proofs in Gödel’s class theory with equa-
tional definitions for composite and cross. Journal of Automated Reasoning,
22(3):311–339, 1999.

5. J. G. F. Belinfante. On computer-assisted proofs in ordinal number theory.
Journal of Automated Reasoning, 22(3):341–378, 1999.

6. J. G. F. Belinfante. Reasoning about iteration in Gödel’s class theory. In
F. Baader, editor, Automated Deduction - CADE-19, Proceedings of the 19th
International Conference on Automated Deduction, volume 2741 of LNAI,
pages 228–242. Springer-Verlag, 2003.

7. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Devel-
opment, Coq’Art: the calculus of inductive constructions. Texts in Theoretical
Computer Science. Springer-Verlag, May 2004.

8. R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic
Press, second edition, 1997.

ordinals.tex; 16/03/2005; 12:41; p.37

38

9. B. Brock, M. Kaufmann, and J. S. Moore. ACL2 theorems about commercial
microprocessors. In M. Srivas and A. Camilleri, editors, Formal Methods in
Computer-Aided Design (FMCAD’96), pages 275–293. Springer-Verlag, 1996.

10. G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre. Mathema-
tische Annalen, xlvi:481–512, 1895.

11. G. Cantor. Beiträge zur Bgründung der transfiniten Mengenlehre. Mathema-
tische Annalen, xlix:207–246, 1897.

12. G. Cantor. Contributions to the Founding of the Theory of Transfinite Numbers.
Dover Publications, Inc., 1952. Translated by Philip E. B. Jourdain.

13. A. Church and S. C. Kleene. Formal definitions in the theory of ordinal
numbers. Fundamenta mathematicae, 28:11–21, 1937.

14. L. A. Dennis and A. Smaill. Ordinal arithmetic: A case study for rippling in a
higher order domain. In R. Boulton and P. Jackson, editors, Theorem Proving
in Higher Order Logics: 14th International Conference, TPHOLs 2001, volume
2152 of LNCS, pages 185–200. Springer-Verlag, 2001.

15. N. Dershowitz and M. Okada. Proof-theoritic techniques for term rewriting
theory. In 3rd IEEE Symp. on Logic in Computer Science, pages 104–111,
1988.

16. N. Dershowitz and E. M. Reingold. Ordinal arithmetic with list structures. In
Logical Foundations of Computer Science, pages 117–126, 1992.

17. K. Devlin. The Joy of Sets: Fundamentals of Contemporary Set Theory.
Springer-Verlag, second edition, 1992.

18. J. Doner. Definability in the extended arithmetic of ordinal numbers.
Dissertationes Mathematicae, 96, 1972.

19. J. Doner and A. Tarski. An extended arithmetic of ordinal numbers.
Fundamenta Mathematicae, 65:95–127, 1969.

20. J. H. Gallier. What’s so special about Kruskal’s theorem and the ordinal Γ0?
A survey of some results in proof theory. Annals of Pure and Applied Logic,
pages 199–260, 1991.

21. G. Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische
Annalen, 112:493–565, 1936. English translation in M. E. Szabo (ed.), The
Collected Works of Gerhard Gentzen, pp. 132-213, North Holland, Amsterdam,
1969.

22. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press,
1993.

23. D. Greve, M. Wilding, and D. Hardin. High-speed, analyzable simulators. In
Kaufmann et al. [25], pages 113–135.

24. D. A. Greve. Symbolic simulation of the JEM1 microprocessor. In Formal
Methods in Computer-Aided Design – FMCAD, LNCS. Springer-Verlag, 1998.

25. M. Kaufmann, P. Manolios, and J. S. Moore, editors. Computer-Aided
Reasoning: ACL2 Case Studies. Kluwer Academic Publishers, June 2000.

26. M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, July 2000.

27. M. Kaufmann and J. S. Moore. ACL2 homepage. See URL http://www.cs.-

utexas.edu/users/moore/acl2.
28. M. Kaufmann and J. S. Moore, editors. Proceedings of the ACL2 Work-

shop 2000. The University of Texas at Austin, Technical Report TR-00-29,
November 2000.

ordinals.tex; 16/03/2005; 12:41; p.38

Ordinal Arithmetic: Algorithms and Mechanization 39

29. M. Kaufmann and J. S. Moore, editors. Fourth International Workshop on the
ACL2 Theorem Prover and Its Applications (ACL2-2003), July 2003. See URL
http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/.

30. K. Kunen. Set Theory - An Introduction to Independence Proofs, volume
102 of Studies in Logic and the Foundations of Mathematics. North-Holland,
Amsterdam, 1980.

31. P. Manolios. Correctness of pipelined machines. In W. A. Hunt, Jr. and S. D.
Johnson, editors, Formal Methods in Computer-Aided Design–FMCAD 2000,
volume 1954 of LNCS, pages 161–178. Springer-Verlag, 2000.

32. P. Manolios. Mechanical Verification of Reactive Systems. PhD thesis,
University of Texas at Austin, August 2001. See URL http://www.cc.-

gatech.edu/∼manolios/publications.html.
33. P. Manolios and J. S. Moore. Partial functions in ACL2. In Kaufmann and

Moore [28].
34. P. Manolios and J. S. Moore. Partial functions in ACL2. Journal of Automated

Reasoning, 31(2):107–127, 2003.
35. P. Manolios, K. Namjoshi, and R. Sumners. Linking theorem proving and

model-checking with well-founded bisimulation. In N. Halbwachs and D. Peled,
editors, Computer-Aided Verification–CAV ’99, volume 1633 of LNCS, pages
369–379. Springer-Verlag, 1999.

