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Abstract. We introducecalling context graphsnd various static and theorem
proving based analyses that together provide a powerful methoddeing ter-
mination of programs written in feature-rich, first order, functionaiggamming
languages. In contrast to previous work, our method is highly autonatdd
handles any source of looping behavior in such languages, includingsiee
definitions, mutual recursion, the use of recursive data structues\e have
implemented our method for the ACL2 programming language and evdltiae
result using the ACL2 regression suite, which consists of numerousiébnaith

a total of over 10,000 function definitions. Our method was able to autoafigtic
detect termination of over 98% of these functions.

1 Introduction

Proofs of termination are a critical component of progranrexiness arguments. In
the case of transformational systems, termination prdtd&/ ais to extend partial cor-
rectness results to total correctness. In the case of veaxystems, they are used to
prove liveness propertiege., to show that some desirable behavior is not postponed
forever. Unfortunately, besides being the quintessentidecidable problem [21], ter-
mination analysis is further exacerbated by modern prograwg language features
such as recursion, mutual recursion, non-linear loop ¢mmdi, and loops that depend
on recursive data structures.

Because of this, previous work has tended to focus on findéigdble fragments
of the problem, or has been designed for simple languageétatiiathe complexity of
actual programming languages. Within such restrictechgsttmuch progress has been
made e.qg, there is work on analyzing the termination of semi-alg&bpaograms, toy
functional languages, and term rewriting systems (sedd®eg].

We present a new termination analysis based on calling xogtaphs (CCGs) for
a fully featured class of modern functional programmingplaenges. If a purely func-
tional program is nonterminating, there exists a sequefiealoesv,, va, . .., v, such
that for some functiory;, fi1(vi,ve,...,v,) leads to an infinite sequence of function
calls, fo(...), f5(...), ..., where the call t¢; results in the call t¢;; 1, for all i. CCGs
are a data structure which can conservatively approximbseieh possible sequences.
In addition, we show that CCGs are amenable to various aeslysvolving both static
analysis and theorem proving, that enable us to construptisingly precise approx-
imations of the actual function call sequences. The tertiningproof then involves
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0438871.



assigning sets of calling context measures (CCMs) overfaoahided domains to the
calls and showing that for every possible infinite sequeheeetis a corresponding se-
quence of CCMs that is infinitely decreasing. We present gordélhm based on CCGs
and CCMs that can automatically reason about any sourceopfrig behavior in first
order purely functional programming languages and whichazgomatically handle a
much larger class of programs than previous approaches.

We have implemented our algorithm in the ACL2 theorem prg\sgstem, which
consists of a feature-rich first-order functional progranmgrianguage, a logic for that
language, and an automatic theorem prover [11, 10, 9]. liaHasge, worldwide user
base, and has been used in a wide variety of industrial veiic projects ranging from
reasoning about modern processor designs to modelinggmsgwritten in imperative
languages such as Java. ACL2 is part of the Boyer-Moore Yaohiprovers, for which
its authors received the 2005 ACM Software System Awardmiretion plays a key
role in ACL2, as it is used to justify induction schemes arsbadvery defined func-
tion must be shown to terminate. Therefore, users spendhdisamt amount of time
reasoning about termination, and stand to greatly benefit the work presented here.

In order to evaluate our work, we ran our implementation @aARL2 regression
suite, a collection of numerous libraries by a variety ohaus covering topics such as
commercial floating point verification (at AMD and IBM), JVM/tecode verification,
term rewriting algorithm verification, the verification ofnaodel checker, the verifica-
tion of graph algorithms, etc. Our algorithm was able to matically prove termina-
tion for over 98% of the more than 10,000 functions in the eésgion suite. This was
accomplished with no user interaction.

The rest of the paper is organized as follows. In Section 2ntveduce the core of
first-order functional languages. In Section 3, we intradaod develop the theory of
calling context graphs. Our termination algorithm appé&aection 4, and experimen-
tal results are given in Section 5. Some readers may wanatbSection 5 first. We end
with related work and conclusions.

