
The Size-Change Principle for Program Termination

Chin Soon Lee
�

Department of Computer
Science and Software

Engineering
The University of Western

Australia
Nedlands 6907

Western Australia

leecs@cs.uwa.edu.au

Neil D. Jones
Datalogisk Institut

University of Copenhagen
Universitetsparken 1

DK-2100 Copenhagen
Denmark

neil@diku.dk

Amir M. Ben-Amram
Academic College of Tel-Aviv–

Yaffo
4 Antokolsky Street

Tel-Aviv 64044
Israel

amirben@mta.ac.il

ABSTRACTThe \size-hange termination" priniple for a �rst-order fun-tional language with well-founded data is: a program termi-nates on all inputs if every in�nite all sequene (follow-ing program ontrol ow) would ause an in�nite desent insome data values.Size-hange analysis is based only on loal approximations toparameter size hanges derivable from program syntax. Theset of in�nite all sequenes that follow program ow and anbe reognized as ausing in�nite desent is an !-regular set,representable by a B�uhi automaton. Algorithms for suhautomata an be used to deide size-hange termination.We also give a diret algorithm operating on \size-hangegraphs" (without the passage to automata).Compared to other results in the literature, terminationanalysis based on the size-hange priniple is surprisinglysimple and general: lexial orders (also alled lexiographiorders), indiret funtion alls and permuted arguments (de-sent that is not in-situ) are all handled automatially andwithout speial treatment, with no need for manually sup-plied argument orders, or theorem-proving methods not er-tain to terminate at analysis time.We establish the problem's intrinsi omplexity. This turnsout to be surprisingly high, omplete for pspae, in spite ofthe simpliity of the priniple. pspae hardness is provedby a redution from Boolean program termination. An in-teresting onsequene: the same hardness result applies tomany other analyses found in the termination and quasi-termination literature.�This researh was done while visiting DIKU.

Categories and Subject DescriptorsD.2.4 [Software Engineering℄: Software/Program Veri-�ation; D.3.4 [Programming Languages℄: Proessors;F.3.1 [Logis and Meanings of Programs℄: Speifyingand Verifying and Reasoning about Programs; F.3.2 [Logisand Meanings of Programs℄: Semantis of ProgrammingLanguages
KeywordsTermination, program analysis, omega automaton, PSPACE-ompleteness, partial evaluation.
1. INTRODUCTION
1.1 MotivationThere are many reasons to study automati methods toprove program termination, inluding:� Program veri�ation: typially dedutive methods areused to show partial orretness (the input-output spe-i�ation is satis�ed provided the program terminates),followed by a separate proof of termination [11℄.� Automati program manipulation: termination has tobe ensurable when dealing with mahine-generated pro-grams, or ones imported from a possibly untrustworthyontext.� Broad interest: termination has been studied in �eldsinluding funtional programming [8℄, logi program-ming [7, 15, 17, 19, 14℄, term rewriting systems [3,20℄ and partial evaluation. Disussion of related workappears at the end of this paper.� Interesting analysis: termination is not just an \ab-strat interpretation" of program values, but rathermore subtle.� Use in partial evaluation: this is a step towards abinding-time analysis that will guarantee terminationof program speialization [12, 2, 9, 10℄ and still allowan aeptably high degree of speialization in an o�inepartial evaluator suh as Similix [5℄.We emphasize here a areful and preise formulation of asimple but powerful priniple to deide termination. It isowing to this lear statement of the termination riterion

that the pspae hardness result has been ahieved. Theresult should interest researhers working with related anal-yses of omparable power [12, 2, 14, 7, 9℄, as our omplexityresult (pspae hardness) also applies to their methods. Fur-ther, it suggests striving for a ptime approximation to thepresent riterion that is suÆiently strong on pratial pro-grams.
1.2 This AnalysisWe do termination analysis in two distint phases. Phase 1 isto extrat a set of size-hange graphs from the program. Foreah funtion all that may our during atual exeution,there is a size-hange graph that safely approximates thesize relations between soure and destination parameters inthis all. We assume that the measure of size gives rise to awell-founded order, so that the following priniple applies:If every in�nite omputation would give rise toan in�nitely dereasing value sequene (aord-ing to the size-hange graphs), then no in�niteomputation is possible.Phase 2 is to apply this riterion. It an be deided preiselygiven a safe set of size-hange graphs.De�nition 1. For any set A, de�ne A� to be the set of all�nite sequenes over A; and A! to be the set of all in�nitesequenes over A; and A�! = A� [A!. We use the samenotation: as = a1a2a3 : : : for elements of either A� or A!,and write as = a1a2a3 : : : an for elements of A�.
1.3 Syntax and notationsA �rst order funtional language L with the following syntaxis onsidered.p 2 Prog ::= def1 : : : defmdef 2 Def ::= f(x1; : : : ; xn) = efe 2 Expr ::= xj if e1 then e2 else e3j op(e1; : : : ; en)j : f(e1; : : : ; en)x 2 Parameter ::= identi�erf 2 FnName ::= identi�er not in Parameterop 2 Op ::= primitive operatorThe de�nition of funtion f has form f(x1; : : : ; xn) = ef,where ef is alled the body of f. The number n � 0 ofparameters in the de�nition of f is alled its arity , writtenarity(f). Notation: Param(f) = ff(1); : : : ; f(n)g is the setof f's parameters. In examples the f(i)'s may be named byidenti�ers, e.g., f(i) orresponds to xi in the grammar above.Parameters are assumed to be in sope when they are used.This an be heked syntatially. The entry funtion is the�rst funtion in the program's list of de�nitions, denotedfinitial . Call sites are labeled with numbers prepended tothe all expression, e.g., : f(e1; : : : ; en).Without loss of generality, all funtion names, parameternames and all site labels are distint from one another.Constants are regarded as 0-ary operators.

