# Calling Context Graphs 

## Pete Manolios <br> Northeastern

Formal Methods, Lecture 8
October 2008

## Termination Analysis

- Quintessential undecidable software verification problem

Calling Context Graphs and Measures

1. Fully automatic termination analysis

Domain: fully-featured, first-order, applicative functional PLs
Combination of static analysis and theorem proving

- Implemented in ACL2s
- Experimental results: ACL2 regression suite
- > 100MB of code (JVM, linear algebra, model checker, ...)
- $>10,000$ function definitions

I Over a decade of submissions from worldwide user base

- $98.7 \%$ success rate


## The Idea

1 Non-termination in our domain iff
$\exists$ some input that leads to an infinite sequence of function calls

- Goal: Conservative, precise, analyzable abstraction
- First attempt: use call graphs
- Example:

```
define f(x)=
    if (!intp(x) or x < 1)
        then 0
        else if (x mod 2 = 1)
        then f(x+1)
        else 1+f(x/2)
```



Not enough

## Governors

(1. The governors of $\mathrm{e}^{\prime} \subseteq \mathrm{e}$ are the branching conditions that need to be true for execution of e to lead to the execution of $e^{\prime}$

- Example

```
define f(x)=
    if (!intp(x) or x < 1)
        then 0
        else if (x mod 2 = 1)
        then f(x+1)
        else 1+f(x/2)
```


## Governors

(1. The governors of $\mathrm{e}^{\prime} \subseteq \mathrm{e}$ are the branching conditions that need to be true for execution of e to lead to the execution of $e^{\prime}$

- Example
define $f(x)=$
if $(!\operatorname{intp}(x)$ or $x \leq 1)$ then 0
else if $(x \bmod 2=1)$
then $\mathbf{f}(\mathbf{x + 1})$
else $1+f(x / 2)$
|. Governors for $f(x+1)$ : $\{\operatorname{intp}(x), x>1, x \bmod 2=1\}$


## Governors

(1. The governors of $\mathrm{e}^{\prime} \subseteq \mathrm{e}$ are the branching conditions that need to be true for execution of e to lead to the execution of $e^{\prime}$

- Example
define $f(x)=$
if (!intp $(x)$ or $x \leq 1$ ) then 0
else if $(x \bmod 2=1)$
then $f(x+1)$
else $1+\mathbf{f}(\mathbf{x} / \mathbf{2})$

1. Governors for $f(x+1):\{\operatorname{intp}(x), x>1, x \bmod 2=1\}$
|. Governors for $f(x / 2):\{\operatorname{intp}(x), x>1, x \bmod 2 \neq 1\}$

## Precise Calling Contexts

- A precise calling context for a call e is a triple containing:
- The name of the function containing e
. The governors for e in the function body
The call, e
- Example: define $f(x)=$

$$
\begin{aligned}
& \text { if }(\text { !intp }(x) \text { or } x \leq 1) \\
& \text { then } 0 \\
& \text { else if }(x \bmod 2=1) \\
& \text { then } f(x+1) \\
& \text { else } 1+f(x / 2)
\end{aligned}
$$

1. $\langle f,\{\operatorname{intp}(x), x>1, x \bmod 2=1\}, f(x+1)\rangle$
2. $\langle f,\{\operatorname{intp}(x), x>1, x \bmod 2 \neq 1\}, f(x / 2)\rangle$

## Calling Context Graphs

1. Example: define $f(x)=$ if (!intp(x) or $x \leq 1$ ) then 0 else if $(x \bmod 2=1)$ then $f(x+1)$


$$
\text { else } 1+f(x / 2)
$$

1. $\langle f,\{\operatorname{intp}(x), x>1, x \bmod 2=1\}, f(x+1)\rangle$
2. $\langle f,\{\operatorname{intp}(x), x>1, x \bmod 2 \neq 1\}, f(x / 2)\rangle$

Vertices are calling contexts

- An edge from c1 to c2 if it is possible for execution to reach c1 and c2 in consecutive recursive calls
- Set of all paths is an overapproximation of recursive behavior


## Building Calling Context Graphs

- The edge condition:
$\exists$ values that satisfy the governors of both contexts
- Governors are arbitrary predicates
- Building a minimal CCG is undecidable
- Theorem prover queries used to eliminate unnecessary edges
- Edge included if theorem prover cannot disprove the edge condition
- We need more



## Calling Context Measures

- Map function formals into some well-founded structure
- Each calling context is given a set of CCMs
- Example:

1. $\langle f,\{\operatorname{intp}(x), x>1, x \bmod 2=1\}, f(x+1)\rangle$
2. $\langle f,\{\operatorname{intp}(x), x>1, x \bmod 2 \neq 1\}, f(x / 2)\rangle$


Decreasing edge $>$ :
Non-increasing edge $\geq$ :
Neither X:

## The Termination Condition

. For every infinite path through the CCG,

- There should exist a corresponding sequence of CCMs,
- Such that for some tail of the sequence, each adjacent pair of CCMs is never increasing and infinitely decreasing
- Solved by Size Change back-end algorithm


Decreasing edge $>$ :
Non-increasing edge $\geq$ :
Neither X:

## Merging

## define $f(x)=$

if (!intp $(x)$ or $x \leq 1)$ then 0
else if $(x \bmod 2=1)$ then $f(x+1)$
else $1+f(x / 2)$

1. $\langle f,\{\operatorname{intp}(x), x>1, x \bmod 2=1\}, f(x+1)\rangle$
2. $\langle f,\{\operatorname{intp}(x), x>1, x \bmod 2 \neq 1\}, f(x / 2)\rangle$

## Merging

define $f(x)=$
if (!intp( $x$ ) or $x \leq 1$ ) then 0
else if $(x \bmod 2=1)$ then $f(x+1)$
else $1+f(x / 2)$


1. $\langle f,\{\operatorname{intp}(x), x>1, x \bmod 2=1, \operatorname{intp}(x+1), x+1>1$, $(x+1) \bmod 2 \neq 1\}, f((x+1) / 2)\rangle$
2. $\langle f,\{\operatorname{intp}(x), x>1, x \bmod 2 \neq 1\}, f(x / 2)\rangle$

## Ackermann's Function

define ack $(a, b)=$ if (!intp(a) or $a \leq 0)$ then 1
else if (!intp(b) or $b \leq 0)$ then if $a=1$
then 2
else a+2

else $\operatorname{ack}(\operatorname{ack}(a-1, b), b-1)$

1. 〈ack, $\{\operatorname{intp}(a), 0<a, \operatorname{intp}(b), 0<b\}, \operatorname{ack}(a-1, b)\rangle$
2. 〈ack, \{intp(a), $0<a, \operatorname{intp}(b), 0<b\}, \operatorname{ack}(\operatorname{ack}(a-1, b), b-1)\rangle$

## Full Algorithm

- We presented a simplified version of our analysis
- Mutual Recursion
- SCC analysis: can have more SCCs than functions
- Hierarchical Analysis
- Merging on a per-node basis: different edges correspond to different numbers of steps
- Multiple CCMs
- CCMs that combine formals (e.g., $x-y$ )
- Different CCMs for different nodes
. Saturation algorithm for propagating CCMs


## JVM Example

```
(mutual-recursion
; mma2 :: num, counts, s, ac --> [refs]
(defun mma2 (c1 c2 s ac)
    (declare (xargs :measure (cons (len (cons c1 c2))
                (natural-sum (cons c1 c2)))))
    (if (zp c1)
        (mv (heap s) ac)
        (mv-let (new-addr new-heap)
            (mma c2 s)
            (mma2 (- c1 1)
                    c2
                            (make-state (thread-table s)
                                    new-heap
                                    (class-table s))
                            (cons (list 'REF new-addr) ac)))))
;i mma :: [counts], s --> addr, new-heap
(defun mma (counts s)
    (declare (xargs :measure (cons (+ 1 (len counts))
    (if (<= (len counts) 1) (natural-sum counts))))
        ;; "Base case" Handles initializing the final dimension
        (mv (len (heap s))
            (bind (len (heap s))
                (makearray 'T_REF
                            (car counts)
                                    (init-array 'T_REF (car counts))
                                    (class-table s))
                (heap s)))
    ;; "Recursive Case"
    (mv-let (heap-prime lst-of-refs)
                (mma2 (car counts)
                    (cdr counts)
                    s
                    nil)
                (let* ((obj (makearray 'T_REF
                                    (car counts)
                                    lst-of-refs
                                    (class-table s)))
                            (new-addr (len heap-prime))
                    (new-heap (bind new-addr obj heap-prime)))
                    (mv new-addr new-heap)))))

\section*{JVM Example}
(mutual-recursion (defun mma2 (c1 c2 s ac)
(if (zp c1)
(mv-let (new-addr new-heap)
(mma c2 s)
\[
\left.\left.\left(m m a 2(-c 11) c 2 e e^{\prime}\right)\right)\right)
\]
(defun mma (c s)
(if (<= (len c) 1)
(mma2 (car c) (cdr c) s nil) ...)) )
```

mma2 measure: (cons (len (cons c1 c2))
(natural-sum (cons c1 c2)))
mma measure: (cons (+ 1 (len c)) (natural-sum c))

```

\section*{Experimental Results}
- Implemented in ACL2s
- Ran our algorithm over the ACL2 Regression Suite
- Over 100MB, 11,000 function definitions
- Ignored all user hints and other explicit assistance
- Over \(98 \%\) success rate

Experiment: No Theorems
\begin{tabular}{l|r|r|r}
\multicolumn{1}{c}{ Problems } & \multicolumn{1}{c}{ Total } & \multicolumn{1}{c}{ CCG } & \multicolumn{1}{c}{ ACL2 } \\
\hline Non-Trivial & \(\mathbf{1 7 6 2}\) & 1408 (80\%) & 1056 (60\%) \\
\hline Recursive & 4348 & 3394 (92\%) & \(3642(84 \%)\)
\end{tabular}

Experiment: Theorems
\begin{tabular}{l|r|r|r}
\hline Non-Trivial & 1762 & 1544 (87\%) & 1056 (67\%) \\
\hline Recursive & 4348 & 3394 (95\%) & \(3642(87 \%)\)
\end{tabular}```