2 Semantics

While our method works for feature-rich, first-order functéd programming languages
including ACL2, such languages are quite complicated andavenot fully describe
them here. Instead, in Figure 1, we present the semantié4,0d language that only
contains the core features of first-order functional laggsa The semantics are similar
to what can be found in standard programming language t8gtae readers may want
to skim this section initially, returning as needed later.

We are concerned with proving the termination of well-fodhfienction definitions
(members of the sdbPefs), which are of the forndef i ne f(xi,...,x,) = e, where
f € FName is a function namezy,...,z, € Var are variables, and € Expr is an
expression whose free variables are a subsétqf. .., x,}.

The universe of values over whichL is defined isVal and it includes symbols,
strings, integers, rationals, and lists, but is otherwisspecified. However, since this is
a first order language, functions are not first class datactshjand are not included in
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Fig. 1. Language Semantics &fL.

Val. We usel (which is not inVal) to denote nontermination, arichl;, = ValU{L}.
An environment maps variables to values.

Function definitions inF'L denote mathematical functions, which can either be
members of the sefunct or TFunct. Funct consists of a set of partial functions,
which means that for some inputs, functionsfimnct may returnl, denoting nonter-
mination. TFunct is the subset ofunct consisting of all the totalife., terminating)
functions. Ahistory maps function names to total functions (of the appropriatg)a
and arintermediate historynaps function names to partial functions (of the approeriat
arity).

The termination problem we consider is: given a histéfy,and a set of mutually
recursive definitions¢d, show that the functions corresponding to the definitiong in
are terminating. To do this, we need to refer not onlyipbut also to the (possibly
partial) functions corresponding to the definitions/inThis is accomplished by using
an intermediate history,;, which is justH extended so that it includes the function
names appearing ith and their corresponding functions, as given by the sensbfic
FL (which are given in Figure 1 and described in more detail értéxt paragraph). We
then attempt to prove that the functions defined ierminate, which implies that the
intermediate history), is actually a history. If so, we have a new history. Otheemsge
rejectd, revert toH, and report the problem to the user. This allows the usera@in
mentally define programs, as is common in programming enmients for functional
languages, such as Lisp.



We use five functions to define the semanticsFéf The function[[e]]h e defines
how to evaluate an expression, given an intermediate history,, and an environ-
ment,e. The function® mapsFL's unspecified set of built-in operator®y) to their
corresponding functions. The set of built-in operatordudes the usual Boolean and
arithmetic operators, such asd, or ,not ,i ff,i nplies,+,-,/,*,etc. The func-
tion str corresponds to strict application. As input, it takes a fiomcand a vector of
values (possibly including., which indicates nontermination). It returdsif any of
the input values id_; otherwise, it returns the result of applying the functioritte val-
ues (which could also bé). The definitions of the semantics functions for variables,
values, built-in operators, function applicatidret s, and f s are now straightforward.

Function definitions are handled wifh [d] H, which defines what mathematical
functions (elements af'uncts) correspond to a set of function definitiordsgiven his-
tory H. Its definition depends on tHix function, which is used to define the semantics
of recursive function definitions using the standard fixpaipproach. Théix function
takes as input, a function from a vector of functions to a vector of funcgpmnd
returns the vector of functions obtained by taking the liastj approaches infinity of
applying¢ to the vector of functions returning. The definition ofD [d] H usesfix to
“unroll” the bodies of the definitions an unbounded numbetimés, which results in a
vector of partial functions that corresponds to the semamti the definitions.

Throughout the rest of this paper, unless otherwise spdcifie assume a fixed
history, H and a set of syntactically correct, mutually-recursivection definitions,
such that none of the function namesliare the same as those in the domaitfofThe
intermediate history: is obtained by extending/ with the semantics of the function
definitions ind. To simplify the notation, we assume the uniqueness of quiesgions.
That is, if expressior has two identical subexpressions, then we have some way of
determining which is which. This can be accomplished byipgieach subexpression
with its unique position within the base expression. We use< e,” to denote that;
is a sub-expression a@f.

We now give several definitions related to the semanticg'bfthat we will use
throughout the paper. We begin by defining the segafernorsunder which a subex-
pressione’ of e is reached, ignoring nontermination (for now). Our defamitis syn-
onymous with that in [12]. e is anFL | et statement and’ < e, then we uses,
to denote the substitution (a mapping from variables to @sgions) corresponding to
thel et bindings ofe that are visible ire’. For example, it =let x = e; in es,
theno, = {(x, e1)} ando, = {}. We useco to denote the expression obtained by
applying substitutiomr to e.