1.4 Programs and their semanticsPrograms in L are untyped, and are interpreted aordingto the (very standard all-by-value) evaluation semantis inFigure 5.1. The semanti operator E is de�ned as usual fora funtional language: E [[e℄℄~v is the value of expression e inenvironment ~v = (v1; : : : ; vn) { a tuple ontaining values ofparameters f(1); : : : ; f(n).E has type Expr ! Value� ! Value℄, where Value� is theat domain of �nite value sequenes. Domain Value℄ =Value [f?;Errg inludes values, plus Err to model runtimeerrors, and ? to model non-termination. Funtion lift :Value ! Value℄ is the natural injetion.Program p is terminating on input ~v i� E [[efinitial ℄℄~v 6= ?.De�nition 2.1. We write : f! g, or alternatively, f ! g for a all to funtion g ourring in ef. The set of all all sitesin p is C.2. A all sequene is a �nite or in�nite sequene s =123 : : : 2 C�!. It is well-formed (for the urrentprogram) if and only if there is a sequene of funtionsf0, f1, : : : , suh that f0 1! f1 2! f2 3! : : :3. We write s : f ! g, or alternatively, f s! g if s =12 : : : k and f0 1! f1 2! : : : k! fk where f = f0 andg = fk.4. A state is a pair in FnName �Value�. A state tran-sition (f; ~v) ! (g; ~u) is a pair of states onnetedby a all : g(e1; : : : ; en) in f's body ef, suh that~u = (u1; : : : ; un) and E [[ek℄℄~v = lift(uk); k = 1; : : : ; n.5. A state transition sequene is a sequene (�nite or in-�nite) of form:sts = (f0; ~v0) 1! (f1; ~v1) 2! (f2; ~v2) 3! : : : ;where (ft; ~vt) t+1! (ft+1; ~vt+1) is a state transition foreah t = 0; 1; : : : .6. The all sequene of sts is alls(sts) = 123 : : : .
A size ordering on values.We assume given a �xed well-founded partial ordering < onthe Value domain. Remark: the partial order < is om-pletely distint from the \de�nedness" order v for the se-manti domain Value℄, and should not be onfused with it.Base operators are interpreted by the auxiliary funtion O :Op ! Value� ! Value℄, whih is assumed never to yield?. Thus base operations always terminate, but may auseruntime errors. Typial examples of base operators are thelist operators hd and tl and the predeessor on IN . Sine< is a well-founded ordering on Value, any sequene of baseoperations that appear to derease values in�nitely musteventually ause abortion, i.e., failure with Err.A destrutor is de�ned to be a base operator op suh thatO[[op℄℄(~v) < vi, for eah i, provided O[[op℄℄(~v) 6= Err, where~v = (v1; : : : ; vn). We use the element Err for the resultof operations like tl [℄ or pred 0; note that the ommonde�nition tl [℄ = [℄ ontradits the destrutor property.

Some examples of terminating programs.The following examples, mostly tail-reursive, will serve toillustrate the power of the size-hange priniple.1. Reverse funtion, with aumulating parameter:rev(ls) = 1:r1(ls,[℄)r1(ls,a) = if ls=[℄ then aelse 2:r1(tl ls, ons (hd ls) a)2. Program with indiret reursion:f(i,x) = if i=[℄ then x else 1:g(tl i,x,i)g(a,b,) = 2:f(a, ons b)3. Funtion with lexially ordered parameters:a(m,n) = if m=0 then n+1 elseif n=0 then 1:a(m-1, 1)else 2:a(m-1, 3:a(m,n-1))4. Program with permuted parameters:p(m,n,r) = if r>0 then 1:p(m, r-1, n) elseif n>0 then 2:p(r, n-1 ,m)else m5. Program with permuted and possibly disarded pa-rameters:f(x,y) = if y=[℄ then x elseif x=[℄ then 1:f(y, tl y)else 2:f(y, tl x)6. Program with late-starting sequene of desending pa-rameter values:f(a,b) = if b=[℄ then 1:g(a,[℄)else 2:f(ons (hd b) a, tl b)g(,d) = if =[℄ then delse 3:g(tl , ons (hd) d)Claim: all these programs must terminate, for a ommonreason: any in�nite all sequene (regardless of test out-omes) auses in�nite desent in one or more values.
1.5 The remainder of the articleSetion 2 desribes the use and derivation of size-hangegraphs to model size hanges observed at funtion alls.Setion 3 shows two solutions to the problem of deidingwhether every in�nite all sequene auses an in�nitely de-reasing sequene of parameter values. One is based on!-automata that diretly haraterize the phenomenon ofin�nite desent. The other solution (probably more prati-al) employs only elementary graph manipulation. Setion4 proves that the problem of deiding whether every in�-nite all sequene has in�nite desent is pspae hard in thesize of the subjet program. Setion 5 onludes with relatedwork and open problems. The Appendix ontains additionalproofs and disussions.
2. TRACING SIZE CHANGES
2.1 Size-change graphsDe�nition 3. Let f, g be funtion names in program p.A size-hange graph from f to g, written G : f ! g, is abipartite graph from f parameters to g parameters, withlabeled-ar set E:

G = (Param(f);Param(g); E);E � Param(f)� f#; #=g � Param(g)where E does not ontain both f(i) #! g(j) and f(i) #=! g(j).The size-hange graph is used to apture \de�nite" informa-tion about a funtion all. An f(i) #! g(j) ar indiates thata data value must derease in this all, with respet to the< ordering, while an f(i) #=! g(j) ar indiates that a valuemust either derease or remain the same. The absene of anar between a pair of parameters means that none of theserelations is asserted to be true for them.Note: For given f, g in program p there are only �nitelymany possible size-hange graphs G : f! g.De�nition 4. Heneforth G = fG j 2 Cg denotes a setof size-hange graphs assoiated with subjet program p, onefor eah of p's alls.
Examples of size-change graphs.Following are size-hange graphs for example programs 1and 3 seen earlier.Example 1ls -#= lsa lsa -# lsaG1 : rev! r1 G2 : r1! r1

Example 3mn -# mn mn --#=# mnG1; G2 : a! a G3 : a! aRemarks: In Example 3, there is no arrow in G1 to n sine itsvalue is onstant; and none in G2 sine the seond argumentof all 2 may exeed m and n.
2.2 MultipathsDe�nition 5. A multipath M is a �nite or in�nite se-quene G1 ; G2 ; : : : of size-hange graphs. This sequenemay be viewed as a onatenated (possibly in�nite) graph,as illustrated by:Program p:f(a,b,) = 1: g(ons a b, tl)g(d,e) = ... 2: h([℄, tl e, d)... 4:k(tl e)h(u,v,w) = 3: g(u, tl w)k(x) = ...Multipath M desribing the alls in p:

G4 : g! kG3 : h! gG2 : g! hG1 : f! g : : :: : :
: : :#ed#=#PPPPPqwvu##=�����:ed#�����:ba QQQQQsQQQQQs �����:�����: --

De�nition 6.1. A thread th in multipath M = G1 ; G2 ; : : : is a on-neted path of ars:th = f(it)t rt+1�! f(it+1)t+1 rt+2�! : : :An example is marked by heavy lines in the example.Remarks: a thread need not start at t = 0. An in-stane is the thread starting in d. A thread need notbe in�nite even ifM is in�nite, for instane the threadfrom ending in v.A thread is maximal if the onneted path of ars ismaximal in the multipath.2. Thread th is desending if the sequene rt+1; rt+2; : : :has at least one #. The thread is in�nitely desendingif it ontains in�nitely many ourrenes of #.
2.2.1 Multipaths of a state transition sequence and of

a call sequenceA size-hange graph an be used to desribe the parametersize hanges in one onrete state transition sequene, or itmay be used abstratly, to depit size hanges following aall sequene s.De�nition 7. Consider state transition sequenests = (f0; ~v0) 1! (f1; ~v1) 2! (f2; ~v2) 3! : : : ;De�ne M(sts) to be the multipath G1; G2; : : : , suh thatfor eah t, Gt+1 is a size-hange graph from ft to ft+1, withars f(i)t r! f(j)t+1 satisfying r = # if uj < vi, and r = #= ifuj = vi, where ~vt = (v1; : : : ; vm); ~vt+1 = (u1; : : : ; un).De�nition 8. Suppose G = fG j is a all in pg is a setof size-hange graphs for p. Given a all sequene s =123 : : : , the G-multipath for s is de�ned by MG(s) =G1 ; G2 ; G3 ; : : : .Note that M(sts) displays the atual size relations amongparameter values along a state transition sequene, whileMG(s) displays the information provided by the size-hangegraphs in G.
2.2.2 Safety of a setG of size-change graphsDe�nition 9. Suppose G = fG j is a all in pg is a setof size-hange graphs for p.1. Let f's de�nition ontain all : g(e1; : : : ; en). Thephrase \ar f(i) r! g(j) safely desribes the f(i)-g(j)size relation in all " means: For every v 2 Value and~v = (v1; : : : ; varity(f)) suh that E [[ej ℄℄~v = lift v:r = # implies v < vi ; and r = #= implies v � vi.2. Size-hange graph G is safe for all : f! g if everyar in G is a safe desription as just de�ned.3. Set G of size-hange graphs is a safe desription ofprogram p if graph G is safe for every all .It is easy to see that all the size-hange graphs given ear-lier for examples 1 and 3 are safe for their respetive alls.Consider the all 2:a(m-1, 3:a(m,n-1)) in example 3, and