36. P. Manolios and D. Vroon. Algorithms for ordinal arithmetic. In F. Baader,
editor, 19th International Conference on Automated Deduction – CADE-19,
volume 2741 of LNAI, pages 243–257. Springer–Verlag, July/August 2003.

37. P. Manolios and D. Vroon. Ordinal arithmetic in ACL2. In Kaufmann
and Moore [29]. See URL http://www.cs.utexas.edu/users/moore/acl2/-

workshop-2003/.
38. P. Manolios and D. Vroon. Integrating reasoning about ordinal arithmetic

into ACL2. In Formal Methods in Computer-Aided Design: 5th International
Conference – FMCAD-2004, LNCS. Springer–Verlag, November 2004.

39. I. Medina-Bulo, F. Palomo-Lozano, and J. A. Alonso-Jimenez. Implementation
in ACL2 of well-founded polynomial orderings. In M. Kaufmann and J. S.
Moore, editors, Proceedings of the ACL2 Workshop 2002. 2002.

40. L. W. Miller. Normal functions and constructive ordinal notations. Journal of
Symbolic Logic, 41:439–459, June 1976.

41. J. S. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the
AMD5K86 floating-point division program. IEEE Trans. Comp., 47(9):913–
926, September 1998.

42. F. Morris and C. Jones. An early program proof by Alan Turing. IEEE Annals
of the History of Computing, 6(2):139–143, April–June 1984.

43. S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system.
In D. Kapur, editor, 11th International Conference on Automated Deduction
(CADE), pages 748–752. Lecture Notes in Artificial Intelligence, Vol 607,
Springer-Verlag, June 1992.

44. L. C. Paulson. Set theory for verification: I. From foundations to functions.
Journal of Automated Reasoning, 11(3):353–389, 1993.

45. L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer-Verlag LNCS
828, 1994.

46. L. C. Paulson. Set theory for verification: II. Induction and recursion. Journal
of Automated Reasoning, 15(2):167–215, 1995.

ordinals.tex; 16/03/2005; 12:41; p.39

40

47. L. C. Paulson. The reflection theorem: a study in meta-theoretic reasoning.
In A. Voronkov, editor, 18th International Conf. on Automated Deduction:
CADE-18, number 2392 in LNAI, pages 377–391. Springer-Verlag, 2002.

48. L. C. Paulson. The relative consistency of the axiom of choice mechanized using
isabelle. LMS Journal of Computation and Mathematics, 6:198–248, 2003.

49. L. C. Paulson and K. Grabczewski. Mechanizing set theory: cardinal arithmetic
and the axiom of choice. Journal of Automated Reasoning, 17:291–323, 1996.

50. H. Rogers, Jr. Theory of Recursive Functions and Effective Computability.
MIT Press, 1st paperback edition, 1987.

51. P. Rudnicki. An overview of the MIZAR project. In 1992 Workshop on Types
for Proofs and Programs, 1992.

52. J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo, and F.-J. Martin. Multiset
relations: A tool for proving termination. In Kaufmann and Moore [28].

53. D. M. Russinoff. A mechanically checked proof of correctness of the AMD5K86
floating-point square root microcode. Formal Methods in System Design Special
Issue on Arithmetic Circuits, 1997.

54. D. M. Russinoff. A mechanically checked proof of IEEE compliance of a
register-transfer-level specification of the AMD-K7 floating-point multiplica-
tion, division, and square root instructions. London Mathematical Society
Journal of Computation and Mathematics, 1:148–200, December 1998.

55. D. M. Russinoff. A mechanically checked proof of correctness of the AMD-
K5 floating-point square root microcode. Formal Methods in System Design,
14:75–125, 1999.

56. D. M. Russinoff and A. Flatau. RTL verification: A floating-point multiplier.
In Kaufmann et al. [25], pages 201–231.

57. K. Schütte. Proof Theory. Springer-Verlag, 1977. Translation from the German
by J. N. Crossley. The book is a completely rewritten version of Beweistheorie,
Springer-Verlag, 1960.

58. A. Setzer. Ordinal systems. In B. Cooper and J. Truss, editors, Sets and Proofs,
pages 301–331. Cambridge University Press, 1999.

59. A. Setzer. Ordinal systems part 2: One inaccessible. In Logic Colloquium ’98,
volume 13 of ASL Lecture Notes in Logic, pages 426–448, 2000.

60. R. Sumners. An incremental stuttering refinement proof of a concurrent
program in ACL2. In Kaufmann and Moore [28].

61. M. Sustik. Proof of Dixon’s lemma using the ACL2 theorem prover via an
explicit ordinal mapping. In Kaufmann and Moore [29]. See URL http://-

www.cs.utexas.edu/users/moore/acl2/workshop-2003/.
62. A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge

University Press, second edition, 2000.
63. A. M. Turing. Systems of logic based on ordinals. Proceedings of the

London Mathematical Society, 45(2):161–228, 1939. See URL http://www.-

turingarchive.org/.
64. A. M. Turing. Checking a large routine. In Report of a Conference on High

Speed Automatic Calculating Machines, pages 67–69. Universtity Mathematical
Laboratory, Cambridge, June 1949.

65. O. Veblen. Continuous increasing functions of finite and transfinite ordinals.
Transactions of the American Mathematical Society, 9:280–292, 1908.

ordinals.tex; 16/03/2005; 12:41; p.40