Definition 1. Given expressions, e such thate’ < e, theset of governors of’ in e
is the setf{e;o, |if e; then e; else e3 de A e Jex} U{not(eof) |
if eg then e; else es<de A e Des}.

The idea of the governors efin e is that the execution afreacheg’ exactly when
the governors are true. We therefore define the more gerafahrof when expressions
“hold”:

Definition 2. We say a set of expressioii,holdsfor environment, denoted” [E] e,

if Acer(le]” € ¢ {nil, L}).



define f(x) = 1. (f, {int
, : - p(x),x # 0,
if not(intp(x)) or x =0 b
then 0 2. (f,{intp(x),x # 0,
else if x < 0 then f(x+1)

1 ® @D
define dec(n) =

if not(intp(x)) or x <0

x X
IV A
oo
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then 255 1. (foo,{i = 1,j # 1},foo(dec(j),dec(j)))
elsen- 1 2. (foo,{i # 1} foo(dec(i),j))
define foo(i, j) =
if i =1then

if j =1then 0 S X~
el se foo(dec(j), dec(j)) A

el se foo(dec(i), j)

Fig. 2. Definitions, contexts, and minimal CCGs forandf 0o.

3 Calling Context Graphs

In this section, we introduce calling context graphs (CC#s) related notions. We also
show how CCGs can be used reason about program termination.

Definition 3. A calling contexts a triple, (f, G, ), wheref is the name of a function
defined ind, G is a set of expressions whose free variables are all parametef,
ande is a call of a function ind whose free variables are all parameters fofThis is
a precise calling contexf e is a subexpression in the body ffand G is the set of
governors ot in the body off.

We sometimes refer to a calling context simply as a contetxé definitions and
contexts for two examples are given in Figure 2. We now inioadthe notion of a
well-formed sequence of contexts, a notion that is stromglgted to termination in
FL.

Definition 4. Letc = (<fi,Gi,fi+1(ei,1, s Cimgiy) >)i be a sequence of calling
contexts, where; is the arity off; and(x; )", are the formals of;. For a given vec-
tor of valuesv, we define a sequence of environments wkgreapsr ;. to vy andey,

mapsz;11,x to [[ei,kﬂh e?. We say: is well-formedif there exists avitnessfor c: a vec-
tor of valuesw, such that for every > 0, H" [G;] € and (Vj < n; :: [[ei’j]]h € # 1),

We use the notatiom? introduced in the above definition throughout the paper.
Termination inF'L can be expressed in terms of well-formed sequences, as we see
the next theorem. (Due to space considerations all proafs heen elided.)

Theorem 1. The functions ofl terminate on all inputs iff every well-formed sequence
of precise contexts is finite.

We now define the notion of @alling context graptand show that it is a conserva-
tive approximation of the well-formed sequence of contexts

Definition 5. A calling context graph (CCG)s a directed graphg = (C, E), where
C'is a set of calling contexts, and for any pair of contextscs € C, if the sequence
(c1, c2) is well-formed, theriey, co) € E. If C'is the set of precise contextsd)ftheng
is called aprecise CCG ofi.



define size(x) = if pairp(x) then size(first(x)) + size(rest(x)) + 1
else if intp(x) then abs(x) else O

Fig. 3. Definition of si ze

The minimal precise CCG for functidn in Figure 2 is shown in the same figure.
Note that there is no edge between the two contexts. Thiscizuse ifx is a positive
integer, then decrementinxgby 1 will not lead to a negative integer. Likewise, adding 1
tox if it is a negative integer cannot produce a positive inteljetice that this mirrors
the looping behaviors of the function. Figure 2 also corgdlie minimal precise CCG
for functionf 0o. Notice that if the first context of oo is reachedf oo calls itself,
passing in(dec j) for both arguments. Sincedec j) cannot simultaneously be
both equal to 1 and not equal to 1, it is impossible to immedifateach context 1
again. However both contexts can reach context 2, and dabtsan reach context 1.