the size-hange graph G2 : a ! a shown earlier. Call 2learly dereases the urrent value of m, aounting for thear m #! m. No size relation an be safely asserted about ar-gument n, sine 3:a(m,n-1) may exeed the urrent valuesof m and n. Aording to De�nition 9, G2 safely models theparameter size-hanges aused by all 2.
2.2.3 Choice ofGThe analysis is highly dependent on the hoie of set G. Ingeneral, we annot insist that eahG be the most preise setof ars possible, as this is generally undeidable. However,it is safe to inlude only relations that must always hold(assuming suessful argument evaluation).In general, it is possible to build G around any size measurethat is well-founded, for instane, the absolute value of aninteger, the number of nodes in a tree, or the length of alist. Loal properties of base funtions hd, tl, -1 suÆe toyield suitable graph sets for Examples 1{6.It may be neessary to perform global size-analysis [6, 9,10, 14, 15, 19℄ to make the best use of size onsiderations.For instane, global size analysis is needed to handle sortingalgorithms automatially.By the de�nition of safety of G, it is always valid to omitan ar, but if an ar an be safely inluded it should be:greater preision may be obtained sine more threads maybe disovered to have in�nite desent. Although a maximalsafe G is in general nonomputable, the size-hange prinipleseparates the onerns of approximating G and analyzing it;and in this paper we fous on the analysis phase.
2.3 Termination analysis based on a safeG
2.3.1 Basis of the analysisIf G is a safe set of size-hange graphs and sts is a statetransition sequene, then M(sts) is safely desribed by theG-multipath MG(s) that follows the alls s in sts:Lemma 1. Suppose G is a safe desription of program p,and state transition sequene sts = (f0; ~v0) 1! (f1; ~v1) 2!(f2; ~v2) 3! : : : has all sequene s = alls(sts). Considermultipaths MG(s) = G1; G2; : : : and M(sts) = G01; G02; : : : .Then1. if Gt+1 has ar f(i)t #! f(j)t+1, then G0t+1 has the samear; and2. if Gt+1 has f(i)t #=! f(j)t+1, then G0t+1 has an ar f(i)t r!f(j)t+1 for r = #= or r = #.Proof. Immediate by omparing de�nitions 9 and 7.Corollary 1. If MG(s) has an in�nite thread th, ands = alls(sts), then M(sts) also has an in�nite thread th0.Furthermore, thread th0 has at least as many #-labeled arsas th.Proof. Immediate from Lemma 1 and De�nition 9.

2.3.2 The analysis, abstractlyWe next de�ne two sets of in�nite all sequenes: thosethat are possible aording to the program's ow graph, andthose that neessarily ause an in�nite desent.De�nition 10.FLOW ! = fs = 12 : : : 2 C! j s is well-formed and1 : finitial ! f1gDESC! = fs 2 FLOW ! j some thread th in MG(s)has in�nitely many #-ars gThe result ? an only arise from an in�nite state transi-tion sequene. This holds even though alls may be nested(and even in a higher-order extension of the programminglanguage). Two lemmas prove this property:Lemma 2. Assume that E [[e℄℄~v = ?. Then there exists aall : g(e1; : : : ; en) in e suh that E [[g(e1; : : : ; en)℄℄~v = ?but E [[ei℄℄~v 6= ? for eah i.Proof. Suppose indutively that the result holds for allsubexpressions of e and for every ~v 2 Value�. Referring tothe semantis of Figure 5.1:Case e = x: The result is trivial.Case e = if e01 then e02 else e03: The result holds by indu-tion, sine E [[e℄℄~v = E [[e0i℄℄~v where i = 1 if E [[e01℄℄~v 2 f?;Errg,i = 2 if E [[e01℄℄~v = True, else i = 3.Case e = op(e01, : : : ,e0m): Sine O[[op℄℄(~u) 6= ? for all~u 2 Value�, by de�nition of stritapply, E [[e℄℄~v is equal tothe least i for whih E [[e0i℄℄~v 2 f?;Errg. For this value ofi, E [[e0i℄℄~v = ?, so the result follows from the indutive hy-pothesis.Case e = :h(e01, : : : ,e0m): If E [[e0i℄℄~v = ? for some i, thenthe result follows from the indutive hypothesis. Other-wise, E [[e0i℄℄~v 6= ? for i = 1; : : : ;m, so the result holds withg(e1; : : : ; en) = h(e01, : : : ,e0m).Lemma 3. Suppose E [[efinitial ℄℄~v0 = ?. Then there existsan in�nite state transition sequene: sts = (finitial ; ~v0) 1!(f1; ~v1) 2! (f2; ~v2) 3! : : : :Proof. It follows from the previous result that given anyprogram state (f; ~v) where E [[ef℄℄~v = ?, there exists a all : g(e1; : : : ; en) in ef suh that E [[ei℄℄~v 6= ? for eah i.Let E [[ei℄℄~v = lift(ui) for eah i, and ~u = (u1; : : : ; un). Byde�nition, (f; ~v) ! (g; ~u) is a state transition, suh thatE [[eg℄℄~u = ?.Starting with the one-state transition-sequene (finitial ; ~v0),where E [[efinitial ℄℄~v0 = ?, and extending indutively, the exis-tene of the in�nite state transition sequene is dedued.Example 3 revisited: onsider the three alls 1:a(m-1,1),2:a(m-1, 3:a(m,n-1)) and 3:a(m,n-1). Lemma 2 assertsthat for a all to funtion a to be non-terminating, eitherall 1 is non-terminating; or all 3 is non-terminating; or