Lemma 1. Given a CCGg = (C, E), every well-formed sequence of calling contexts
of C'is a path inG.

Note that the converse of the above lemma does not hold. $hisdause the def-
inition of a CCG only requires local reachability whereas ellviormed sequence of
contexts requires that the entire sequence correspondrgla somputation. As a re-
sult, a CCG is an abstraction of the actual system. We use G&€@srform a local
analysis which if successful can determine that the defimstterminate. To do this, we
start by assigning calling context measures to contextsarOCG.

Definition 6. Given a calling contexte = (f, G, e), and a setS C Val, a calling
context measure (CCM) farover S, s, is an expression whose free variables are pa-
rameters off and for any environment, H" [G] ¢ = [s]" ¢ € S.

CCMs simply map the parameters of a function into some sebgpurposes, this
set will have a well-founded ordering on it. Now we create &lnamism for comparing
the CCM of two adjacent contexts in a CCG.

Definition 7. Let G = (C, E) be a CCG withe = (c;,c2) € E. Let(S,<) be a
well-founded structure wher§,, and S., are sets of CCMs ove$ for ¢; and ca,
respectively. Then, th€CM function fore over <, S.,, and S., is the functiong :
Se, X Se, — {>,>, x} such that: (1)¢(s1,s2) = > only if for all withesses for
(c1,¢5), we have]s;]" €? = [s2]" €3; (2) &(s1,s2) = > only if for all witnesses for
(c1,¢2), we haves1]" €@ = [s2]" €¥; (3) ¢(s1, 52) = x, otherwise.

We represent CCM functions fa, c2) graphically with a box containing the
CCMs for ¢y, co on the left and right, respectively. An edge is drawn frema left
CCM, tosq, a right CCM, with the labed(sq, s2) iff itis > or >. If ¢(s1, s2) is x, no
edge is drawn.

We now consider some examples. For the functian Figure 2, we use thei ze
function in Figure 3 applied tb’s parameterx, as the only CCM for both contexts.
The range ofi ze is the set of natural numbers, and the function is designedrior
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Fig. 4. (a) CCM function forf . (b) CCM functions foif oo
define ack (x, y) =

if (not(intp(x)) or x < 0) then 1 ¢1:1—1, b3:2 — 1
else if (not(intp(y)) or y < 0) ¢2:1—2 ¢2:2H2’
then if x=1 then 2 el se x+2 -
el se ack(ack(x-1, y), y-1) X > X X X

> >
COED — L
. o

1. (ack, {intp(x),0 < x,intp(y),0 < y},ack(x-1, y))
2. (ack,{intp(x),0 < x,intp(y),0 < y},ack(ack(x-1, y), y-1))

Fig. 5. Ackermann’s function.

common induction schemes,g, induction on the size of a list. Notice that for each
context in our example, the CCM decreases for all valuestbat satisfy the governors
of the context. The resulting CCM functions are shown in Fégdia. For the function
f 0o in Figure 2, we use different CCMs. Namely, we apgbc to the arguments; note
thatdec always returns a natural number, which is a well-founded aorander the
< relation. The result is shown in Figure 4b. The question af tmchoose CCMs is
addressed in Section 4.

We use CCM functions to show that certain infinite paths atdfewsible and also
to show that CCGs correspond to terminating functions.

Definition 8. We say that a CCG7 = (C, E) is well-foundedif there exists a well-
founded structure(S, <) and a mappingm, from C into sets of CCMs ove§ such
that M¢ < . (c) for all infinite paths,c = ¢4, ca, . .., throughG. M¢ <, is @aCCM
predicateand holds for an infinite sequence of contextsff there existsy, > 1 and a
sequence;,, s;,+1, - - - such that for alk > i, s; € m(c;) ande;(s;, si+1) € {>,>1},
and for infinitely many such ¢;(s;, s;+1) = >, whereg,; denotes the CCM function
for <Ci7 Ci+1> with CCMSm(cl) andm(cH_l).

It is important to note here that we do not need to fix a CCM fahezontext in
order to satisfy the CCM predicate. Rather, we can seleot finy of the CCMs for a
given context each time it appears in a sequence. For exangisider Ackermann’s
function, given in Figure 5. Here, if a sequence containsedr? infinitely often, thery
decreases infinitely, and if it does not, then there is anitefguffix of the sequence that
is just context 1, which means thatdecreases infinitely often. It is possible to create
one measure that decreases in both cases, but this meaguiesea well-founded
structure more powerful and complex than the natural nusmber



define g(x)
define h(x)
define f(x)
if not(intp(x)) or x=0
then 0
elseif x <0
then g(x)
el se h(x)

f(x+1)
f(x-1)

Fig. 6. Altered version of function defined in Figure 2

define f(x) =
if not(intp(x))
or x <1
then 0
elseif x mod 2 =1

then f(x+1) @/“j@)
else 1 + f(x/2) A %

¢ :2—1,¢p3:2—2

1 (f,{intp(x),1 <
2. (f,{intp(x),1

d 2 = 1},f(x+1))
d2 # 1},1(x/2))

¢$1:1—2
si ze(x) si ze(x)

size(x)AAEie>size(x)

Fig. 7. Example of the abstraction inherent in the infinite CCM relation.

It turns out that we only need to consider maximal SCCs (glyoconnected com-
ponents) to establish termination.

Theorem 2. LetG = (C, E) be a CCG, s.1C is the set of precise contextsdfif every
maximal SCC of is well-founded, then all functions dfterminate on all inputs.

Notice that the converse of Theorem 2 does not hold becaesgatis of a CCG
are a superset of the well-formed sequences of context@xaonple, notice that when
we split functionf from Figure 2 into several functions, as in Figure 6, all toac
texts now appear in the same SCC. Why? Consider the fun@ioNpte thatg( 2)
results in the calf ( 3) , which leads to context 4. A similar situation arisestolhus
1,4,2,3,1,4,2,3,... is a valid path through any CCG, even though it is not a well-
formed sequence of contexts. Each time through the 1odp2, 3, the value ok stays
the same, hence, the termination analysis presented sailfar f

Another source of imprecision is due to the local analysedua determining if a
CCG is well-founded. If a value decreases over several skepsncreases for one of
those steps, the termination analysis presented so fafaiilConsider the example in
Figure 7. Wherx is odd, 1 is added t& and when it is everx is divided by 2. This
continues untik is 1 (or not a positive integer). This results in an overatirdase of
the value ofx despite the initial increase.

In order to gain more accuracy and overcome many of the pmabtm@used by the
local nature of our analysis, we introduce the idea of cdnterging. This essentially
enables us to consider multiple steps instead of single step



1;2 :(f,{intp(x),0 < x,x#1,x mod 2 = 1,intp(x+1),0
2;1 (f,{intp(x),0 < x,x#1,x mod 2 # 1,intp(x/2),0
2;2 (f,{intp(x),0 < x,x#1,x mod 2 # 1,intp(x+1),0

x+1,(x+1) nod 2
x/2,(x/2) nod 2
x+1,(x+1) nod 2

1}, f((x+1)/2)
1}, f(x/2+1))
1}, f((x/2)/2))

INININA
R INHIE N

Fig. 8. Merging and compaction results for Figure 7.

Definition 9. Thecall substitutiorofe =f( ey, es,...,e,), denotetr., mapsz; toe;
forall 1 <i < n,wherexy,zo,...,x, are the parameters of.

Definition 10. Let (¢, co) be a well-formed sequence of calling contexts, where-
(f1,G1,e1) andca = (fa2,Ga,e2). Themergingof ¢; and ¢, denotedey; ca, is the
calling context(f1, G1 U {poe, | p € Ga}, ea0¢,).

As an example, note that if in Figure 6 we merge context 3 wattitext 1 and con-
text 4 with context 2, we get contexts 1 and 2 of Figure 2, rethgy. This makes
sense as the example in Figure 6 was obtained by splittingo several functions and
merging essentially recombines the contexts. For a moesesting example, in Fig-
ure 7 consider merging context 1 with context 2, context hwintext 1, and context
2 with itself; the result appears in Figure 8.

We now use merging to define the notion of absorption and shatgiven a CCG,
we can define an infinite sequence of CCGs such that if we cas pirat at least one
CCG inthe sequence terminates, then so does the original Tii&can greatly extend
the applicability of our analysis.