all 3 is terminating, but all 2 is non-terminating. By thede�nition of safety, there is a size-hange graph in G to a-ount for eah of these possibilities.Theorem 1. If FLOW ! = DESC! then program p ter-minates for all inputs.Proof. It will be proved that if p is not terminating,there is a s in FLOW ! but not in DESC!. Suppose pdoes not terminate on ~v. Then by Lemma 3, there existsan in�nite state transition sequene sts = (finitial ; ~v0) 1!(f1; ~v1) 2! (f2; ~v2) 3! : : : :Call sequene s = alls(sts) 2 C! is learly in FLOW !.Suppose s 2 DESC!. Then multipathMG(s) has a threadwith in�nitely many #-labeled ars. By Corollary 1, thesame is true of M(sts). By de�nition of M(sts), there ex-ists a orresponding sequene of values, in�nitely dereasingin a well-founded domain. This is impossible.De�nition 11. Program p is size-hange terminating (forthis hoie of G) if and only if FLOW ! = DESC!.
2.3.3 The examples revisitedTheorem 1 an be used, as is, for termination by provingthat any s 2 FLOW ! must be in DESC!. However, thereasoning an be triky for some programs (for instane,see Examples 4, 5 below, whih seem to possess no natu-ral lexial desent). We prove later that the reasoning isneessarily triky, sine the problem is pspae-hard. In thenext setion, we will give two algorithms to perform the testautomatially.In the following, we extend the regular-expression notationto allow a single (�nal) use of !, e.g., 12! = 1222 : : : .Example 1: FLOW ! is the singleton set f12!g. Call se-quene s = 12! gives in�nite desent in parameter ls, soFLOW ! = DESC!.Example 2: FLOW ! = f(12)!g. Call sequene s = (12)!gives in�nite desent in i.Example 3: FLOW ! = (1+ 2+ 3)! (the set of all in�nitestrings omposed of 1, 2 and 3). If s 2 FLOW ! ends in 3!,then n desends in�nitely. Otherwise s 2 FLOW ! ontainsin�nitely many 1's or 2's, so m desends in�nitely.Example 4: Consider multipath MG(s) for any s 2FLOW ! = (1 + 2)!. The threads starting at m,n,r allontinue regardless of all sequene, and at least one # o-urs for eah all. Now MG(s) has 3 maximal threads andin�nitely many #, so at least one thread must ontain in-�nitely many #. That thread is thus in�nitely desending,so s 2 DESC!.Example 5: Any �nite sequene in (12�) has a thread fromy to y ontaining at least one #. If s 2 FLOW! ontainsin�nitely many 1's, then y desends in�nitely. Otherwise sends in 2!, and both x and y desend in�nitely.Example 6: In�nite all sequenes must have form 2! or

2�13!. Both ause in�nite desent, of parameter b in the�rst ase, and in the other.
3. DETECTING THREADS OF INFINITE

DESCENTThe �rst solution to size-hange termination analysis is basedon the theory of !-automata. These automata an diretlyharaterize the in�nite-desent phenomenon.
3.1 An analysis based on!-automataDe�nition 12. A B�uhi automaton A = (In; S; S0; �; F) isa tuple where In is a �nite set alled input symbols, S is a�nite set alled states, S0 � S is the set of initial states, andF � S is the set of aepting states. The state transitionrelation is a set of transition triples � � S � In � S.De�nition 13. Behavior of a B�uhi automaton A.1. A run of A on an in�nite word w = a1a2a3 : : : 2 In!is a sequene s0a1s1a2s2a3s3 : : : 2 S(InS)! suh thats0 2 S0, and (st; at+1; st+1) 2 � for t = 0; 1; 2; 3; : : : .2. The run r is aepting if and only if for some s 2 F , sours in�nitely often among s0s1s2s3 : : : .3. L!(A) = fw 2 In! j some run on w is aeptinggA set A � In! is alled !-regular i� it is aepted by someB�uhi automaton.Theorem 2. [18℄ The following problem is omplete forpspae: Given B�uhi automata A and A0, to deide whetherL!(A) = L!(A0).Lemma 4. FLOW ! is an !-regular subset of C!.Proof. FLOW ! = L!(A) for B�uhi automaton A =(C;FnName ; ffinitialg; �;FnNameg). The transition rela-tion is: � = f(f; ; g) j : f! gg.Explanation: A is just the program's all graph, with fun-tion names as states, the initial funtion as initial state, andalls as transitions. Any in�nite all sequene must enter atleast one funtion in�nitely often. Thus, de�ning all statesas aepting puts every well-formed in�nite all sequene inL!(A).
A Büchi automaton to acceptDESC!We �rst desribe the onstrution informally by an example,before stating the formal onstrution.STAGE 1: Build a B�uhi automaton to aept all sequenes i� its assoiated multipath MG(s) has an in�nite de-sending thread from the start of s. The states of thisautomaton represent funtion parameters x; y and the tran-sitions orrespond to alls whose assoiated size-hangegraph G inludes an ar x r! y.In order to trak size hanges that our in the thread, thestates are de�ned as pairs of funtion parameters and sizehanges: y#= or y#, aording to the size-hange r on theinoming ar. An in�nitely desending thread from the start

of the multipath then orresponds to a run of the automatonwhih enters in�nitely many states of form x#.For Example 3, the automaton an be seen in the diagrambelow. (Ignore state a, treated in Stage 2.) The statesare m#=; m#; n#=; n#. Size-hange graphs G1 and G2 (shown inSetion 2.1) derease m, aounting for the ars labeled 1,2in the �gure (entering m#). Size-hange graph G3 dereases nand opies m, explaining the ars labeled 3. Aepting statesare m#; n#, and initial states are m#=; n#=.����m#=?QQk��33 -1; 2� 3 ����m#����?QQk��3 1; 2Æ��a ?QQk��3 1; 2; 3��I��	1; 2; 31; 2; 3Initial -����n#= -3 ����n#����?QQk��3 3STAGE 2: Stage 1 traes size hanges only in threads thatstart at the beginning of exeution. To deal with late-starting threads, add to the automaton of Stage 1 a opyof the program's all graph: the automaton of Lemma 4.Further, for every all : f ! g, allow a -transition fromfuntion-name state f to any parameter-name state g(i)#=.For Example 3 the all graph has only node a and alls 1,2,3from a to itself, so the result is as above.Setion 2.3.3 had an argument to justify FLOW! = DESC!for this example. That reasoning an learly be applied tothe automaton's behavior on words s in (1 + 2 + 3)!. If sends in in�nitely many 3's, the automaton an yle in statea until the last symbol in f1; 2g is read and then proeed toaepting state n# and stay there. If on the other hand sontains in�nitely many symbols in f1; 2g, a transition tothe top half auses the automaton to enter aepting statem# in�nitely often.Lemma 5. DESC! is an !-regular subset of C!.Proof. Stage 1 of the onstrution just skethed leads toautomaton A1 = (C; S1; S0; �1; F) whereS1 = Parameter � f#; #=gS0 = Param(finitial)� f#=g�1 = f (xr; ; x0r0) j x r0! x0 2 G; r 2 f#; #=g; 2 C gF = fx# j x 2 ParametergThe program's all graph in automaton form was seen inLemma 4 to be (C;FnName ; ffinitialg; �;FnNameg). Com-bining this with A1, we obtainA = (C; S1 [FnName; S0 [ffinitialg; �1 [� [�2; F)where �2 = f(f; ; x#=) j : f ! g; x 2 Param(g)g. Corret-ness of this onstrution is straightforward.Theorem 3. Size-hange termination an be deided inspae polynomial in the size of program p.