Definition 11. Given a CCGG = (C, E), the result ofabsorbingc € C is a CCG
G = (C',E")whereC’ = C\{c} U {c; ¢ | {¢,c) € E}.

Theorem 3. LetGy, Gy, ... be a sequence of CCGs such tigatis a precise CCG of
d, and G, is obtained fronG; by absorbing a context. If for somieevery maximal
SCC ofg; is well-founded, then every functiondrterminates on all inputs.

4  Algorithm

The definitions given in Section 3 suggest the following athon for the termination
analysis of a set of function definitions, using static analysis and theorem proving.

Using static analysis, construct the precise callingexds ofd.

Using theorem proving, build a precise CCG.

Absorb contexts that have only one successor.

Divide the CCG into SCCs

Choose a well-founded structure for each SCC, and a se€bfgGor each context.
Use theorem proving to construct safe approximationeefXCM functions.
Perform analysis to decide the CCM predicate for all pthmugh each SCC.

NookrwbdpE

Step 1 is straightforward, and one can construct the atlgarfrom Definition 1.
Step 2 involves building a CCG. We wish to construct as mihism@CG as we can,
in order to avoid spurious paths through the CCG, which caraf@ the rest of the



algorithm and can lead to less accurate analysis. Therdtmrevery pair of contexts,

c1 = (f,G1,e1) andey = {(g,G2,e2), such that; is a call tog, we query the the-
orem prover to prove thak;, cz) is not well-formed, and therefore no edge needs to
be added frome; to ¢;. The corresponding theorem prover query¥® € Val™ :
(Apeg, I1" €2 #ni 1) = =(Acq, [90e,]" €@ # ni l)). If the proof is successful,
we omit the edgécy, co).

For this algorithm, we choose a simple absorption stradiile absorbing a con-
text in a CCG may result in a CCG that is more amenable to aisaligamay also
increase the size of the CCG (by up to a factor of 2). Howev¥er,dontext has only
one successor in the CCG, absorbing it creates a CCG at mosizh of the origi-
nal. We therefore perform several passes through the gaagbrbing all such contexts
with each pass. This simple absorption strategy is quitectiie,e.qg, it allows us to
automatically prove the termination of the functions inu¥ig 6. We plan to explore
other strategies, such as looping from step 3 through steyl Tising the result of the
previous failed termination analysis to guide absorption.

Once absorption is completed, we choose well-foundedtsiress and CCMs. Cur-
rently, we always default to natural numbers for our wellfided structure. We use
heuristics to automatically choose CCMs. Currently, theskide the following.

— We use a version of th&l ze function from Figure 3, calledcl 2- count , thatis
extended to deal with more types, adding $he e of each parameter of a function
to the CCMs of each context from that function.

— Whene; < es 0re; < e is a governor of a context, we adg- e; as a CCM.

— Wheni nt p(e) and0 < e are governors of the context, we aglds a CCM.

Finally, we propagate measures other thansthee of the parameters through the rest
of the contexts. That is, if we add a CCMto a context, then to each of its predecessors
in the CCG we add the CClb ., wheree is the call of the predecessor. We repeat this
until the CCM is propagated to each of the contexts in the CCG.

In step 6, we approximate the CCM functions using the theqrever. Given two
adjacent contexts;; = (f,G1,e1) andca = (g, G2, e2), in an SCC, then for every
CCM, sy, for ¢; and every CCMsgs,, for ¢, we perform the following analysis. We
first attempt to prove that for all, (A ¢, [p]"e #nil) A (Agec, [qoe,]" € #
nil)] = [s1]" € < [s20,]" €. If this succeeds, we sé{(s, s,) to be>. Otherwise,
we attempt to prove that for al, [(A ¢, [p]"e #nil) A (Agea, lqoe,]" € #
ni )] = [s1]" € =< [s20¢,]" €. If this succeeds, we seéf(sy, s3) to be>. If neither
proof succeeds, we séts, s2) to be x.

The final step of the algorithm is to determine the value of@i@M predicate. In
other words, we wish to determine that for every path thrahgtgraph, we can choose
one of the CCMs from each context in the path such that thegrrigerease in value,
and infinitely decrease in value. A basic algorithm for ddinig appears in [13].