Proof. By de�nition 11, p is size-hange terminating ifand only if FLOW ! = DESC!. The automata onstrutedin Lemmas 4 and 5 to aept FLOW ! and DESC! have sizethat is polynomially bounded in the length of the programp from whih they were onstruted. By Theorem 2, theirequivalene an be tested in pspae.In algorithmi pratie, tests for equivalene of atomata in-volve determinization of the (nondeterministi) automata.While in priniple this an be done in pspae, the bestknown algorithm (due to Safra [16℄) seems to give large au-tomata and thus slow omputations.
3.2 A graph-based algorithmAn alternative algorithm uses graph manipulation ratherthan !-automata.De�nition 14. The omposition of two size-hange graphsG : f ! g and G0 : g ! h is G;G0 : f ! h with ar set Ede�ned below. Notation: we write x r! y r0! z if x r! y andy r0! z are respetively ars of G and G0.E = fx #! z j 9y; r : x #! y r! z or x r! y #! zgS fx #=! z j (9y : x #=! y #=! z) and8y; r; r0 : x r! y r0! z implies r = r0 = #=gLemma 6. Graph omposition is assoiative.De�nition 15. For a well-formed nonempty all sequenes = 1 : : : n, de�ne the size-hange graph for s , denotedGs , as G1 ; : : : ;Gn .Lemma 7. Multipath M = G1; : : : ; Gn has a thread fromx to y over its entire length, ontaining at least one #-labeledar, if and only if x #! y 2 G1; : : : ;Gn.De�nition 16. De�ne the set S byS = fGs j s; s0 are well-formed and finitial s0! f s! ggThe set S is �nite sine there are �nitely many possiblegraphs. However, its size may be exponential in the pro-gram's size (in fat, the onstrution in the following setionan be used to reate suh examples).The entral idea in the graph-based algorithm:Theorem 4. Program p is not size-hange terminatingi� S ontains G : f ! f suh that G = G;G and G has noar of form x #! x.Proof. For the forward impliation, suppose p is notsize-hange terminating. Then there is an in�nite all se-quene s = 12 : : : suh that MG(s) has no in�nitelydesending thread.De�ne a 2-set to be a 2-element set ft; t0g of positive integers.Without loss of generality, t < t0. Now for eah G 2 S,de�ne the lass PG of 2-sets yielding G by:PG = f(t; t0) jG = Gt ;Gt+1 ; : : : ; Gt0�1g

This set fPG jG 2 Sg of lasses is mutually disjoint, every2-set belongs to exatly one of them, and it is �nite sineS is �nite. By Ramsey's theorem, there is an in�nite set ofpositive integers, T , suh that all 2-sets ft; t0g with t; t0 2 Tare in the same lass. Call this lass PGÆ .Thus for any t; t0 2 T with t < t0, Gt ; : : : ;Gt0�1 is equalto the same GÆ. This implies that GÆ : f ! f for some f,and for t; t0; t00 2 T , with t < t0 < t00,GÆ = Gt ; : : : ;Gt00�1= (Gt ; : : : ;Gt0�1); (Gt0 ; : : : ;Gt00�1)= GÆ;GÆ:If GÆ has an ar x #! x, then by Lemma 7, eah multipathsetion Gt ; : : : ; Gt0�1 , where t 2 T , and t0 is the nextbigger integer after t in T , would have a desending threadfrom x to x, andMG(s) would have an in�nitely desendingthread, violating the assumption about s. Therefore, GÆhas no ar of form x #! x. This establishes the forwardimpliation.For the reverse impliation, let GÆ 2 S be suh that GÆ =GÆ;GÆ and suppose GÆ has no ar of form x #! x. By de�ni-tion of S, there exist s0 and s1 suh that s = s0(s1)! 2FLOW !, and Gs1 = GÆ. Suppose, for a ontradition, thatp is size-hange terminating. Then (s1)! has an in�nitelydesending thread. Consider the position of this thread atthe start of eah s1-setion. Some parameter x must bevisited by the thread at these points in�nitely often, sineParameter is �nite. Given suÆiently many repeats of s1,we an �nd a #-labeled ar in a thread from x to x. In otherwords, there is a number n suh that MG((s1)n) has a de-sending thread from x to x. By Lemma 7, ar x #! x is inG(s1)n = (Gs1)n = (GÆ)n = GÆ, whih gives the requiredontradition.
An algorithmic realization of Theorem 4.1. Build the set S by a transitive losure proedure:� Inlude every G : f ! g where : f ! g isa all in program p, and f is reahable by somewell-formed s0 : finitial ! f.� For any G : f ! g and H : g ! h in S, inludealso G;H in S.2. For eah G : f ! f in S, test whether G = G;G andx #! x =2 G for eah x 2 Param(f).The test in step 2 takes low-order polynomial time; so thebottlenek in this algorithm is the ardinality of S, i.e., thenumber of di�erent ompositions of reahable size-hangegraphs. This number an be exponential in the input pro-gram's size, hene our algorithm has exponential time andspae omplexity.However, spae usage an be redued to polynomial by notreating all of the set S at any time, but generating it \on they" as demanded by step 2. We omit the details, whih arestandard. For pratial usage, the inrease in time requiredto make the spae polynomial is probably a waste, and thesimple algorithm seems more promising than the pspaeversion, or the solution based on !-automata.

4. COMPLEXITY OF SIZE-CHANGE TER-
MINATIONAs the previous setion shows, given the set G, size-hangetermination an be deided in polynomial spae (and ex-ponential time) using either of the given approahes. Itmay surprise the reader, as it did the authors, to �nd thatsize-hange termination, in spite of its simpliity, is a om-plete problem for pspae, hene intratable in general, un-less ptime = pspae. The proof is, as usual, by redutionfrom a known pspae-omplete problem. Note that equiva-lene of B�uhi automata is known to be pspae-omplete, asmentioned earlier, but our problem is a speial ase, henea spei� hardness proof is neessary.De�nition 17. A Boolean program is an instrution se-quene b = 1:I1 2:I2 : : : m:Im speifying a omputationon variables X1, : : : ,Xk, ranging over truth values true, false.Instrutions I` have two formats: Xi := not Xi, and ifXi then goto `0 else `00. Here 1 � i � k and `; `0; `00 2f0; 1; 2; : : : ; mg.Semantis: the omputation by b is a �nite or in�nite statesequene b ` (`1; �1) ! (`2; �2) ! : : : , where eah store �assigns a truth value in ftrue ; falseg to eah of b's variables,and `t is the ontrol point at time t.Initially `1 = 1 and �1 assigns false to every variable. In-dutively, given state (`t; �t), if `t = 0 then the omputationhas terminated, else the following rules apply.If instrution I`t is Xi := not Xi, then �t+1 is idential to�t exept that �t+1(Xi) = :�t(Xi). Further, `t+1 = (`t +1) mod (m+ 1).If instrution I`t is if Xi then goto `0 else `00, then �t+1is idential to �t. Further, `t+1 = `0 if �t(Xi) = true , and`t+1 = `00 if �t(Xi) = false.Finally, program b terminates, written [[b℄℄#, i� for some t:b ` (`1; �1)! : : :! (`t; �t) = (0; �t).Lemma 8. The following set is omplete for pspae:B = fb j b is a Boolean program and [[b℄℄#gProof. B is in pspae by a simple simulation, using aounter to delare nontermination if the omputation hastaken more that (m + 1) � 2k steps. For pspae-hardness,see [13℄; or redue QBF (truth of quanti�ed Boolean formu-las) to membership in B.Theorem 5. Size-hange termination is pspae-hard.Let SCT stand for the set of all G's that satisfy the size-hange termination riterion FLOW ! = DESC!, and SCTbe its omplement. The theorem will be proved by redutionfrom B to SCT. Conretely, given a Boolean program b, wewill onstrut a program p of size polynomial in the size of b,with assoiated set of size-hange graphs G, and prove thatb 2 B if and only if G =2 SCT.