5 Experimental Results

In this section, we experimentally evaluate the theory dfrgacontext graphs we have
introduced in this paper. As we saw in the previous sectiam,amalysis is param-



eterized by the CCMs used and by the merging and absorptiategies employed.
Our goal is to evaluate a simple, baseline version of theritlgos we have presented.
Therefore, we use a simple absorption strategy and a simafilescollection of CCMs.

We have implemented our termination algorithm and used therACL2 system,
an industrial-strength theorem proving system that ctssisa feature-rich functional
programming language, a first-order logic for reasoninguabas language, and a the-
orem prover for the automation of this reasoning. The ACL®jleage can roughly be
thought of as an applicative (pure, functional) subset ah@mn Lisp. The reality is
more complicated because ACL2 has many advanced featuwrkesstsingle-threaded
objects, which have been shown to enable execution at cto§e:dpeeds. ACL2 is
actively used by a worldwide user-base to perform tasks \axs# as microproces-
sor modeling and simulation, the analysis of graph algorithalgebraic reasoning, the
analysis of imperative programs written in languages ssckesa, etc. For more infor-
mation on ACL2 see [11, 10, 9].

ACL2 is a good choice for us because termination argumeiatg @lkey role in
its logic. First, every program admitted by the definitiopehciple must be shown to
terminate before it is accepted by ACL2. This guaranteestiinitions do not render
ACL2 inconsistent. Second, inductive reasoning, ACL2isdpis justified using termi-
nation arguments (to show that the induction is well-foud)d€urrently, termination in
ACL2 is proven by providing an ordinal-valued measure arahshg that it decreases
on every recursive call. The ordinals are a transfinite esibenof the natural numbers
that form the basis of set theory; in fact, any well-foundeglinent can be phrased in
terms of the ordinals. In recent work, we improved ACL2’s dliang of the ordinals, de-
fined algorithms for ordinal arithmetic, and created a lipraf theorems for reasoning
about the ordinals and ordinal arithmetic. The result wagaifecant improvement in
ACL2’s ability to reason about termination, once an ordima&lasure is provided [14—
17]. ACL2 tries to automate termination analysis by guassiimeasure of the form
acl 2- count (x) , wherex is some parameter of the function. Unfortunately, it is of-
ten the case that this simple heuristic fails and the uset dissover and provide an
appropriate ordinal measure.

Another advantage of using ACL2 is that it has a regressidate swnsisting of
137 MB of definitions and theorems. There are over 10,400tfomalefinitions aris-
ing in the work of various researchers around the world andirg from bit-vector
libraries used by AMD (to prove the correctness of their fleafpoint units) to set
theory libraries to graph algorithms to model checkets, The termination of all of
these functions has already been proven with ACL2. In thexadere ACL2 does not
automatically prove termination, human guidance is regLiitWe distinguish two types
of guidance.

Implicit guidance is given when users prove auxiliary lersmdich help ACL2 to
complete the termination proof. While it is difficult to idéytthe theorems used solely
to prove termination, it is clear that many termination gso@quire auxiliary lemmas
and substantial human effort. For example, in a recent ppst the ACL2 mailing
list, an experienced ACL2 user asked whether a particulaofprould be simplified.
After some discussion, he simplified his proof and postedoafpehallenge to see if
anyone could simplify it further. The point was to establisé termination of function



Which Functions Totall# Correct% Correct
All 10,442 10,308 98.7%
With Explicit Guidance 421 287 68.2%

Table 1.Results of experiments on the regression suite

f ri ngep. The simplified proof included a library for reasoning abatithmetic, seven
lemmas, one theory command, and five function definitiong dfthe functions were
needed to definéri ngep, but the other three functions were needed for the proof.
The proof script also contained several hints, the use optbef checker, and several
theorems that were classified:dsi near rules (which are handled in a special way by
ACL2). The proof was simplified by another experienced ACk2mbut it still required
the library, five function definitions, and five theorems. idsbur system, we proved
termination directly in seconds, without using the libramjthout the extra definitions,
without any lemmas, and most importantly, without thinking

Explicit guidance is given when users provide the measupéaitky or when they
provide hints on how to prove termination. Such guidancex@y/do detect and of the
10,442 functions in the regression suite, 404 required #iee 1o provide explicit mea-
sures and 17 more requited hints. For example, here is a parfunction from the
regression suite that specifies an explicit measure: amardbnstructed using ordi-
nal multiplication 6+ ), ordinal addition ¢+), the first infinite ordinal(onega) ), and
several auxiliary functionse(g, t upl e- set - max-first).
(defun tupl e-set->ordinal-partial-sum(k S i)

(decl are (xargs
:nmeasure (o+ (ox (onega) (nfix k))
(nfix (- (tuple-set-max-first S) i)))))
)

The actual function definition is too long to list here, butativering infinite measures
requires some skill. Our system automatically proves tieabove function terminates.

To quantitatively evaluate our work, we removed all sour@esxplicit hints and
ran our termination method on the full regression suitec&identifying the implicit
guidance is difficult, we did not attempt to remove such lemrbat we note that since
our termination analysis is very different from ACL2’s, fidemmas are not very likely
to provide much help for us. The results of our experimerépegsented in Table 1. Out
of all 10,442 functions analyzed by our system, 10,308 (8886) were automatically
proven to terminate. Included in these are 287 of the 421time which required
the user to provide explicit measures or hints for ACL2 tovprtermination. In other
words, of the most difficult 4% of functions to analyze, oultsuccessfully and fully
automatically analyzed almost 70% of them.

6 Related Work

Termination is one of the oldest problems in computing smeand it has received a
significant amount of attention. Here we will briefly reviegcent work on automating
termination analysis.



One of the most often cited techniques for the proving teatim of programs
is called thesize change principl§l3]. This method involves using a well-order on
function parameters, analyzing recursive calls to labgl@early decreasing or non-
increasing parameters. Then, all infinite paths are andly@ensure that some param-
eter never increases and infinitely decreases over eachfgatiise this path analysis in
step 7 of our algorithm. The size change principle has sklmnigations, e.g, it does
not show how to take governors into account and it does natigeecany method for
determining the sizes of the outputs of user-defined funstiBoth of these considera-
tions are almost always important for establishing tertidman realistic programming
languages.

Much work has gone into developing termination analysesdon rewriting sys-
tems and logic programe.g, [2,8,4]. However, these methods do not scale to the
complexity of functional programming languages. For exinine AProVE tool [8],
cannot prove the termination of a function that takes tweget arguments; andy,
and increments until it is greater thany, which is the behavior of a simpfeor loop.

There has been a significant amount of work on proving theitextion of programs
written in high-level imperative languages such as C. Thigktends to focus on semi-
algebraic functions, whose termination behavior is gosétoy integer arithmetic. Most
of it has been even more narrowly defined than that, dealihgwith systems whose
behavior is linear [19, 20]. Recently, this work has beereedéd to programs with
polynomial behavior [3, 6]. While successful in dealing wsttmi-algebraic programs,
these methods are not applicable outside of this doneagn they cannot reason about
data structures, which often play a crucial role in termaraproofs, or non-polynomial
arithmetic. A recent paper presents an abstraction-reéneaigorithm for termination
analysis. The algorithm deals with loops, but cannot culydrandle recursion and was
not implemented [5].

7 Conclusion

We introduced the notion of calling context graphs and vexirelated static and the-
orem proving based analyses that together led to a powegfulmethod for proving
termination of programs written in feature-rich, first-ergdpurely functional languages.
We implemented our algorithm and were able to automatiaghect the termination
of over 98% of the more than 10,000 function definitions inAB 2 regression suite.
For future work, we are developing an abstraction-refindrftamework that uses more
advanced absorption and merging strategies to refine CC&ar#\also looking at ex-
tending our analysis to deal with imperative languages si$c@ by taking advantage
of various static analyses (such as alias analysis, datadiud control-flow) and tak-
ing advantage of the fact that Static Single Assignment ($S84opular intermediate
language used for the analysis and optimization of impergiiograms, is essentially a
pure functional language [1]. More generally, we are irgexé in exploring algorithms
that combine static analysis methods with theorem provigy [
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