Construction.Suppose program b = 1:I1 2:I2 : : : m:Im has k variablesX1, : : : , Xk. Without loss of generality, eah variable hasvalue false after exeution, if b terminates (just add at theend of b one test and one assignment for eah variable.)Program p will have funtions fF0; F1; : : : ; Fmg, eah one of2k + 1 parameters named X1, X1, : : : , Xk, Xk, Z. It will usea single operator tl, assumed to be a unary destrutor.De�nition of initial funtion F0:F0(X1; X1; : : : ; Xk; Xk; Z) =0 : F1(tl X1; X1; : : : ; tl Xk; Xk; Xk)De�nition of F`, for instrution ` : Xi := not Xi:F`(X1; X1; : : : ; Xi; Xi; : : : ; Xk; Xk; Z) =` : F(`+1)mod(m+1)(X1; X1; : : : ; Xi; Xi : : : ; Xk; Xk; tl Z)De�nition of F`, for instrution` : if Xi then goto `0 else `00:F`(X1; X1; : : : ; Xk; Xk; Z) = if some-testthen `+ : F`0(X1; X1; : : : ; Xi; tlXi; : : : ; Xk; Xk; tl Z)else `� : F`00(X1; X1; : : : ; tl Xi; Xi; : : : ; Xk; Xk; tl Z)For some-test we use whatever the language permits; ouranalysis onsiders every possible ow sequene anyway. Theprogram's set of alls isC = f0g [f` j I` = \X := not X"g [f`+; `� j I` = \if X goto `0 else `00"g
Example of the construction.Suppose b is the Boolean program:1: X := not X2: if Y then goto 5 else 33: Y := not Y4: if X then goto 2 else 35: X := not X6: Y := not YWe onstrut the following program p:F0(X, X, Y, Y, Z) = 0: F1(tl X, X, tl Y, Y, Y)F1(X, X, Y, Y, Z) = 1: F2(X, X, Y, Y, tl Z)F2(X, X, Y, Y, Z) = if...then 2+: F5(X, X, Y, tl Y, tl Z)else 2�: F3(X, X, tl Y, Y, tl Z)F3(X, X, Y, Y, Z) = 3: F4(X, X, Y, Y, tl Z)F4(X, X, Y, Y, Z) = if...then 4+: F2(X, tl X, Y, Y, tl Z)else 4�: F3(tl X, X, Y, Y, tl Z)F5(X, X, Y, Y, Z) = 5: F6(X, X, Y, Y, tl Z)F6(X, X, Y, Y, Z) = 6: F0(X, X, Y, Y, tl Z)

XXYYZ
XXYYZ-�

��#-���#��R
G0 :

F0 0! F1
XXYYZ

XXYYZ
��R���---#
G1 :

F1 1! F2
XXYYZ

XXYYZ
--#---#
G2� :

F2 2�! F3
XXYYZ

XXYYZ
- #-��R���-#
G3 :

F3 3! F4
XXYYZ

XXYYZ
-#----#
G4+ :

F4 4+! F2
XXYYZ

XXYYZ
---#--#
G2+ :

F2 2+! F5
XXYYZ

XXYYZ
��R���---#
G5 :

F5 5! F6
XXYYZ

XXYYZ
--��R���-#
G6 :

F6 6! F0
XXYYZ

XXYYZ
-#----#
G4� :

F4 4�! F3Figure 4.1: Size-hange graphs for program p.Figure 4.1 ontains the size-hange graphs for all of the allsin p, starting with those that appear within b's omputationand ending with all G4� (this is \dead ode"). To avoidluttering the diagram, #= labels have been omitted.Boolean program b's omputation is (writing stores om-patly by abbreviating true, false to T; F):b ` 1FF ! 2TF ! 3TF ! 4TT ! 2TT !5TT ! 6FT ! 0FFSequene s = 12� 3 4+ 2+ 5 6 is a \trae" of b's omputa-tion, where +;� indiate whether respetively the positiveor negative branh of a onditional was taken.Now onsider the sequene 0s = 01 2� 3 4+ 2+ 5 6, obtainedby prepending 0 to b's omputation. Within p, all sequene0s is a \loop" from funtion F0 bak to itself, so (0s)! 2FLOW !. As the reader may verify, there are no in�nitedesending threads in the orresponding multipath. ThusDESC! 6= FLOW !, so p is not size-hange terminating, asdesired (indeed, for appropriate hoies of some-test, p reallyis a non-terminating program).Appendix A ompletes the orretness proof.Corollary 2. The termination and quasi-termination ri-teria of [2, 7, 9, 10, 12, 14, 17℄ all are pspae-hard.Proof. Point: These analyses all give orret results whenapplied to programs whose data ow is similar to that ofp above. The proof is essentially the same, with the on-strution modi�ed as neessary to make the program failthe ondition tested by the respetive method, just whenthe Boolean program terminates.
Termination analysis in polynomial time?The redution shows that the pspae hardness of termina-tion analysis holds for very simple programs. In partiu-lar, the only expressions we have used are a variable andunary operators applied to a variable. This indiates thatthe root of the omplexity is in the ways values move aroundamong parameter positions. Conlusion: the problem willbe less diÆult if these ways are restrited. We have an algo-rithm (as yet unpublished) that deides SCT in worst-ase

ubi time for restrited programs inluding the followingtwo ases:1. Programs whose size-hange graphs have in- and out-degrees bounded by 1 (Examples 1, 3, 4 and 6).2. Programs whose funtion parameters an be \strati-�ed," i.e., dependenies among all parameters an bepartially ordered by position (for example in Example2, parameter x indiretly depends on i, while i onlydepends on itself).
5. CONCLUDING REMARKS

5.1 Related workOur pspae lower bound is the �rst suh result of whih weare aware. The algorithms to detet termination, though,have some ounterparts in other programming language ar-eas.� Typed funtional programs: Abel and Altenkirh [1℄have developed a system alled foetus that aepts asinput mutual reursive funtion de�nitions over stritpositive datatypes. It returns a lexial ordering on thearguments of the program's funtions, if one exists. Aswe have seen (program examples 3, 4, 5), our handlesprograms with or without suh a lexial ordering.� Logi programs: the Termilog [14℄ approah is as pow-erful as ours, if applied to the result of onverting afuntional program into Horn lause form. Graphsanalogous to ours are used in that method, but theoverall development is onsiderably more omplex.� Term rewriting: Arts and Giesl [4, 3℄ translate a sub-jet program into a TRS whose termination impliestermination of the program. This approah requiresextending existing tehniques for TRS termination. Au-tomati TRS termination also involves expensive sear-hes for suitable orderings.� Quasi-termination: It an be seen, by adapting thepspae hardness onstrution, that the in-situ desentriterion used to deide quasi-termination in [12, 2, 10℄is pspae hard.Glenstrup [9℄ shows one way that quasiterminationanalysis tehniques an be used for termination. Sim-pli�ed version: add a \reursion depth" parameter to

Domains v 2 Value (a at domain).u;w 2 Value℄ = Value [f?;Errg, where ? v w for all w.Types E : Expr ! Value� ! Value℄O : Op ! Value� ! Value℄lift : Value ! Value℄ (the natural injetion)stritapply : (Value� ! Value℄)! (Value℄)� ! Value℄Semanti operator E [[f(i)℄℄(v1; : : : ; vn) = lift viE [[if e1 then e2 else e3℄℄~v = E [[e1℄℄~v ! E [[e2℄℄~v; E [[e3℄℄~vE [[op(e1; : : : ; en)℄℄~v = stritapply (O[[op℄℄) (E [[e1℄℄~v; : : : E [[en℄℄~v)E [[f(e1; : : : ; en)℄℄~v = stritapply (E [[ef℄℄) (E [[e1℄℄~v; : : : E [[en℄℄~v)Auxiliary operations u! w;w0 = 8<: u; if u = ? or u = Err ,w; if u = True ,w0; otherwise.stritapply (w1; : : : ; wn) = 8<: (v1; : : : ; vn) if wi =2 f?;Errg for i = 1; : : : ; n;and wi = lift vi for eah i; elsewi where i = least index suh that wi 2 f?;ErrgAssumption O[[op℄℄~v 6= ?Figure 5.1: Semantis of L programs. True is a distinguished element of Value.eah funtion, inremented at every all. If depth pa-rameters are bounded in every exeution, then the pro-gram is terminating. This approah is weaker thansize-hange termination. And it appears that quasi-termination is in general a more diÆult problem thantermination.For further disussion of related work see Appendix B.
5.2 Future workA number of interesting problems to be investigated:1. The pspae hardness result suggests trying to derivegood approximations. A urrent goal is a ptime ap-proximation of SCT, whih subsumes lexial orders,and handles permuted arguments and indiret reur-sion.2. An analogue of SCT for binding-time analysis(to guarantee termination of partial evaluation) is be-ing developed, generalizing the \in-situ" riterion usedin [2, 9℄.3. Size analysis should be inorporated for a pratialanalyzer, to onstrut more preise size-hange graphs.Something based on the integer programming methodsof [6, 19℄ may be appropriate.4. An extension of the present approah for high-orderprograms seems possible, although the semanti anal-yses an beome quite ompliated if we wish to traesize relations involving arguments aptured in losures.
6. ACKNOWLEDGEMENTSThe �rst author would like to express his gratitude to Pro-fessor Neil Jones for his generous and patient guidane, andto TOPPS for a rewarding aademi visit in 1999.

APPENDIX
A. PROOF OF PSPACE-HARDNESS OF SCTHere we prove that the redution in Setion 4 is orret,implying Theorem 5. First, some observations about a mul-tipath of form MG(0 s):1. Call 0 begins exatly two threads (to X and X) at ev-ery X other than Xk. Parameter Xk begins two suhthreads, and as well as one with initial ar direted toZ.For eah parameter X of F0, let us say that ar X #! Xbegins its \high thread", and that ar X ! X beginsits \low thread".2. Both high thread and low thread ontinue the lengthof 0s , and end in either X or X. The (unique) Z-threadremains in Z after the initial ar for the whole of 0s .By the way p is onstruted, no thread is ever lost ordupliated, exept at all 0.3. Either the high or the low thread from X must end atX, so 0s has a thread from every X to itself.Lemma 9. Suppose b ` (`1; �1) ! : : : ! (`t; �t) withtrae s = 12 : : : t�1. Then for any variable X, multipathMG(0s) has a nondesending thread from parameter X toparameter X if �t(X) = false, and from X to X if �t(X) = true.Proof. Immediate if t = 1, sine �1(X) = false for all X.Indutively, if true for t� 1, inspetion of the ases in on-strution of p based on the form of instrution I`t�1 showsthat the property is preserved.To prove that the redution is orret, we must show thatBoolean program b terminates if and only if program p isnot size-hange terminating.

Only if: Suppose b terminates with (�nite) trae s. Then0s is a valid all sequene for p, from F0 bak to F0. ByLemma 9 the \low thread" starting at any F0 parameterXi is nondesending. By the assumption that all variablesare false when exeution ends, the low thread returns to Xi.Thus the high thread ends in Xi, and fails to be ontinuedif all 0 is repeated following 0s . The Z-thread will alsobe disontinued. Consequently (0s)! =2 DESC!, whih im-plies DESC! 6= FLOW !.If: we show that if b fails to terminate, any s 2 FLOW !must have in�nite desent. Now s must begin with all0 : F0 ! F1 from p's initial funtion F0. If s ontainsonly a �nite number of alls to F0, then after the last one,parameter Z will derease in every all, so s 2 DESC!.Suppose s ontains an in�nite number of alls to F0. Thismeans we an deompose it into s = 0s10s20s3 : : : whereeah s i is free of 0's. We laim that eah 0s i has a de-sending thread from at least one parameter X to X (thelaim is proved below). By Observation 3, every si hasontinuous threads beginning and ending in every parame-ter Y, so all sequene s = 0s10s20s3 : : : has exatly kin�nite maximal threads. In�nitely many # must our inthis set of threads. Consequently at least one thread withins ontains in�nitely many #, so s 2 DESC!.Proof of laim: Let s i = 12 : : : n; sine 0s i0 is part of avalid all sequene from FLOW !, but is not a orret traeof the program (whih does not terminate), we onlude thatit inludes a all that represents the inorret branh of anif statement. Consider the �rst suh all. Being inorretmeans that the else-branh is followed when the tested vari-able X has value true, or the then-branh is followed whilethe value is false. By Lemma 9 the low thread starting atX reahes X if X has value false and reahes X if X has valuetrue. In eah ase, the size-hange graph reated by ouronstrution for the wrong branh extends this thread witha #-labeled ar.Sine the high thread from X always ontains a #-labeled ar,we onlude that the thread from X that happens to returnto X at the end of 0s i (being one of these two) must bedesending, as desired.
B. MORE ON RELATED WORK
Logic programsThere has been extensive researh on automati terminationanalysis for logi programs. As explained in [17℄, it is not al-ways obvious that a prediate will terminate when exeutedwith unusual instantiation patterns, or that a prediate al-ways terminates on baktraking. For interpreters that havea hoie of evaluation orders, termination analysis is espe-ially important.Some analyses that have been desribed for logi programs(e.g., in [15, 19℄) use a simple riterion: for every reursiveinvoation of a prediate, determine that the sum over asubset of input �elds (�xed for eah prediate) is stritlydereased. This does not allow handling of lexial desent.

The strength of these methods derives from aggressive sizeanalysis, whih enables, in partiular, sorting routines (quik-sort and insertion sort) to be handled automatially. It isalso possible to inorporate size analysis into the present ap-proah, but the aim of this artile has been to investigatethe size-hange termination priniple by itself.There are also logi program termination analyzers using atermination riterion ompatible with size-hange termina-tion [14, 7℄. The analysis in [17℄ has been extended to a ter-mination analyzer for Prolog programs alled Termilog [14℄.It turns out that Termilog an be used to solve size-hangetermination problems preisely via a suitable enoding. Infat, our graph-based algorithm, although devised indepen-dently, is in essene a funtional programming ounterpartof the Termilog algorithm. This means that the pspaehardness result of Setion 4 applies to Termilog's Analysis.All the works on Prolog termination that we are aware ofdevote muh attention to orthogonal issues suh as instan-tiation and size analysis. While these are no doubt impor-tant onsiderations in pratie, an impression is reated thatthe omplexity of the termination problem for Prolog stemsfrom these onerns. The signi�ane of the omplexity re-sult in this artile is pointing out that the ore size-hangetermination priniple is intrinsially hard.
Term rewriting systemsOne appliation for term rewriting systems is to model thesemantis of funtional programs. A funtional program iseasily translated into a TRS suh that termination of theTRS implies termination of the subjet program. Unfortu-nately, the resulting TRS is often non-simply-terminating,whih means the usual approah to �nd an ordering forwhih the LHS of eah rewrite rule is stritly greater thanthe RHS, does not work. To treat suh TRS, Arts [3℄ ap-plied programming intuition to develop methods suÆientlystrong for them. For a term-rewriting perspetive, thesemethods are able to a handle a larger lass of TRS. From thepoint of view of analyzing funtional programs, a dataowapproah may be less iruitous.For TRS termination, it is ommon to perform expensivesearhes for a suitable ordering to solve a set of inequalities.For instane, in [20℄, a heuristi is given for automatiallygenerating a general lass of orderings known as transfor-mation orderings, whih inludes the lexial order. In thepresent work, it has not been the aim to look for orderings.Size-hange termination naturally subsumes an interestinglass of orderings, inluding the lexial ordering, and theordering for the example with permuted and disarded pa-rameters, whih is not obvious.Finally, for TRS orresponding to programs, the polynomialinterpretation method for disovering orderings [8℄ obviatesthe need for size analysis by appropriately interpreting fun-tion symbols in the subjet program. The approah in thisartile has been to fator out size analysis as an orthogonalonern, and fous on the size-hange termination prinipleand its appliation. This appears to be a natural fatoringof onerns when analyzing termination of programs.

C. REFERENCES[1℄ Andreas Abel and Thorsten Altenkirh. A semantialanalysis of strutural reursion. In Abstrats of theFourth International Workshop on TerminationWST'99, pages 24{25. unpublished, May 1999.[2℄ Peter Holst Andersen and Carsten Kehler Holst.Termination analysis for o�ine partial evaluation of ahigher order funtional language. In Stati Analysis,Proeedings of the Third International Symposium,SAS '96, Aahen, Germany, Sep 24{26, 1996, volume1145 of Leture Notes in Computer Siene, pages67{82. Springer, 1996.[3℄ Thomas Arts. Automatially Proving Termination andInnermost Normalisation of Term Rewriting Systems.PhD thesis, Universiteit Utreht, 1997.[4℄ Thomas Arts and J�urgen Giesl. Proving innermosttermination automatially. In Proeedings RewritingTehniques and Appliations RTA'97, volume 1232 ofLeture Notes in Computer Siene, pages 157{171.Springer, 1997.[5℄ Anders Bondorf. Similix manual. Tehnial Report91/9, DIKU, University of Copenhagen, Denmark,1991.[6℄ Wei Ngan Chin and Siau Cheng Khoo. Calulatingsized types. In Julia Lawall, editor, ACM SIGPLANWorkshop on Partial Evaluation and Semantis-basedProgram Manipulation, Boston, Mass., USA. ACM,2000.[7℄ Mihael Codish and Cohavit Taboh. A semanti basisfor termination analysis of logi programs and itsrealization using symboli norm onstraints. InMihael Hanus, Jan Heering, and Karl Meinke,editors, Algebrai and Logi Programming, 6thInternational Joint Conferene, ALP '97{HOA '97,Southampton, U.K., September 3{5, 1997, volume1298 of Leture Notes in Computer Siene, pages31{45. Springer, 1997.[8℄ J�urgen Giesl. Termination analysis for funtionalprograms using term orderings. In Alan Myroft,editor, Pro. 2nd Int'l Stati Analysis Symposium(SAS), Glasgow, Sotland, volume 983 of LetureNotes in Computer Siene, pages 154{171.Springer-Verlag, September 1995.[9℄ Arne J. Glenstrup. Terminator II: Stopping partialevaluation of fully reursive programs. Master's thesis,DIKU, University of Copenhagen, Denmark, 1999.[10℄ Arne J. Glenstrup and Neil D. Jones. BTA algorithmsto ensure termination of o�-line partial evaluation. InPerspetives of System Informatis, Proeedings of theSeond International Andrei Ershov Memorial

Conferene, Akademgorodok, Novosibirsk, Russia, Jun25{28, 1996, volume 1181 of Leture Notes inComputer Siene, pages 273{284. Springer, 1996.[11℄ C. A. R. Hoare. An axiomati basis for omputerprogramming. Communiations of the ACM (CACM),12(10):576{580, Otober 1969.[12℄ Carsten Kehler Holst. Finiteness analysis. In JohnHughes, editor, Funtional Programming Languagesand Computer Arhiteture, Cambridge,Massahusetts, August 1991, volume 523 of LetureNotes in Computer Siene, pages 473{495. Springer,1991.[13℄ Neil D. Jones. Computability and Complexity From aProgramming Perspetive. Foundations of ComputingSeries. MIT Press, 1997.[14℄ Naomi Lindenstrauss and Yehoshua Sagiv. Automatitermination analysis of Prolog programs. In LeeNaish, editor, Proeedings of the FourteenthInternational Conferene on Logi Programming,pages 64{77, Leuven, Belgium, Jul 1997. MIT Press.[15℄ Lutz Pl�umer. Termination Proofs for Logi Programs,volume 446 of Leture Notes in Arti�ial Intelligene.Springer-Verlag, 1990.[16℄ S. Safra. On the omplexity of omega-automata. InProeedings of the 29th IEEE Symposium onFoundations of Computer Siene, pages 319{327,IEEE, 1988.[17℄ Yehoshua Sagiv. A termination test for logi programs.In Vijay Saraswat and Kazunori Ueda, editors, LogiProgramming, Proeedings of the 1991 InternationalSymposium, San Diego, California, USA, Ot 28{Nov1, 1991, pages 518{532. MIT Press, 1991.[18℄ A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper.The omplementation problem for B�uhi automatawith appliations to temporal logi. TheoretialComputer Siene, 49:217{237, 1987.[19℄ Chris Speirs, Zoltan Somogyi, and HaraldS�ndergaard. Termination analysis for Merury. InPasal Van Hentenryk, editor, Stati Analysis,Proeedings of the 4th International Symposium, SAS'97, Paris, Frane, Sep 8{19, 1997, volume 1302 ofLeture Notes in Computer Siene, pages 160{171.Springer, 1997.[20℄ Joahim Steinbah. Automati termination proofswith transformation orderings. In Jieh Hsiang, editor,Rewriting Tehniques and Appliations, Proeedings ofthe 6th International Conferene, RTA-95,Kaiserslautern, Germany, April 5-7, 1995, volume 914of Leture Notes in Computer Siene, pages 11{25.Springer, 1995.

